Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mov Disord ; 39(2): 294-304, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38006292

RESUMEN

BACKGROUND: Idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) is associated with prodromal Parkinson's disease (PD), but the mechanisms linking phenoconversion of iRBD to PD have not yet been clarified. Considering the association between mitochondrial dysfunction and sleep disturbances in PD, we explored mitochondrial activity in fibroblasts derived from iRBD patients to identify a biochemical profile that could mark the presence of impending neurodegeneration. METHODS: The study involved 28 participants, divided into three groups: patients diagnosed with iRBD, PD patients converted from iRBD (RBD-PD), and healthy controls. We performed a comprehensive assessment of mitochondrial function, including an examination of mitochondrial morphology, analysis of mitochondrial protein expression levels by western blot, and measurement of mitochondrial respiration using the Seahorse XFe24 analyzer. RESULTS: In basal conditions, mitochondrial respiration did not differ between iRBD and control fibroblasts, but when cells were challenged with a higher energy demand, iRBD fibroblasts exhibited a significant (P = 0.006) drop in maximal and spare respiration compared to controls. Interestingly, RBD-PD patients showed the same alterations with a further significant reduction in oxygen consumption linked to adenosine triphosphate production (P = 0.032). Moreover, RBD-PD patients exhibited a significant decrease in protein levels of complexes III (P = 0.02) and V (P = 0.002) compared to controls, along with fragmentation of the mitochondrial network. iRBD patients showed similar, but milder alterations. CONCLUSIONS: Altogether, these findings suggest that mitochondrial dysfunctions in individuals with iRBD might predispose to worsening of the bioenergetic profile observed in RBD-PD patients, highlighting these alterations as potential predictors of phenoconversion to PD. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Humanos , Trastorno de la Conducta del Sueño REM/etiología , Trastorno de la Conducta del Sueño REM/complicaciones , Respiración , Biomarcadores , Sueño
2.
Mov Disord ; 38(12): 2241-2248, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37750340

RESUMEN

BACKGROUND AND OBJECTIVE: Early-onset Parkinson's disease (EOPD) commonly recognizes a genetic basis; thus, patients with EOPD are often addressed to diagnostic testing based on next-generation sequencing (NGS) of PD-associated multigene panels. However, NGS interpretation can be challenging in a diagnostic setting, and few studies have addressed this issue so far. METHODS: We retrospectively collected data from 648 patients with PD with age at onset younger than 55 years who underwent NGS of a minimal shared panel of 15 PD-related genes, as well as PD-multiplex ligation-dependent probe amplification in eight Italian diagnostic laboratories. Data included a minimal clinical dataset, the complete list of variants included in the diagnostic report, and final interpretation (positive/negative/inconclusive). Patients were further stratified based on age at onset ≤40 years (very EOPD, n = 157). All variants were reclassified according to the latest American College of Medical Genetics and Genomics criteria. For classification purposes, PD-associated GBA1 variants were considered diagnostic. RESULTS: In 186 of 648 (29%) patients, the diagnostic report listed at least one variant, and the outcome was considered diagnostic (positive) in 105 (16%). After reanalysis, diagnosis changed in 18 of 186 (10%) patients, with 5 shifting from inconclusive to positive and 13 former positive being reclassified as inconclusive. A definite diagnosis was eventually reached in 97 (15%) patients, of whom the majority carried GBA1 variants or, less frequently, biallelic PRKN variants. In 89 (14%) cases, the genetic report was inconclusive. CONCLUSIONS: This study attempts to harmonize reporting of PD genetic testing across several diagnostic labs and highlights current difficulties in interpreting genetic variants emerging from NGS-multigene panels, with relevant implications for counseling. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Humanos , Persona de Mediana Edad , Adulto , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/genética , Estudios Retrospectivos , Mutación , Pruebas Genéticas , Edad de Inicio
3.
Curr Neurol Neurosci Rep ; 23(4): 121-130, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36881256

RESUMEN

PURPOSE OF REVIEW: Genetic variants in GBA1 and LRRK2 genes are the commonest genetic risk factor for Parkinson disease (PD); however, the preclinical profile of GBA1 and LRRK2 variant carriers who will develop PD is unclear. This review aims to highlight the more sensitive markers that can stratify PD risk in non-manifesting GBA1 and LRRK2 variant carriers. RECENT FINDINGS: Several case-control and a few longitudinal studies evaluated clinical, biochemical, and neuroimaging markers within cohorts of non-manifesting carriers of GBA1 and LRRK2 variants. Despite similar levels of penetrance of PD in GBA1 and LRRK2 variant carriers (10-30%), these individuals have distinct preclinical profiles. GBA1 variant carriers at higher risk of PD can present with prodromal symptoms suggestive of PD (hyposmia), display increased α-synuclein levels in peripheral blood mononuclear cells, and show dopamine transporter abnormalities. LRRK2 variant carriers at higher risk of PD might show subtle motor abnormalities, but no prodromal symptoms, higher exposure to some environmental factors (non-steroid anti-inflammatory drugs), and peripheral inflammatory profile. This information will help clinicians tailor appropriate screening tests and counseling and facilitate researchers in the development of predictive markers, disease-modifying treatments, and selection of healthy individuals who might benefit from preventive interventions.


Asunto(s)
Enfermedad de Parkinson , Humanos , Glucosilceramidasa/genética , Heterocigoto , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Leucocitos Mononucleares , Estudios Longitudinales , Mutación , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/genética , Síntomas Prodrómicos
4.
Brain ; 145(3): 1038-1051, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35362022

RESUMEN

Intraneuronal accumulation of aggregated α-synuclein is a pathological hallmark of Parkinson's disease. Therefore, mechanisms capable of promoting α-synuclein deposition bear important pathogenetic implications. Mutations of the glucocerebrosidase 1 (GBA) gene represent a prevalent Parkinson's disease risk factor. They are associated with loss of activity of a key enzyme involved in lipid metabolism, glucocerebrosidase, supporting a mechanistic relationship between abnormal α-synuclein-lipid interactions and the development of Parkinson pathology. In this study, the lipid membrane composition of fibroblasts isolated from control subjects, patients with idiopathic Parkinson's disease and Parkinson's disease patients carrying the L444P GBA mutation (PD-GBA) was assayed using shotgun lipidomics. The lipid profile of PD-GBA fibroblasts differed significantly from that of control and idiopathic Parkinson's disease cells. It was characterized by an overall increase in sphingolipid levels. It also featured a significant increase in the proportion of ceramide, sphingomyelin and hexosylceramide molecules with shorter chain length and a decrease in the percentage of longer-chain sphingolipids. The extent of this shift was correlated to the degree of reduction of fibroblast glucocerebrosidase activity. Lipid extracts from control and PD-GBA fibroblasts were added to recombinant α-synuclein solutions. The kinetics of α-synuclein aggregation were significantly accelerated after addition of PD-GBA extracts as compared to control samples. Amyloid fibrils collected at the end of these incubations contained lipids, indicating α-synuclein-lipid co-assembly. Lipids extracted from α-synuclein fibrils were also analysed by shotgun lipidomics. Data revealed that the lipid content of these fibrils was significantly enriched by shorter-chain sphingolipids. In a final set of experiments, control and PD-GBA fibroblasts were incubated in the presence of the small molecule chaperone ambroxol. This treatment restored glucocerebrosidase activity and sphingolipid levels and composition of PD-GBA cells. It also reversed the pro-aggregation effect that lipid extracts from PD-GBA fibroblasts had on α-synuclein. Taken together, the findings of this study indicate that the L444P GBA mutation and consequent enzymatic loss are associated with a distinctly altered membrane lipid profile that provides a biological fingerprint of this mutation in Parkinson fibroblasts. This altered lipid profile could also be an indicator of increased risk for α-synuclein aggregate pathology.


Asunto(s)
Glucosilceramidasa , Enfermedad de Parkinson , Fibroblastos/metabolismo , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Humanos , Mutación/genética , Enfermedad de Parkinson/metabolismo , Esfingolípidos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
5.
Mov Disord ; 37(1): 106-118, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34596920

RESUMEN

BACKGROUND: Glucosylceramidase (GBA) mutations are considered the most common genetic risk factors for developing Parkinson's disease (PD). OBJECTIVES: We aimed to assess, at different time points, the integrity of brain striatal and extra-striatal dopamine pathways and clinical phenotype of a group of PD subjects bearing heterozygous GBA mutations (GBA-PD), compared with a group of idiopathic PD patients (iPD) stratified by age at disease onset. A longitudinal approach was adopted to evaluate the progression over time for clinical and 123 I-FP-CIT SPECT imaging features. METHODS: We considered 46 GBA-PD patients and 339 iPD patients, subdivided into two groups according to age at PD onset (n = 58 < 50 years and n = 281 > 50 years). We measured differences in the occurrence/severity/progression of motor and non-motor features, 123 I-FP-CIT standard uptake value ratios (SUVr) in striatal and extra-striatal regions, and global cognitive deterioration over time in a subset of 168 cases with available follow-up. RESULTS: At baseline, the GBA-PD cohort showed more severe motor and cognitive deficits than the early-iPD cohort. The 123 I-FP-CIT SUVr reduction in the striatal and the extra-striatal regions was more marked in the GBA-PD than the early- and late-iPD cohorts. Both GBA-PD and late-iPD patients had a significant annual deterioration in their global cognitive performance, while the early-iPD group showed global cognitive stability over time. At follow-up, the iPD cohorts became similar to the GBA-PD group in 123 I-FP-CIT SUVr reduction. CONCLUSION: These new findings support the hypothesis of a biological role of GBA mutations in accelerating the early neurodegenerative processes in PD, leading to the malignant clinical phenotype. © 2021 International Parkinson and Movement Disorder Society.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Glucosilceramidasa , Imagen Molecular , Enfermedad de Parkinson , Estudios de Cohortes , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Humanos , Mutación/genética , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Tomografía Computarizada de Emisión de Fotón Único/métodos
6.
Neurobiol Dis ; 153: 105319, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33647447

RESUMEN

Visual recognition of facial expression modulates our social interactions. Compelling experimental evidence indicates that face conveys plenty of information that are fundamental for humans to interact. These are encoded at neural level in specific cortical and subcortical brain regions through activity- and experience-dependent synaptic plasticity processes. The current pandemic, due to the spread of SARS-CoV-2 infection, is causing relevant social and psychological detrimental effects. The institutional recommendations on physical distancing, namely social distancing and wearing of facemasks are effective in reducing the rate of viral spread. However, by impacting social interaction, facemasks might impair the neural responses to recognition of facial cues that are overall critical to our behaviors. In this survey, we briefly review the current knowledge on the neurobiological substrate of facial recognition and discuss how the lack of salient stimuli might impact the ability to retain and consolidate learning and memory phenomena underlying face recognition. Such an "abnormal" visual experience raises the intriguing possibility of a "reset" mechanism, a renewed ability of adult brain to undergo synaptic plasticity adaptations.


Asunto(s)
Encéfalo/fisiología , COVID-19/prevención & control , Reconocimiento Facial/fisiología , Máscaras , Plasticidad Neuronal/fisiología , Control de Enfermedades Transmisibles , Humanos , Lóbulo Occipital/fisiología , Corteza Prefrontal/fisiología , SARS-CoV-2 , Percepción Social , Lóbulo Temporal/fisiología , Vías Visuales/fisiología
7.
Mov Disord ; 36(5): 1267-1272, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33617695

RESUMEN

BACKGROUND: GBA mutations are the commonest genetic risk factor for Parkinson's disease (PD) and also impact disease progression. OBJECTIVE: The objective of this study was to define a biochemical profile that could distinguish GBA-PD from non-mutated PD. METHODS: 29 GBA-PD, 37 non-mutated PD, and 40 controls were recruited; α-synuclein levels in plasma, exosomes, and peripheral blood mononuclear cells were analyzed, GCase and main GCase-related lysosomal proteins in peripheral blood mononuclear cells were measured. RESULTS: Assessment of plasma and exosomal α-synuclein levels did not allow differentiation between GBA-PD and non-mutated PD; conversely, measurements in peripheral blood mononuclear cells clearly distinguished GBA-PD from non-mutated PD, with the former group showing significantly higher α-synuclein levels, lower GCase activity, higher LIMP-2, and lower Saposin C levels. CONCLUSION: We propose peripheral blood mononuclear cells as an easily accessible and manageable model to provide a distinctive biochemical profile of GBA-PD, potentially useful for patient stratification or selection in clinical trials. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Glucosilceramidasa/genética , Humanos , Leucocitos Mononucleares , Mutación/genética , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética
8.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34445626

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the Substantia Nigra pars compacta, leading to classical PD motor symptoms. Current therapies are purely symptomatic and do not modify disease progression. Cannabidiol (CBD), one of the main phytocannabinoids identified in Cannabis Sativa, which exhibits a large spectrum of therapeutic properties, including anti-inflammatory and antioxidant effects, suggesting its potential as disease-modifying agent for PD. The aim of this study was to evaluate the effects of chronic treatment with CBD (10 mg/kg, i.p.) on PD-associated neurodegenerative and neuroinflammatory processes, and motor deficits in the 6-hydroxydopamine model. Moreover, we investigated the potential mechanisms by which CBD exerted its effects in this model. CBD-treated animals showed a reduction of nigrostriatal degeneration accompanied by a damping of the neuroinflammatory response and an improvement of motor performance. In particular, CBD exhibits a preferential action on astrocytes and activates the astrocytic transient receptor potential vanilloid 1 (TRPV1), thus, enhancing the endogenous neuroprotective response of ciliary neurotrophic factor (CNTF). These results overall support the potential therapeutic utility of CBD in PD, as both neuroprotective and symptomatic agent.


Asunto(s)
Conducta Animal/efectos de los fármacos , Cannabidiol/farmacología , Factor Neurotrófico Ciliar/metabolismo , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Canales Catiónicos TRPV/metabolismo , Animales , Anticonvulsivantes/farmacología , Factor Neurotrófico Ciliar/genética , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Masculino , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/patología , Ratas , Ratas Sprague-Dawley , Canales Catiónicos TRPV/genética
9.
Int J Mol Sci ; 22(4)2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672321

RESUMEN

Heterozygous mutations in the GBA gene, encoding the lysosomal enzyme glucocerebrosidase (GCase), are the strongest known genetic risk factor for Parkinson's disease (PD). The molecular mechanisms underlying the increased PD risk and the variable phenotypes observed in carriers of different GBA mutations are not yet fully elucidated. Extracellular vesicles (EVs) have gained increasing importance in neurodegenerative diseases since they can vehiculate pathological molecules potentially promoting disease propagation. Accumulating evidence showed that perturbations of the endosomal-lysosomal pathway can affect EV release and composition. Here, we investigate the impact of GCase deficiency on EV release and their effect in recipient cells. EVs were purified by ultracentrifugation from the supernatant of fibroblast cell lines derived from PD patients with or without GBA mutations and quantified by nanoparticle tracking analysis. SH-SY5Y cells over-expressing alpha-synuclein (α-syn) were used to assess the ability of patient-derived small EVs to affect α-syn expression. We observed that defective GCase activity promotes the release of EVs, independently of mutation severity. Moreover, small EVs released from PD fibroblasts carrying severe mutations increased the intra-cellular levels of phosphorylated α-syn. In summary, our work shows that the dysregulation of small EV trafficking and alpha-synuclein mishandling may play a role in GBA-associated PD.


Asunto(s)
Vesículas Extracelulares/patología , Fibroblastos/patología , Glucosilceramidasa/genética , Mutación , Enfermedad de Parkinson/genética , Células Cultivadas , Vesículas Extracelulares/metabolismo , Glucosilceramidasa/metabolismo , Humanos , Enfermedad de Parkinson/patología , Serina/metabolismo , alfa-Sinucleína/metabolismo
10.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34360827

RESUMEN

The identification of new biomarkers allowing an early and more accurate characterization of patients with ST-segment elevation myocardial infarction (STEMI) is still needed, and exosomes represent an attractive diagnostic tool in this context. However, the characterization of their protein cargo in relation to cardiovascular clinical manifestation is still lacking. To this end, 35 STEMI patients (17 experiencing resuscitated out-of-hospital cardiac arrest (OHCA-STEMI) and 18 uncomplicated) and 32 patients with chronic coronary syndrome (CCS) were enrolled. Plasma exosomes were characterized by the nanoparticle tracking analysis and Western blotting. Exosomes from STEMI patients displayed a higher concentration and size and a greater expression of platelet (GPIIb) and vascular endothelial (VE-cadherin) markers, but a similar amount of cardiac troponin compared to CCS. In addition, a difference in exosome expression of acute-phase proteins (ceruloplasmin, transthyretin and fibronectin) between STEMI and CCS patients was found. GPIIb and brain-associated marker PLP1 accurately discriminated between OHCA and uncomplicated STEMI. In conclusion, the exosome profile of STEMI patients has peculiar features that differentiate it from that of CCS patients, reflecting the pathophysiological mechanisms involved in STEMI. Additionally, the exosome expression of brain- and platelet-specific markers might allow the identification of patients experiencing ischemic brain injury in STEMI.


Asunto(s)
Exosomas/metabolismo , Paro Cardíaco Extrahospitalario/sangre , Infarto del Miocardio con Elevación del ST/sangre , Anciano , Biomarcadores/sangre , Ceruloplasmina/análisis , Exosomas/química , Fibronectinas/sangre , Humanos , Masculino , Persona de Mediana Edad , Prealbúmina/análisis , Infarto del Miocardio con Elevación del ST/complicaciones , Troponina/sangre
11.
Neurobiol Dis ; 139: 104821, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32088380

RESUMEN

BACKGROUND AND AIM: Patients with Parkinson's disease (PD) are often characterized by functional gastrointestinal disorders. Such disturbances can occur at all stages of PD and precede the typical motor symptoms of the disease by many years. However, the morphological alterations associated with intestinal disturbances in PD are undetermined. This study examined the remodelling of colonic wall in 6-hydroxydopamine (6-OHDA)-induced PD rats. METHODS: 8 weeks after 6-OHDA injection animals were sacrificed. Inflammatory infiltrates, collagen deposition and remodelling of intestinal epithelial barrier and tunica muscularis in the colonic wall were assessed by histochemistry, immunohistochemistry, immunofluorescence and western blot analysis. RESULTS: 6-OHDA rats displayed significant alterations of colonic tissues as compared with controls. Signs of mild inflammation (eosinophil infiltration) and a transmural deposition of collagen fibres were observed. Superficial colonic layers were characterized by severe morphological alterations. In particular, lining epithelial cells displayed a reduced claudin-1 and transmembrane 16A/Anoctamin 1 (TMEM16A/ANO1) expression; goblet cells increased their mucin expression; colonic crypts were characterized by an increase in proliferating epithelial cells; the density of S100-positive glial cells and vimentin-positive fibroblast-like cells was increased as well. Several changes were found in the tunica muscularis: downregulation of α-smooth muscle actin/desmin expression and increased proliferation of smooth muscle cells; increased vimentin expression and proliferative phenotype in myenteric ganglia; reduction of interstitial cells of Cajal (ICCs) density. CONCLUSIONS: A pathological remodelling occurs in the colon of 6-OHDA rats. The main changes include: enhanced fibrotic deposition; alterations of the epithelial barrier; activation of mucosal defense; reduction of ICCs. These results indicate that central nigrostriatal denervation is associated with histological changes in the large bowel at mucosal, submucosal and muscular level. These alterations might represent morphological correlates of digestive symptoms in PD.


Asunto(s)
Colon/patología , Neuronas Dopaminérgicas/patología , Animales , Anoctamina-1 , Colon/metabolismo , Dopamina/metabolismo , Fibrosis , Enfermedades Gastrointestinales/metabolismo , Motilidad Gastrointestinal , Masculino , Oxidopamina , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Ratas , Ratas Sprague-Dawley , Sustancia Negra
12.
Neurobiol Dis ; 124: 289-296, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30521842

RESUMEN

GBA1 gene encodes for the lysosomal membrane protein glucocerebrosidase (GCase). GBA1 heterozygous mutations profoundly impair GCase activity and are currently recognized as an important risk factor for the development of Parkinson's disease (PD). Deficits in lysosomal degradation pathways may contribute to pathological α-synuclein accumulation, thereby favoring dopaminergic neuron degeneration and associated microglial activation. However, the precise mechanisms by which GCase deficiency may influence PD onset and progression remain unclear. In this work we used conduritol-ß-epoxide (CBE), a potent inhibitor of GCase, to induce a partial, systemic defect of GCase activity comparable to that associated with heterozygous GBA1 mutations, in mice. Chronic (28 days) administration of CBE (50 mg/kg, i.p.) was combined with administration of a classic PD-like inducing neurotoxin, such as MPTP (30 mg/kg, i.p. for 5 days). The aim was to investigate whether a pre-existing GCase defect may influence the effects of MPTP in terms of nigrostriatal damage, microglia activation and α-synuclein accumulation. Pre-treatment with CBE had tendency to enhance MPTP-induced neurodegeneration in striatum and caused significant increase of total α-synuclein expression in substantia nigra. Microglia was remarkably activated by CBE alone, without further increases when combined with MPTP. Overall, we propose this model as an additional tool to study pathophysiological processes of PD in the presence of GCase defects.


Asunto(s)
Modelos Animales de Enfermedad , Glucosilceramidasa/antagonistas & inhibidores , Trastornos Parkinsonianos/enzimología , Trastornos Parkinsonianos/patología , Animales , Inhibidores Enzimáticos/farmacología , Inositol/análogos & derivados , Inositol/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL
13.
J Neurol Neurosurg Psychiatry ; 90(10): 1091-1097, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31221723

RESUMEN

OBJECTIVES: GBA1 mutations are a frequent risk factor for Parkinson disease (PD). The aim of this study is to evaluate clinical features in a group of GBA1 mutation-positive individuals over a 6-year follow-up. METHODS: This is a longitudinal study on a cohort of GBA1-positive carriers. We enrolled 31 patients with Gaucher disease type 1 (GD), 29 GBA1 heterozygous carriers (Het GBA group) and 30 controls (HC) at baseline and followed them for 6 years. We assessed baseline motor and non-motor signs of PD in all subjects using clinical questionnaires and scales (reduced Unified Multiple System Atrophy Rating Scale (UMSARS), Montreal Cognitive assessment (MoCA), University of Pennsylvania Smell Identification Test (UPSIT), REM Sleep Behavior Disorder screening questionnaire (RBDsq), Movement Disorders Society Unified Parkinson's Disease Rating Scale motor subscale (MDS-UPDRS III) and Beck Depression Inventory (BDI). We repeated these at the 6-year follow-up alongside venous blood sampling for measurement of glucocerebrosidase enzymatic activity (GCase). We explored whether the GCase activity level was altered in leucocytes of these subjects and how it was related to development of PD. RESULTS: We observed a significant worsening in UMSARS, RBDsq, MDS-UPDRS III and BDI scores at the 6-year follow-up compared with baseline in both the GD and Het GBA groups. Intergroup comparisons showed that GD subjects had significantly worse scores in UPSIT, UMSARS, MoCA and MDS-UPDRS III than HC, while Het GBA displayed worse outcomes in UPSIT and MDS-UPDRS III compared with HC. In GBA1 mutation-positive individuals (Het GBA and GD), an UPSIT score of 23 at baseline was correlated with worse outcome at 6 years in UPSIT, MoCA, MDS-UPDRS III and BDI. CONCLUSION: In this 6-year-long longitudinal study, GBA1 mutation-positive subjects showed a worsening in motor and non-motor prodromal PD features.


Asunto(s)
Disfunción Cognitiva/genética , Depresión/genética , Enfermedad de Gaucher/genética , Glucosilceramidasa/genética , Trastornos del Olfato/genética , Enfermedad de Parkinson/genética , Trastorno de la Conducta del Sueño REM/genética , Trastornos de la Sensación/genética , Adulto , Anciano , Enfermedades del Sistema Nervioso Autónomo/genética , Enfermedades del Sistema Nervioso Autónomo/fisiopatología , Disfunción Cognitiva/fisiopatología , Depresión/fisiopatología , Progresión de la Enfermedad , Femenino , Enfermedad de Gaucher/fisiopatología , Glucosilceramidasa/metabolismo , Heterocigoto , Humanos , Hipocinesia/genética , Hipocinesia/fisiopatología , Leucocitos/metabolismo , Estudios Longitudinales , Masculino , Pruebas de Estado Mental y Demencia , Persona de Mediana Edad , Mutación , Trastornos del Olfato/fisiopatología , Enfermedad de Parkinson/fisiopatología , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/fisiopatología , Equilibrio Postural , Síntomas Prodrómicos , Trastorno de la Conducta del Sueño REM/fisiopatología , Trastornos de la Sensación/fisiopatología , Temblor/genética , Temblor/fisiopatología
14.
Mov Disord ; 34(1): 9-21, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30589955

RESUMEN

Glucocerebrosidase is a lysosomal enzyme. The characterization of a direct link between mutations in the gene coding for glucocerebrosidase (GBA1) with the development of Parkinson's disease and dementia with Lewy bodies has heightened interest in this enzyme. Although the mechanisms through which glucocerebrosidase regulates the homeostasis of α-synuclein remains poorly understood, the identification of reduced glucocerebrosidase activity in the brains of patients with PD and dementia with Lewy bodies has paved the way for the development of novel therapeutic strategies directed at enhancing glucocerebrosidase activity and reducing α-synuclein burden, thereby slowing down or even preventing neuronal death. Here we reviewed the current literature relating to the mechanisms underlying the cross talk between glucocerebrosidase and α-synuclein, the GBA1 mutation-associated clinical phenotypes, and ongoing therapeutic approaches targeting glucocerebrosidase. © 2018 International Parkinson and Movement Disorder Society.


Asunto(s)
Glucosilceramidasa/genética , Lisosomas/genética , Medicina de Precisión , Sinucleinopatías/genética , Enfermedad de Gaucher/genética , Humanos , Lisosomas/metabolismo , Medicina de Precisión/métodos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
15.
Neurobiol Dis ; 114: 74-84, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29486298

RESUMEN

The Parkinson's disease (PD) evolves over an extended period of time with the onset occurring long before clinical signs begin to manifest. Characterization of the molecular events underlying the PD onset is instrumental for the development of diagnostic markers and preventive treatments, progress in this field is hindered by technical limitations. We applied an imaging approach to demonstrate the activation of Nrf2 transcription factor as a hallmark of neurodegeneration in neurotoxin-driven models of PD. In dopaminergic SK-N-BE neuroblastoma cells, Nrf2 activation was detected in cells committed to die as proven by time lapse microscopy; in the substantia nigra pars compacta area of the mouse brain, the Nrf2 activation preceded dopaminergic neurodegeneration as demonstrated by in vivo and ex vivo optical imaging, a finding confirmed by co-localization experiments carried out by immunohistochemistry. Collectively, our results identify the Nrf2 signaling as an early marker of neurodegeneration, anticipating dopaminergic neurodegeneration and motor deficits.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Mediciones Luminiscentes/métodos , Factor 2 Relacionado con NF-E2/metabolismo , Imagen Óptica/métodos , Trastornos Parkinsonianos/diagnóstico por imagen , Trastornos Parkinsonianos/metabolismo , Animales , Muerte Celular/fisiología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/patología , Humanos , Células MCF-7 , Masculino , Ratones , Ratones Transgénicos , Células 3T3 NIH
16.
J Neuroinflammation ; 15(1): 205, 2018 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-30001736

RESUMEN

BACKGROUND: Parkinson's disease (PD) affects an estimated 7 to 10 million people worldwide, and only symptomatic treatments are presently available to relieve the consequences of brain dopaminergic neurons loss. Neuronal degeneration in PD is the consequence of neuroinflammation in turn influenced by peripheral adaptive immunity, with CD4+ T lymphocytes playing a key role. CD4+ T cells may however acquire proinflammatory phenotypes, such as T helper (Th) 1 and Th17, as well as anti-inflammatory phenotypes, such as Th2 and the T regulatory (Treg) one, and to what extent the different CD4+ T cell subsets are imbalanced and their functions dysregulated in PD remains largely an unresolved issue. METHODS: We performed two cross-sectional studies in antiparkinson drug-treated and drug-naïve PD patients, and in age- and sex-matched healthy subjects. In the first one, we examined circulating Th1, Th2, Th17, and in the second one circulating Treg. Number and frequency of CD4+ T cell subsets in peripheral blood were assessed by flow cytometry and their functions were studied in ex vivo assays. In both studies, complete clinical assessment, blood count and lineage-specific transcription factors mRNA levels in CD4+ T cells were independently assessed and thereafter compared for their consistency. RESULTS: PD patients have reduced circulating CD4+ T lymphocytes, due to reduced Th2, Th17, and Treg. Naïve CD4+ T cells from peripheral blood of PD patients preferentially differentiate towards the Th1 lineage. Production of interferon-γ and tumor necrosis factor-α by CD4+ T cells from PD patients is increased and maintained in the presence of homologous Treg. This Th1-biased immune signature occurs in both drug-naïve patients and in patients on dopaminergic drugs, suggesting that current antiparkinson drugs do not affect peripheral adaptive immunity. CONCLUSIONS: The complex phenotypic and functional profile of CD4+ T cell subsets in PD patients strengthen the evidence that peripheral adaptive immunity is involved in PD, and represents a target for the preclinical and clinical assessment of novel immunomodulating therapeutics.


Asunto(s)
Citocinas/metabolismo , Enfermedad de Parkinson/inmunología , Enfermedad de Parkinson/patología , Células TH1/patología , Células Th17/patología , Células Th2/patología , Anciano , Linfocitos T CD4-Positivos , Estudios Transversales , Citocinas/genética , Femenino , Citometría de Flujo , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/sangre , ARN Mensajero/metabolismo
17.
J Neurosci Res ; 96(1): 151-159, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28609584

RESUMEN

Nitric oxide (NO) derived from endothelial NO synthase (eNOS) plays a role in preserving and maintaining the brain's microcirculation, inhibiting platelet aggregation, leukocyte adhesion, and migration. Inhibition of eNOS activity results in exacerbation of neuronal injury after ischemia by triggering diverse cellular mechanisms, including inflammatory responses. To examine the relative contribution of eNOS in stroke-induced neuroinflammation, we analyzed the effects of systemic treatment with l-N-(1-iminoethyl)ornithine (L-NIO), a relatively selective eNOS inhibitor, on the expression of MiR-155-5p, a key mediator of innate immunity regulation and endothelial dysfunction, in the cortex of male rats subjected to transient middle cerebral artery occlusion (tMCAo) followed by 24 hr of reperfusion. Inducible NO synthase (iNOS) and interleukin-10 (IL-10) mRNA expression were evaluated by real-time polymerase chain reaction in cortical homogenates and in resident and infiltrating immune cells isolated from ischemic cortex. These latter cells were also analyzed for their expression of CD40, a marker of M1 polarization of microglia/macrophages.tMCAo produced a significant elevation of miR155-5p and iNOS expression in the ischemic cortex as compared with sham surgery. eNOS inhibition by L-NIO treatment further elevated the cortical expression of these inflammatory mediators, while not affecting IL-10 mRNA levels. Interestingly, modulation of iNOS occurred in resident and infiltrating immune cells of the ischemic hemisphere. Accordingly, L-NIO induced a significant increase in the percentage of CD40+ events in CD68+ microglia/macrophages of the ischemic cortex as compared with vehicle-injected animals. These findings demonstrate that inflammatory responses may underlie the detrimental effects due to pharmacological inhibition of eNOS in cerebral ischemia.


Asunto(s)
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Mediadores de Inflamación/metabolismo , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo III/metabolismo , Daño por Reperfusión/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Isquemia Encefálica/patología , Inhibidores Enzimáticos/farmacología , Inflamación/metabolismo , Inflamación/patología , Masculino , Ornitina/análogos & derivados , Ornitina/farmacología , Ratas , Ratas Wistar , Daño por Reperfusión/patología
18.
Cephalalgia ; 37(13): 1272-1284, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27919017

RESUMEN

Background Trigeminal sensitization represents a major mechanism underlying migraine attacks and their recurrence. Nitroglycerin (NTG) administration provokes spontaneous migraine-like headaches and in rat, an increased sensitivity to the formalin test. Kynurenic acid (KYNA), an endogenous regulator of glutamate activity and its analogues attenuate NTG-induced neuronal activation in the nucleus trigeminalis caudalis (NTC). The anti-hyperalgesic effect of KYNA analogue 1 (KYNA-A1) was investigated on animal models specific for migraine pain. Aim Rats made hyperalgesic by NTG administration underwent the plantar or orofacial formalin tests. The effect of KYNA-A1 was evaluated in terms of nocifensive behavior and of neuronal nitric oxide synthase (nNOS), calcitonin gene-related peptide (CGRP) and cytokines expression in areas involved in trigeminal nociception. Results KYNA-A1 abolished NTG-induced hyperalgesia in both pain models; NTG alone or associated to formalin injection induced an increased mRNA expression of CGRP, nNOS and cytokines in the trigeminal ganglia and central areas, which was reduced by KYNA-A1. Additionally, NTG caused a significant increase in nNOS immunoreactivity in the NTC, which was prevented by KYNA-A1. Conclusion Glutamate activity is likely involved in mediating hyperalgesia in an animal model specific for migraine. Its inhibition by means of a KYNA analogue modulates nNOS, CGRP and cytokines expression at peripheral and central levels.


Asunto(s)
Antagonistas de Aminoácidos Excitadores/farmacología , Hiperalgesia/metabolismo , Ácido Quinurénico/farmacología , Animales , Hiperalgesia/inducido químicamente , Ácido Quinurénico/análogos & derivados , Masculino , Trastornos Migrañosos/metabolismo , Nitroglicerina/toxicidad , Dimensión del Dolor/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Vasodilatadores/toxicidad
19.
J Neuroinflammation ; 13(1): 146, 2016 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-27295950

RESUMEN

BACKGROUND: Parkinson's disease (PD) is frequently associated with gastrointestinal (GI) symptoms, including constipation and defecatory dysfunctions. The mechanisms underlying such disorders are still largely unknown, although the occurrence of a bowel inflammatory condition has been hypothesized. This study examined the impact of central dopaminergic degeneration, induced by intranigral injection of 6-hydroxydopamine (6-OHDA), on distal colonic excitatory tachykininergic motility in rats. METHODS: Animals were euthanized 4 and 8 weeks after 6-OHDA injection. Tachykininergic contractions, elicited by electrical stimulation or exogenous substance P (SP), were recorded in vitro from longitudinal muscle colonic preparations. SP, tachykininergic NK1 receptor, and glial fibrillary acidic protein (GFAP) expression, as well as the density of eosinophils and mast cells in the colonic wall, were examined by immunohistochemical analysis. Malondialdehyde (MDA, colorimetric assay), TNF, and IL-1ß (ELISA assay) levels were also examined. The polarization of peritoneal macrophages was evaluated by real-time PCR. RESULTS: In colonic preparations, electrically and SP-evoked tachykininergic contractions were increased in 6-OHDA rats. Immunohistochemistry displayed an increase in SP and GFAP levels in the myenteric plexus, as well as NK1 receptor expression in the colonic muscle layer of 6-OHDA rats. MDA, TNF, and IL-1ß levels were increased also in colonic tissues from 6-OHDA rats. In 6-OHDA rats, the number of eosinophils and mast cells was increased as compared with control animals, and peritoneal macrophages polarized towards a pro-inflammatory phenotype. CONCLUSIONS: The results indicate that the induction of central nigrostriatal dopaminergic degeneration is followed by bowel inflammation associated with increased oxidative stress, increase in pro-inflammatory cytokine levels, activation of enteric glia and inflammatory cells, and enhancement of colonic excitatory tachykininergic motility.


Asunto(s)
Dopamina/metabolismo , Enfermedades Gastrointestinales/etiología , Motilidad Gastrointestinal/fisiología , Enfermedades Neurodegenerativas/complicaciones , Receptores de Neuroquinina-1/metabolismo , Animales , Benzoxazoles/farmacología , Modelos Animales de Enfermedad , Sistema Nervioso Entérico/efectos de los fármacos , Sistema Nervioso Entérico/fisiología , Eosinófilos/patología , Motilidad Gastrointestinal/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Indoles/farmacología , Masculino , Mastocitos/patología , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/patología , Oxidopamina/toxicidad , Piperidinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de Neuroquinina-1/genética , Sustancia P/metabolismo , Sustancia P/farmacología , Simpaticolíticos/toxicidad , Tirosina 3-Monooxigenasa/metabolismo
20.
J Pharmacol Exp Ther ; 356(2): 434-44, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26582732

RESUMEN

Parkinson's disease is frequently associated with gastrointestinal symptoms, mostly represented by constipation and defecatory dysfunctions. This study examined the impact of central dopaminergic denervation, induced by injection of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle, on distal colonic excitatory cholinergic neuromotor activity in rats. Animals were euthanized 4 and 8 weeks after 6-OHDA injection. In vivo colonic transit was evaluated by radiologic assay. Electrically induced and carbachol-induced cholinergic contractions were recorded in vitro from longitudinal and circular muscle colonic preparations, whereas acetylcholine levels were assayed in the incubation media. Choline acetyltransferase (ChAT), HuC/D (pan-neuronal marker), muscarinic M2 and M3 receptors were assessed by immunohistochemistry or western blot assay. As compared with control rats, at week 4, 6-OHDA-treated animals displayed the following changes: decreased in vivo colonic transit rate, impaired electrically evoked neurogenic cholinergic contractions, enhanced carbachol-induced contractions, decreased basal and electrically stimulated acetylcholine release from colonic tissues, decreased ChAT immunopositivity in the neuromuscular layer, unchanged density of HuC/D immunoreactive myenteric neurons, and increased expression of colonic muscarinic M2 and M3 receptors. The majority of such alterations were also detected at week 8 post 6-OHDA injection. These findings indicate that central nigrostriatal dopaminergic denervation is associated with an impaired excitatory neurotransmission characterized by a loss of myenteric neuronal ChAT positivity and decrease in acetylcholine release, resulting in a dysregulated smooth muscle motor activity, which likely contributes to the concomitant decrease in colonic transit rate.


Asunto(s)
Acetilcolina/metabolismo , Colon/diagnóstico por imagen , Colon/metabolismo , Sistema Nervioso Entérico/diagnóstico por imagen , Sistema Nervioso Entérico/metabolismo , Motilidad Gastrointestinal/fisiología , Trastornos Parkinsonianos/diagnóstico por imagen , Animales , Neuronas Colinérgicas/diagnóstico por imagen , Neuronas Colinérgicas/metabolismo , Masculino , Técnicas de Cultivo de Órganos , Radiografía , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA