Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cancer Metastasis Rev ; 39(1): 55-68, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32026204

RESUMEN

Over the past few decades, the diagnosis and management of children with various malignancies have improved tremendously. As a result, there are an increasing number of children who are long-term cancer survivors. With improved survival, however, has come an increased risk of treatment-related cardiovascular complications that can appear decades after treatment. These problems are serious enough that all caregivers of childhood cancer survivors, including oncologists, cardiologists, and other health care personnel, must pay close attention to the short- and long-term effects of chemotherapy and radiotherapy on these children. This review discusses the effects of treatment-related cardiovascular complications from anthracyclines and radiotherapy and the methods for preventing, screening, and treating these complications.


Asunto(s)
Supervivientes de Cáncer , Enfermedades Cardiovasculares/etiología , Neoplasias/complicaciones , Antraciclinas/administración & dosificación , Antraciclinas/efectos adversos , Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos , Enfermedades Cardiovasculares/inducido químicamente , Niño , Humanos , Neoplasias/terapia
2.
Pharmacogenet Genomics ; 31(5): 108-115, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34096893

RESUMEN

OBJECTIVES: Cardiotoxicity is a frequent complication secondary to the use of anthracyclines for cancer chemotherapy. Evidence suggests that certain polymorphic genetic variants modify the risk for anthracycline-related cardiotoxicity. Reports documenting the impact of genetic polymorphisms on anthracycline-cardiotoxicity risk in pediatric patients with cancers from Latin American countries are scarce. The objective of this study was to evaluate associations between NCF4 rs1883112, CBR3 rs1056892 and ABCC1 rs3743527 genotype status and echocardiographic parameters indicative of anthracycline-cardiotoxicity in a group of Mexican children with acute lymphoblastic leukemia (ALL). METHODS: Sixty-seven children (2-18 years old) with ALL were treated at the State Cancer Center in Durango, Mexico. NCF4, CBR3, and ABCC1 genotypes were examined by real-time PCR. Left ventricular ejection fraction and diastolic filling ratio were examined as markers of systolic and diastolic anthracycline-toxicity. RESULTS: NCF4 rs1883112 genotype status was significantly associated with the risk of doxorubicin cardiotoxicity [odds ratio (OR) = 10.80, 95% confidence interval (CI) 1.69-68.98, P = 0.01]. There was a significant association between heterozygous CBR3 rs1056892 genotype status and anthracycline-cardiotoxicity risk (OR = 9.91, 95% CI 1.07-91.47, P = 0.04). Heterozygosis for the ABCC1 rs3743527 allele was associated with protection from anthracycline-cardiotoxicity (OR = 0.30, 95% CI 0.09-0.91, P = 0.03). CONCLUSION: This pilot study suggests that selected polymorphic variants may impact the risk for anthracycline-cardiotoxicity in pediatric patients with ALL treated with a contemporary chemotherapeutic regimen in Mexico.


Asunto(s)
Cardiotoxicidad , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adolescente , Oxidorreductasas de Alcohol/genética , Cardiotoxicidad/genética , Niño , Preescolar , Doxorrubicina/efectos adversos , Humanos , NADPH Oxidasas/genética , Proyectos Piloto , Polimorfismo Genético , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Volumen Sistólico , Función Ventricular Izquierda
3.
Cancer ; 126(17): 4051-4058, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32413235

RESUMEN

BACKGROUND: Anthracycline-related cardiomyopathy is a leading cause of late morbidity in childhood cancer survivors. Glutathione S-transferases (GSTs) are a class of phase II detoxification enzymes that facilitate the elimination of anthracyclines. As free-radical scavengers, GSTs could play a role in oxidative damage-induced cardiomyopathy. Associations between the GSTµ1 (GSTM1) null genotype and iron-overload-related cardiomyopathy have been reported in patients with thalassemia. METHODS: The authors sought to identify an association between the GSTM1 null genotype and anthracycline-related cardiomyopathy in childhood cancer survivors and to corroborate the association by examining GSTM1 gene expression in peripheral blood and human-induced pluripotent stem cell cardiomyocytes (hiPSC-CMs) from survivors with and without cardiomyopathy. GSTM1 gene deletion was examined by polymerase chain reaction in 75 survivors who had clinically validated cardiomyopathy (cases) and in 92 matched survivors without cardiomyopathy (controls). Conditional logistic regression analysis adjusting for sex, age at cancer diagnosis, chest radiation, and anthracycline dose was used to assess the association between genotype and cardiomyopathy. Proprietary bead array technology and quantitative real-time polymerase chain reaction were used to measure GSTM1 expression levels in samples from 20 cases and 20 matched controls. hiPSC-CMs from childhood cancer survivors (3 with cardiomyopathy, 3 without cardiomyopathy) also were examined for GSTM1 gene expression levels. RESULTS: A significant association was observed between the risk of cardiomyopathy and the GSTM1 null genotype (odds ratio, 2.7; 95% CI, 1.3-5.9; P = .007). There was significant downregulation of GSTM1 expression in cases compared with controls (average relative expression, 0.67 ± 0.57 vs 1.33 ± 1.33, respectively; P = .049). hiPSC-CMs from patients who had cardiomyopathy revealed reduced GSTM1 expression (P = .007). CONCLUSIONS: The current findings could facilitate the identification of childhood cancer survivors who are at risk for anthracycline-related cardiomyopathy.


Asunto(s)
Antraciclinas/administración & dosificación , Cardiomiopatías/genética , Glutatión Transferasa/genética , Neoplasias/tratamiento farmacológico , Adolescente , Antraciclinas/efectos adversos , Supervivientes de Cáncer , Cardiomiopatías/sangre , Cardiomiopatías/etiología , Cardiomiopatías/patología , Niño , Preescolar , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Masculino , Neoplasias/complicaciones , Neoplasias/genética , Neoplasias/patología , Estrés Oxidativo/efectos de los fármacos
4.
Exp Mol Pathol ; 110: 104268, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31201803

RESUMEN

Down syndrome (trisomy 21) is characterized by genome-wide imbalances that result in a range of phenotypic manifestations. Altered expression of DYRK1A in the trisomic context has been linked to some Down syndrome phenotypes. DYRK1A regulates the splicing of cardiac troponin (TNNT2) through a pathway mediated by the master splicing factor SRSF6. Here, we documented the expression of the DYRK1A-SRSF6-TNNT2 pathway in a collection of myocardial samples from persons with and without Down syndrome. Results suggest that "gene dosage effect" may drive the expression of DYRK1A mRNA but has no effect on DYRK1A protein levels in trisomic myocardium. The levels of phosphorylated DYRK1A-Tyr321 tended to be higher (~35%) in myocardial samples from donors with Down syndrome. The levels of phosphorylated SRSF6 were 2.6-fold higher in trisomic myocardium. In line, the expression of fetal TNNT2 variants was higher in myocardial tissue with trisomy 21. These data provide a representative picture on the extent of inter-individual variation in myocardial DYRK1A-SRSF6-TNNT2 expression in the context of Down syndrome.


Asunto(s)
Síndrome de Down , Corazón Fetal/metabolismo , Miocardio/metabolismo , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Factores de Empalme Serina-Arginina/genética , Troponina T/genética , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Lactante , Masculino , Persona de Mediana Edad , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Transducción de Señal/genética , Troponina T/metabolismo , Adulto Joven , Quinasas DyrK
5.
Pharm Res ; 35(1): 15, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29302759

RESUMEN

PURPOSE: FCGRT encodes the alpha-chain component of the neonatal Fc receptor (FcRn). FcRn is critical for the trafficking of endogenous and exogenous IgG molecules and albumin in various tissues. Few regulators of FcRn expression have been identified. We investigated the epigenetic regulation of FcRn by two microRNAs (hsa-miR-3181 and hsa-miR-3136-3p) acting on FCGRT. METHODS: The binding of candidate microRNAs to the 3'-untranslated region of FCGRT was evaluated using luciferase reporter constructs in CHO cells. The effect of microRNAs on FCGRT mRNA and FcRn protein expression was evaluated using specific microRNA mimics and inhibitor transfections in A549, HEK293 and HepG2 cells. RESULTS: Hsa-miR-3181 mimic reduced luciferase reporter activity by 70.1% (10 nM, P < 0.0001). In A549, HEK293 and HepG2 cells, hsa-miR-3181 decreased FCGRT mRNA expression (48.6%, 51.3% and 43.5% respectively, 25 nM, P < 0.05). The hsa-miR-3181 mimic decreased the expression of FcRn protein by 40% after 48 h (25 nM, P < 0.001). The mature form of hsa-miR-3181 was detected in samples of human liver. CONCLUSIONS: These data suggest that hsa-miR-3181 is an epigenetic regulator of FCGRT expression. The identification of this regulator of FCGRT may provide insights into a potential determinant of interindividual variability in FcRn expression.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/biosíntesis , MicroARNs/genética , Receptores Fc/biosíntesis , Regiones no Traducidas 3' , Células A549 , Animales , Células CHO , Cricetinae , Cricetulus , Epigénesis Genética , Expresión Génica , Células HEK293 , Células Hep G2 , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Hígado/metabolismo , Luciferasas , ARN Mensajero/genética , Receptores Fc/genética , Transfección/métodos
6.
Biopharm Drug Dispos ; 39(6): 315-318, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29851133

RESUMEN

Loxoprofen is an anti-inflammatory drug that requires bioactivation into the trans-OH metabolite to exert pharmacological activity. Evidence suggests that carbonyl reductase 1 (CBR1) is important during the bioactivation of loxoprofen. This study examined the impact of the functional single nucleotide polymorphism CBR1 rs9024 on the bioactivation of loxoprofen in a collection of human liver samples. The synthesis ratios of trans-OH loxoprofen/cis-OH loxoprofen were 33% higher in liver cytosols from donors homozygous for the CBR1 rs9024 G allele in comparison with the ratios in samples from donors with heterozygous GA genotypes. Complementary studies examined the impact of CBR1 rs9024 on the bioactivation of loxoprofen in lymphoblastoid cell lines. CBR1 rs9024 genotype status impacts the synthesis of the bioactive trans-OH metabolite of loxoprofen in human liver.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Genotipo , Hígado/metabolismo , Fenilpropionatos/metabolismo , Polimorfismo de Nucleótido Simple , Oxidorreductasas de Alcohol/genética , Antiinflamatorios no Esteroideos/metabolismo , Línea Celular Tumoral , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
Hum Mutat ; 38(1): 48-54, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27594409

RESUMEN

Individuals with Down syndrome (DS, trisomy 21) exhibit a pro-oxidative cellular environment as well as mitochondrial dysfunction. Increased oxidative stress may damage the mitochondrial DNA (mtDNA). The coexistence of mtDNA variants in a cell or tissue (i.e., heteroplasmy) may contribute to mitochondrial dysfunction. Given the evidence on mitochondrial dysfunction and the relatively high incidence of multiorganic disorders associated with DS, we hypothesized that cardiac tissue from subjects with DS may exhibit higher frequencies of mtDNA variants in comparison to cardiac tissue from donors without DS. This study documents the analysis of mtDNA variants in heart tissue samples from donors with (n = 12) and without DS (n = 33) using massively parallel sequencing. Contrary to the original hypothesis, the study's findings suggest that the cardiac mitochondrial genomes from individuals with and without DS exhibit many similarities in terms of (1) total number of mtDNA variants per sample, (2) the frequency of mtDNA variants, (3) the type of mtDNA variants, and (4) the patterns of distribution of mtDNA variants. In both groups of samples, the mtDNA control region showed significantly more heteroplasmic variants in comparison to the number of variants in protein- and RNA-coding genes (P < 1.00×10-4 , ANOVA).


Asunto(s)
Síndrome de Down/genética , Variación Genética , Genoma Mitocondrial , Mitocondrias Cardíacas/genética , Adulto , Anciano , Estudios de Casos y Controles , Biología Computacional/métodos , ADN Mitocondrial/genética , Síndrome de Down/diagnóstico , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación INDEL , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Adulto Joven
8.
Biochim Biophys Acta ; 1852(7): 1420-7, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25869329

RESUMEN

The regulation of mitochondrial biogenesis is under the control of nuclear genes including the master Mitochondrial Transcription Factor A (TFAM). Recent evidence suggests that the expression of TFAM is regulated by microRNAs (miRNAs) in various cellular contexts. Here, we show that hsa-miR-155-5p, a prominent miRNA encoded in chromosome 21, controls the expression of TFAM at the post-transcriptional level. In human fibroblasts derived from a diploid donor, downregulation of TFAM by hsa-miR-155-5p decreased mitochondrial DNA (mtDNA) content. In contrast, downregulation of TFAM by hsa-miR-155-5p did not decrease mtDNA content in fibroblasts derived from a donor with Down syndrome (DS, trisomy 21). In line, downregulation of mitochondrial TFAM levels through hsa-miR-155-5p decreased mitochondrial mass in diploid fibroblasts but not in trisomic cells. Due to the prevalence of mitochondrial dysfunction and cardiac abnormalities in subjects with DS, we examined the presence of potential associations between hsa-miR-155-5p and TFAM expression in heart samples from donors with and without DS. There were significant negative associations between hsa-miR-155-5p and TFAM expression in heart samples from donors with and without DS. These results suggest that regulation of TFAM by hsa-miR-155-5p impacts mitochondrial biogenesis in the diploid setting but not in the DS setting.


Asunto(s)
Proteínas de Unión al ADN/genética , MicroARNs/genética , Proteínas Mitocondriales/genética , Recambio Mitocondrial , Factores de Transcripción/genética , Animales , Células CHO , Estudios de Casos y Controles , Células Cultivadas , Cromosomas Humanos Par 21/genética , Cricetinae , Cricetulus , ADN Mitocondrial/genética , Proteínas de Unión al ADN/metabolismo , Síndrome de Down/genética , Fibroblastos/metabolismo , Humanos , MicroARNs/metabolismo , Proteínas Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , Ploidias , Factores de Transcripción/metabolismo
9.
J Pediatr Hematol Oncol ; 38(4): 283-7, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26907658

RESUMEN

Children with Down syndrome (DS) have a 10- to 30-fold increased risk of developing acute myeloid leukemia or acute lymphoblastic leukemia. Patients with DS and leukemia are treated with the same chemotherapeutic agents as patients without DS. Treatment regimens for pediatric leukemia comprise multiple cytotoxic drugs including methotrexate, doxorubicin, vincristine, cytarabine, and etoposide. There have been reports of increased toxicity, as well as altered therapeutic outcomes in pediatric patients with DS and leukemia. This review is focused on the pharmacokinetics of cytotoxic drugs in pediatric patients with leukemia and DS. The available literature suggests that methotrexate and thioguanine display altered pharmacokinetic parameters in pediatric patients with DS. It has been hypothesized that the variable pharmacokinetics of these drugs may contribute to the increased incidence of treatment-related toxicities seen in DS. Data from a small number of studies suggest that the pharmacokinetics of vincristine, etoposide, doxorubicin, and busulfan are similar between patients with and without DS. Definitive conclusions regarding the pharmacokinetics of cytotoxic drugs in pediatric patients with leukemia and DS are difficult to reach due to limitations in the available studies.


Asunto(s)
Antineoplásicos/farmacocinética , Síndrome de Down/tratamiento farmacológico , Leucemia/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Antineoplásicos/toxicidad , Niño , Síndrome de Down/complicaciones , Humanos , Leucemia/etiología , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/etiología , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/etiología
10.
Drug Metab Dispos ; 43(7): 922-7, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25918240

RESUMEN

The anthracyclines doxorubicin and daunorubicin are used in the treatment of various human and canine cancers, but anthracycline-related cardiotoxicity limits their clinical utility. The formation of anthracycline C-13 alcohol metabolites (e.g., doxorubicinol and daunorubicinol) contributes to the development of anthracycline-related cardiotoxicity. The enzymes responsible for the synthesis of anthracycline C-13 alcohol metabolites in canines remain to be elucidated. We hypothesized that canine carbonyl reductase 1 (cbr1), the homolog of the prominent anthracycline reductase human CBR1, would have anthracycline reductase activity. Recombinant canine cbr1 (molecular weight: 32.8 kDa) was purified from Escherichia coli. The enzyme kinetics of "wild-type" canine cbr1 (cbr1 D218) and a variant isoform (cbr1 V218) were characterized with the substrates daunorubicin and menadione, as well as the flavonoid inhibitor rutin. Canine cbr1 catalyzes the reduction of daunorubicin to daunorubicinol, with cbr1 D218 and cbr1 V218 displaying different kinetic parameters (cbr1 D218 Km: 188 ± 144 µM versus cbr1 V218 Km: 527 ± 136 µM, P < 0.05, and cbr1 D218 Vmax: 6446 ± 3615 nmol/min per milligram versus cbr1 V218 Vmax: 15539 ± 2623 nmol/min per milligram, P < 0.01). Canine cbr1 also metabolized menadione (cbr1 D218 Km: 104 ± 50 µM, Vmax: 2034 ± 307 nmol/min per milligram). Rutin acted as a competitive inhibitor for the reduction of daunorubicin (cbr1 D218 Ki: 1.84 ± 1.02 µM, cbr1 V218 Ki: 1.38 ± 0.47 µM). These studies show that canine cbr1 metabolizes daunorubicin and provide the necessary foundation to characterize the role of cbr1 in the variable pharmacodynamics of anthracyclines in canine cancer patients.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Antraciclinas/metabolismo , Antibióticos Antineoplásicos/metabolismo , Oxidorreductasas de Alcohol/antagonistas & inhibidores , Animales , Antibacterianos/metabolismo , Clonación Molecular , ADN Complementario/genética , ADN Complementario/metabolismo , Daunorrubicina/metabolismo , Perros , Relación Dosis-Respuesta a Droga , Escherichia coli/metabolismo , Humanos , Isoenzimas/metabolismo , Cinética , Masculino , Oxidación-Reducción , Polimorfismo de Nucleótido Simple , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rutina/metabolismo , Rutina/farmacología , Vitamina K 3/metabolismo
11.
Pharm Res ; 31(7): 1644-55, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24562808

RESUMEN

PURPOSE: The intracardiac synthesis of anthracycline alcohol metabolites (e.g., daunorubicinol) contributes to the pathogenesis of anthracycline-related cardiotoxicity. Cancer patients with Down syndrome (DS) are at increased risk for anthracycline-related cardiotoxicity. We profiled the expression of anthracycline metabolizing enzymes in hearts from donors with- and without- DS. METHODS: Cardiac expression of CBR1, CBR3, AKR1A1, AKR1C3 and AKR7A2 was examined by quantitative real time PCR, quantitative immunoblotting, and enzyme activity assays using daunorubicin. The CBR1 polymorphism rs9024 was investigated by allelic discrimination with fluorescent probes. The contribution of CBRs/AKRs proteins to daunorubicin reductase activity was examined by multiple linear regression. RESULTS: CBR1 was the most abundant transcript (average relative expression; DS: 81%, non-DS: 58%), and AKR7A2 was the most abundant protein (average relative expression; DS: 38%, non-DS: 35%). Positive associations between cardiac CBR1 protein levels and daunorubicin reductase activity were found for samples from donors with- and without- DS. Regression analysis suggests that sex, CBR1, AKR1A1, and AKR7A2 protein levels were significant contributors to cardiac daunorubicin reductase activity. CBR1 rs9024 genotype status impacts on cardiac CBR1 expression in non-DS hearts. CONCLUSIONS: CBR1, AKR1A1, and AKR7A2 protein levels point to be important determinants for predicting the synthesis of cardiotoxic daunorubicinol in heart.


Asunto(s)
3-Hidroxiesteroide Deshidrogenasas/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Aldehído Reductasa/metabolismo , Antraciclinas/metabolismo , Síndrome de Down/enzimología , Corazón/efectos de los fármacos , Hidroxiprostaglandina Deshidrogenasas/metabolismo , Miocardio/enzimología , 3-Hidroxiesteroide Deshidrogenasas/análisis , 3-Hidroxiesteroide Deshidrogenasas/genética , Oxidorreductasas de Alcohol/análisis , Oxidorreductasas de Alcohol/genética , Aldehído Reductasa/análisis , Aldehído Reductasa/genética , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas , Antraciclinas/efectos adversos , Cardiotoxinas/efectos adversos , Cardiotoxinas/metabolismo , Daunorrubicina/efectos adversos , Daunorrubicina/análogos & derivados , Daunorrubicina/metabolismo , Síndrome de Down/complicaciones , Síndrome de Down/tratamiento farmacológico , Síndrome de Down/genética , Femenino , Expresión Génica , Genotipo , Humanos , Hidroxiprostaglandina Deshidrogenasas/análisis , Hidroxiprostaglandina Deshidrogenasas/genética , Masculino , Miocardio/metabolismo , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/genética , ARN Mensajero/análisis , ARN Mensajero/genética
12.
JACC CardioOncol ; 5(3): 392-401, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37397079

RESUMEN

Background: Anthracycline-related cardiomyopathy is a leading cause of premature death in childhood cancer survivors. The high interindividual variability in risk suggests the need to understand the underlying pathogenesis. Objectives: The authors interrogated differentially expressed genes (DEGs) to identify genetic variants serving regulatory functions or genetic variants not easily identified when using genomewide array platforms. Using leads from DEGs, candidate copy number variants (CNVs) and single-nucleotide variants (SNVs) were genotyped. Methods: Messenger RNA sequencing was performed on total RNA from peripheral blood of 40 survivors with cardiomyopathy (cases) and 64 matched survivors without cardiomyopathy (control subjects). Conditional logistic regression analysis adjusting for sex, age at cancer diagnosis, anthracycline dose, and chest radiation was used to assess the associations between gene expression and cardiomyopathy and between CNVs and SNVs and cardiomyopathy. Results: Haptoglobin (HP) was identified as the top DEG. Participants with higher HP gene expression had 6-fold greater odds of developing cardiomyopathy (OR: 6.4; 95% CI: 1.4-28.6). The HP2-specific allele among the HP genotypes (HP1-1, HP1-2, and HP2-2) had higher transcript levels, as did the G allele among SNVs previously reported to be associated with HP gene expression (rs35283911 and rs2000999). The HP1-2 and HP2-2 genotypes combined with the G/G genotype for rs35283911 and/or rs2000999 placed the survivors at 4-fold greater risk (OR: 3.9; 95% CI: 1.0-14.5) for developing cardiomyopathy. Conclusions: These findings provide evidence of a novel association between HP2 allele and cardiomyopathy. HP binds to free hemoglobin to form an HP-hemoglobin complex, thereby preventing oxidative damage from free heme iron, thus providing biological plausibility to the mechanistic basis of the present observation.

13.
JACC CardioOncol ; 5(6): 807-818, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38205005

RESUMEN

Background: Anthracyclines are highly effective in treating cancer, albeit with increased cardiomyopathy risk. Although risk is attributed to associations with single nucleotide polymorphisms (SNPs), multiple SNPs on a gene and their interactions remain unexamined. Objectives: This study examined gene-level associations with cardiomyopathy among cancer survivors using whole-exome sequencing data. Methods: For discovery, 278 childhood cancer survivors (129 cases; 149 matched control subjects) from the COG (Children's Oncology Group) study ALTE03N1 were included. Logic regression (machine learning) was used to identify gene-level SNP combinations for 7,212 genes and ordinal logistic regression to estimate gene-level associations with cardiomyopathy. Models were adjusted for primary cancer, age at cancer diagnosis, sex, race/ethnicity, cumulative anthracycline dose, chest radiation, cardiovascular risk factors, and 3 principal components. Statistical significance threshold of 6.93 × 10-6 accounted for multiple testing. Three independent cancer survivor populations (COG study, BMTSS [Blood or Marrow Transplant Survivor Study] and CCSS [Childhood Cancer Survivor Study]) were used to replicate gene-level associations and examine SNP-level associations from discovery genes using ordinal logistic, conditional logistic, and Cox regression models, respectively. Results: Median age at cancer diagnosis for discovery cases and control subjects was 6 years and 8 years, respectively. Gene-level association for P2RX7 (OR: 0.10; 95% CI: 0.04-0.27; P = 2.19 × 10-6) was successfully replicated (HR: 0.65; 95% CI: 0.47-0.90; P = 0.009) in the CCSS cohort. Additional signals were identified on TNIK, LRRK2, MEFV, NOBOX, and FBN3. Individual SNPs across all discovery genes, except FBN3, were replicated. Conclusions: In our study, SNP sets having 1 or no copies of P2RX7 variant alleles were associated with reduced risk of cardiomyopathy, presenting a potential therapeutic target to mitigate cardiac outcomes in cancer survivors.

14.
J Clin Oncol ; 41(9): 1758-1769, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36508697

RESUMEN

PURPOSE: Interindividual variability in the dose-dependent association between anthracyclines and cardiomyopathy suggests a modifying role of genetic susceptibility. Few previous studies have examined gene-anthracycline interactions. We addressed this gap using the Childhood Cancer Survivor Study (discovery) and the Children's Oncology Group (COG) study COG-ALTE03N1 (replication). METHODS: A genome-wide association study (Illumina HumanOmni5Exome Array) in 1,866 anthracycline-exposed Childhood Cancer Survivor Study participants (126 with heart failure) was used to identify single-nucleotide polymorphisms (SNPs) with either main or gene-environment interaction effect on anthracycline-related cardiomyopathy that surpassed a prespecified genome-wide threshold for statistical significance. We attempted replication in a matched case-control set of anthracycline-exposed childhood cancer survivors with (n = 105) and without (n = 160) cardiomyopathy from COG-ALTE03N1. RESULTS: Two SNPs (rs17736312 [ROBO2]) and rs113230990 (near a CCCTC-binding factor insulator [< 750 base pair]) passed the significance cutoff for gene-anthracycline dose interaction in discovery. SNP rs17736312 was successfully replicated. Compared with the GG/AG genotypes on rs17736312 and anthracyclines ≤ 250 mg/m2, the AA genotype and anthracyclines > 250 mg/m2 conferred a 2.2-fold (95% CI, 1.2 to 4.0) higher risk of heart failure in discovery and an 8.2-fold (95% CI, 2.0 to 34.4) higher risk in replication. ROBO2 encodes transmembrane Robo receptors that bind Slit ligands (SLIT). Slit-Robo signaling pathway promotes cardiac fibrosis by interfering with the transforming growth factor-ß1/small mothers against decapentaplegic (Smad) pathway, resulting in disordered remodeling of the extracellular matrix and potentiating heart failure. We found significant gene-level associations with heart failure: main effect (TGF-ß1, P = .007); gene*anthracycline interaction (ROBO2*anthracycline, P = .0003); and gene*gene*anthracycline interaction (SLIT2*TGF-ß1*anthracycline, P = .009). CONCLUSION: These findings suggest that high-dose anthracyclines combined with genetic variants involved in the profibrotic Slit-Robo signaling pathway promote cardiac fibrosis via the transforming growth factor-ß1/Smad pathway, providing credence to the biologic plausibility of the association between SNP rs17736312 (ROBO2) and anthracycline-related cardiomyopathy.


Asunto(s)
Supervivientes de Cáncer , Cardiomiopatías , Insuficiencia Cardíaca , Neoplasias , Niño , Humanos , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/uso terapéutico , Estudio de Asociación del Genoma Completo , Antraciclinas/efectos adversos , Neoplasias/tratamiento farmacológico , Cardiomiopatías/inducido químicamente , Cardiomiopatías/genética , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/genética , Antibióticos Antineoplásicos/uso terapéutico , Fibrosis , Receptores Inmunológicos/genética , Receptores Inmunológicos/uso terapéutico
16.
Gene ; 764: 145099, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-32861879

RESUMEN

Down syndrome (DS, trisomy 21) is the most common major chromosomal aneuploidy compatible with life. The additional whole or partial copy of chromosome 21 results in genome-wide imbalances that drive the complex pathobiology of DS. Differential DNA methylation in the context of trisomy 21 may contribute to the variable architecture of the DS phenotype. The goal of this study was to examine the genomic DNA methylation landscape in myocardial tissue from non-fetal individuals with DS. >480,000 unique CpG sites were interrogated in myocardial DNA samples from individuals with (n = 12) and without DS (n = 12) using DNA methylation arrays. A total of 93 highly differentially methylated CpG sites and 16 differentially methylated regions were identified in myocardial DNA from subjects with DS. There were 18 differentially methylated CpG sites in chromosome 21, including 5 highly differentially methylated sites. A CpG site in the RUNX1 locus was differentially methylated in DS myocardium, and linear regression suggests that donors' age, gender, DS status, and RUNX1 methylation may contribute up to ~51% of the variability in RUNX1 mRNA expression. In DS myocardium, only 58% of the genes overlapping with differentially methylated regions codify for proteins with known functions and 24% are non-coding RNAs. This study provides an initial snapshot on the extent of genome-wide differential methylation in myocardial tissue from persons with DS.


Asunto(s)
Islas de CpG/genética , Metilación de ADN , Síndrome de Down/genética , Epigénesis Genética , Miocardio/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Niño , Cromosomas Humanos Par 21/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Epigenómica , Femenino , Sitios Genéticos/genética , Humanos , Lactante , Masculino , Persona de Mediana Edad , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Adulto Joven
17.
Cardiooncology ; 7(1): 17, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-33975650

RESUMEN

BACKGROUND: The CBR3 V244M single nucleotide polymorphism has been linked to the risk of anthracycline-related cardiomyopathy in survivors of childhood cancer. There have been limited prospective studies examining the impact of CBR3 V244M on the risk for anthracycline-related cardiotoxicity in adult cohorts. OBJECTIVES: This study evaluated the presence of associations between CBR3 V244M genotype status and changes in echocardiographic parameters in breast cancer patients undergoing doxorubicin treatment. METHODS: We recruited 155 patients with breast cancer receiving treatment with doxorubicin (DOX) at Roswell Park Comprehensive Care Center (Buffalo, NY) to a prospective single arm observational pharmacogenetic study. Patients were genotyped for the CBR3 V244M variant. 92 patients received an echocardiogram at baseline (t0 month) and at 6 months (t6 months) of follow up after DOX treatment. Apical two-chamber and four-chamber echocardiographic images were used to calculate volumes and left ventricular ejection fraction (LVEF) using Simpson's biplane rule by investigators blinded to all patient data. Volumetric indices were evaluated by normalizing the cardiac volumes to the body surface area (BSA). RESULTS: Breast cancer patients with CBR3 GG and AG genotypes both experienced a statistically significant reduction in LVEF at 6 months following initiation of DOX treatment for breast cancer compared with their pre-DOX baseline study. Patients homozygous for the CBR3 V244M G allele (CBR3 V244) exhibited a further statistically significant decrease in LVEF at 6 months following DOX therapy in comparison with patients with heterozygous AG genotype. We found no differences in age, pre-existing cardiac diseases associated with myocardial injury, cumulative DOX dose, or concurrent use of cardioprotective medication between CBR3 genotype groups. CONCLUSIONS: CBR3 V244M genotype status is associated with changes in echocardiographic parameters suggestive of early anthracycline-related cardiomyopathy in subjects undergoing chemotherapy for breast cancer.

18.
Anal Chem ; 82(7): 2680-9, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20218584

RESUMEN

Liquid chromatography (LC)/mass spectrometry (MS) in selected-reactions-monitoring (SRM) mode provides a powerful tool for targeted protein quantification. However, efficient, high-throughput strategies for proper selection of signature peptides (SP) for protein quantification and accurate optimization of their SRM conditions remain elusive. Here we describe an on-the-fly, orthogonal array optimization (OAO) approach that enables rapid, comprehensive, and reproducible SRM optimization of a large number of candidate peptides in a single nanoflow-LC/MS run. With the optimized conditions, many peptide candidates can be evaluated in biological matrixes for selection of the final SP. The OAO strategy employs a systematic experimental design that strategically varies product ions, declustering energy, and collision energy in a cycle of 25 consecutive SRM trials, which accurately reveals the effects of these factors on the signal-to-noise ratio of a candidate peptide and optimizes each. As proof of concept, we developed a highly sensitive, accurate, and reproducible method for the quantification of carbonyl reductases CBR1 and CBR3 in human liver. Candidate peptides were identified by nano-LC/LTQ/Orbitrap, filtered using a stringent set of criteria, and subjected to OAO. After evaluating both sensitivity and stability of the candidates, two SP were selected for quantification of each protein. As a result of the accurate OAO of assay conditions, sensitivities of 80 and 110 amol were achieved for CBR1 and CBR3, respectively. The method was validated and used to quantify the CBRs in 33 human liver samples. The mean level of CBR1 was 93.4 +/- 49.7 (range: 26.2-241) ppm of total protein, and of CBR3 was 7.69 +/- 4.38 (range: 1.26-17.9) ppm. Key observations of this study: (i) evaluation of peptide stability in the target matrix is essential for final selection of the SP; (ii) utilization of two unique SP contributes to high reliability of target protein quantification; (iii) it is beneficial to construct calibration curves using standard proteins of verified concentrations to avoid severe biases that may result if synthesized peptides alone are used. Overall, the OAO method is versatile and adaptable to high-throughput quantification of validated biomarkers identified by proteomic discovery experiments.


Asunto(s)
Oxidorreductasas de Alcohol/análisis , Cromatografía Líquida de Alta Presión/métodos , Hígado/enzimología , Espectrometría de Masas/métodos , Secuencia de Aminoácidos , Humanos , Estructura Terciaria de Proteína , Reproducibilidad de los Resultados
19.
Drug Metab Dispos ; 38(12): 2096-9, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20729274

RESUMEN

Cancer patients with Down syndrome (DS) are susceptible to developing anthracycline-related cardiotoxicity. The pathogenesis of anthracycline-related cardiotoxicity has been linked to the intracardiac synthesis of alcohol metabolites by carbonyl reductase 1 (CBR1). CBR1 is located in the DS critical region (21q22.12). The expression of CBR1 in hearts from individuals with DS has not been characterized. This study documented CBR1 expression in hearts from donors with DS (n = 4) and donors without DS (n = 15). The DS samples showed 1.8-fold higher CBR1 mRNA levels compared to the non-DS samples (levels in DS samples were 3.3-relative fold, and those in non-DS were 1.8-relative fold; p = 0.012). CBR1 protein levels were 1.9-fold higher in DS samples than in non-DS samples (13.5 ± 7.7 versus 7.2 ± 3.9 nmol/g cytosolic protein, respectively; p = 0.029). CBR1 activity for daunorubicin was 1.7-fold higher in DS samples than in non-DS samples (3.8 ± 0.1 versus 2.3 ± 0.2 nmol daunol/min · mg, respectively; p = 0.050). CBR1 1096G>A (rs9024) affects CBR1 activity, and one heart trisomic for the variant A allele (A/A/A) exhibited low enzymatic activity. These findings suggest that increased CBR1 expression in the hearts of individuals with DS may contribute to the risk of anthracycline-related cardiotoxicity.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Antraciclinas/metabolismo , Síndrome de Down/enzimología , Miocardio/enzimología , Donantes de Tejidos , Antraciclinas/toxicidad , Genotipo , Corazón/efectos de los fármacos , Humanos , ARN Mensajero/análisis
20.
Front Pharmacol ; 11: 616630, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33613283

RESUMEN

Background: The identification of genetic risk factors for Acute Lymphoblastic Leukemia (ALL), are increasingly urgent and necessary. Objective: The purpose of this study is to determine the association of the genetic polymorphisms ABCC1 rs3743527, NCF4 rs1883112 and CBR3 rs1056892 with ALL. Methods: DNA samples were obtained in 71 children with ALL (from 2 to 18 years) and in 71 controls without ALL, to determine the polymorphisms by real-time polymerase chain reaction (qPCR), using specific TaqMan probes in a StepOne® thermal cycler (Applied Biosystems, United States). Results: The results of the Odds Ratio analysis show that in the rs1883112 polymorphism of the NCF4 gene, the heterozygous allele has a risk effect for ALL (OR = 3.1870, CI = 1.8880-7.9383 and p = 0.0002), in turn the mutated genotype (AA) is associated with a protective effect (OR = 0.26, 0.1248 to 0.5434 and p = 0.0003). On the other hand, the CBR3 rs1056892 polymorphism shows a significant association of risk to ALL, in the presence of the HT genotype (OR = 2.77, IC = 1.3837 to 5.5651 and p = 0.004) and the mutated genotype of this polymorphism has a significant association with protection to ALL in the HM genotype (OR = 0.52, IC = 0.2639 to 1.0304 and p = 0.05). While the inheritance models of the polymorphisms let us see that of the rs1883112 polymorphism of the NCF4 polymorphism; the HT genotype of the codominant model shows a protective effect against ALL (OR = 0.4117, IC = 0.1718 to 0.9866 and p = 0.04), the recessive model shows us and confirms what we already saw in table number 3, being that there is an association with protective effect in the HM genotype (OR = 0.2604, IC = 0.1248 to 0.5434 and p = 0.0003). In the polymorphism rs1056892 of the CBR3 gene, a protection association was found in the heterozygous allele of the codominant model (OR = 0.3448, IC = 0.1375 to 0.8896 and p = 0.0274). In addition, the recessive inheritance model for the HM genotype shows a protective effect to ALL, (OR = 0.52, CI = 0.9919 to 3.8638 and p = 0.05). Conclusion: There is an evident impact of the NCF4 rs1883112 and CBR3 rs1056892 polymorphisms with an increased risk of susceptibility to ALL; Likewise, through the codominant inheritance model, the effect of the variation of the CBR3 rs1056892 gene as a protective factor against ALL was evaluated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA