Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Biol Chem ; 298(4): 101745, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35189140

RESUMEN

Self-assembling (glyco)protein surface layers (S-layers) are ubiquitous prokaryotic cell-surface structures involved in structural maintenance, nutrient diffusion, host adhesion, virulence, and other processes, which makes them appealing targets for therapeutics and biotechnological applications as biosensors or drug delivery systems. However, unlocking this potential requires expanding our understanding of S-layer properties, especially the details of surface-attachment. S-layers of Gram-positive bacteria often are attached through the interaction of S-layer homology (SLH) domain trimers with peptidoglycan-linked secondary cell wall polymers (SCWPs). Cocrystal structures of the SLH domain trimer from the Paenibacillus alvei S-layer protein SpaA (SpaASLH) with synthetic, terminal SCWP disaccharide and trisaccharide analogs, together with isothermal titration calorimetry binding analyses, reveal that while SpaASLH accommodates longer biologically relevant SCWP ligands within both its primary (G2) and secondary (G1) binding sites, the terminal pyruvylated ManNAc moiety serves as the nearly exclusive SCWP anchoring point. Binding is accompanied by displacement of a flexible loop adjacent to the receptor site that enhances the complementarity between protein and ligand, including electrostatic complementarity with the terminal pyruvate moiety. Remarkably, binding of the pyruvylated monosaccharide SCWP fragment alone is sufficient to cause rearrangement of the receptor-binding sites in a manner necessary to accommodate longer SCWP fragments. The observation of multiple conformations in longer oligosaccharides bound to the protein, together with the demonstrated functionality of two of the three SCWP receptor-binding sites, reveals how the SpaASLH-SCWP interaction has evolved to accommodate longer SCWP ligands and alleviate the strain inherent to bacterial S-layer adhesion during growth and division.


Asunto(s)
Glicoproteínas de Membrana , Proteínas de la Membrana , Paenibacillus , Polisacáridos , Dominios Proteicos , Pared Celular/química , Pared Celular/metabolismo , Ligandos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Monosacáridos/metabolismo , Paenibacillus/química , Paenibacillus/metabolismo , Polisacáridos/metabolismo
2.
Molecules ; 28(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36677618

RESUMEN

UDP-Gal: glycoprotein-N-acetylgalactosamine ß-1,3-galactosyltransferase (T-synthase, EC 2.4.1.122) catalyses the transfer of the monosaccharide galactose from UDP-Gal to GalNAc-Ser/Thr, synthesizing the core 1 mucin type O-glycan. Such glycans play important biological roles in a number of recognition processes. The crucial role of these glycans is acknowledged for mammals, but a lot remains unknown regarding invertebrate and especially mollusc O-glycosylation. Although core O-glycans have been found in snails, no core 1 ß-1,3-galactosyltransferase has been described so far. Here, the sequence of the enzyme was identified by a BlastP search of the NCBI Biomphalaria glabrata database using the human T-synthase sequence (NP_064541.1) as a template. The obtained gene codes for a 388 amino acids long transmembrane protein with two putative N-glycosylation sites. The coding sequence was synthesised and expressed in Sf9 cells. The expression product of the putative enzyme displayed core 1 ß-1,3-galactosyltransferase activity using pNP-α-GalNAc as the substrate. The enzyme showed some sequence homology (49.40% with Homo sapiens, 53.69% with Drosophila melanogaster and 49.14% with Caenorhabditis elegans) and similar biochemical parameters with previously characterized T-synthases from other phyla. In this study we present the identification, expression and characterisation of the UDP-Gal: glycoprotein-N-acetylgalactosamine ß-1,3-galactosyltransferase from the fresh-water snail Biomphalaria glabrata, which is the first cloned T-synthase from mollusc origin.


Asunto(s)
Biomphalaria , Galactosiltransferasas , Animales , Humanos , Acetilgalactosamina , Secuencia de Aminoácidos , Biomphalaria/enzimología , Biomphalaria/genética , Caenorhabditis elegans , Drosophila melanogaster , Galactosiltransferasas/genética , Galactosiltransferasas/química , Mucinas , Polisacáridos/química , Uridina Difosfato
3.
Anal Chem ; 94(3): 1618-1625, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35025205

RESUMEN

Standardization is essential in lipidomics and part of a huge community effort. However, with the still ongoing lack of reference materials, benchmarking quantification is hampered. Here, we propose traceable lipid class quantification as an important layer for the validation of quantitative lipidomics workflows. 31P nuclear magnetic resonance (NMR) and inductively coupled plasma (ICP)-mass spectrometry (MS) can use certified species-unspecific standards to validate shotgun or liquid chromatography (LC)-MS-based lipidomics approaches. We further introduce a novel lipid class quantification strategy based on lipid class separation and mass spectrometry using an all ion fragmentation (AIF) approach. Class-specific fragments, measured over a mass range typical for the lipid classes, are integrated to assess the lipid class concentration. The concept proved particularly interesting as low absolute limits of detection in the fmol range were achieved and LC-MS platforms are widely used in the field of lipidomics, while the accessibility of NMR and ICP-MS is limited. Using completely independent calibration strategies, the introduced validation scheme comprised the quantitative assessment of the complete phospholipid sub-ome, next to the individual lipid classes. Komagataella phaffii served as a prime example, showcasing mass balances and supporting the value of benchmarks for quantification at the lipid species level.


Asunto(s)
Lipidómica , Fosfolípidos , Calibración , Cromatografía Liquida , Espectrometría de Masas/métodos
4.
Chembiochem ; 23(7): e202200061, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35104013

RESUMEN

Oligomannose-type glycans on the spike protein of HIV-1 constitute relevant epitopes to elicit broadly neutralizing antibodies (bnAbs). Herein we describe an improved synthesis of α- and ß-linked hepta- and nonamannosyl ligands that were subsequently converted into BSA and CRM197 neoglycoconjugates. We assembled the ligands from anomeric 3-azidopropyl spacer glycosides from select 3-O-protected thiocresyl mannoside donors. Chain extensions were achieved using [4+3] or [4+5] block synthesis of thiocresyl and trichloroacetimidate glycosyl donors. Subsequent global deprotection generated the 3-aminopropyl oligosaccharide ligands. ELISA binding data obtained with the ß-anomeric hepta- and nonamannosyl conjugates with a selection of HIV-1 bnAbs showed comparable binding of both mannosyl ligands by Fab fragments yet lesser binding of the nonasaccharide conjugate by the corresponding IgG antibodies. These results support previous observations that a complete Man9 structure might not be the preferred antigenic binding motif for some oligomannose-specific antibodies, and have implications for glycoside designs to elicit oligomannose-targeted HIV-1-neutralizing antibodies.


Asunto(s)
VIH-1 , Anticuerpos Neutralizantes , Epítopos/química , Anticuerpos Anti-VIH/química , Humanos , Ligandos , Masculino
5.
Glycobiology ; 30(8): 663-676, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32039451

RESUMEN

The many emerging applications of microalgae such as Chlorella also instigate interest in their ability to conduct protein modifications such as N-glycosylation. Chlorella vulgaris has recently been shown to equip its proteins with highly O-methylated oligomannosidic N-glycans. Two other frequently occurring species names are Chlorella sorokiniana and Chlorella pyrenoidosa-even though the latter is taxonomically ill defined. We analyzed by mass spectrometry and nuclear magnetic resonance spectroscopy the N-glycans of type culture collection strains of C. sorokiniana and of a commercial product labeled C. pyrenoidosa. Both samples contained arabinose, which has hitherto not been found in N-glycans. Apart from this only commonality, the structures differed fundamentally from each other and from that of N-glycans of land plants. Despite these differences, the two algae lines exhibited considerable homology in their ITS1-5.8S-ITS2 rDNA sequences. These drastic differences of N-glycan structures between species belonging to the very same genus provoke questions as to the biological function on a unicellular organism.


Asunto(s)
Arabinosa/química , Chlorella/química , Polisacáridos/química , Conformación de Carbohidratos , Espectrometría de Masas
6.
BMC Microbiol ; 20(1): 352, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203363

RESUMEN

BACKGROUND: The Gram-negative oral pathogen Tannerella forsythia strictly depends on the external supply of the essential bacterial cell wall sugar N-acetylmuramic acid (MurNAc) for survival because of the lack of the common MurNAc biosynthesis enzymes MurA/MurB. The bacterium thrives in a polymicrobial biofilm consortium and, thus, it is plausible that it procures MurNAc from MurNAc-containing peptidoglycan (PGN) fragments (muropeptides) released from cohabiting bacteria during natural PGN turnover or cell death. There is indirect evidence that in T. forsythia, an AmpG-like permease (Tanf_08365) is involved in cytoplasmic muropeptide uptake. In E. coli, AmpG is specific for the import of N-acetylglucosamine (GlcNAc)-anhydroMurNAc(-peptides) which are common PGN turnover products, with the disaccharide portion as a minimal requirement. Currently, it is unclear which natural, complex MurNAc sources T. forsythia can utilize and which role AmpG plays therein. RESULTS: We performed a screen of various putative MurNAc sources for T. forsythia mimicking the situation in the natural habitat and compared bacterial growth and cell morphology of the wild-type and a mutant lacking AmpG (T. forsythia ΔampG). We showed that supernatants of the oral biofilm bacteria Porphyromonas gingivalis and Fusobacterium nucleatum, and of E. coli ΔampG, as well as isolated PGN and defined PGN fragments obtained after enzymatic digestion, namely GlcNAc-anhydroMurNAc(-peptides) and GlcNAc-MurNAc(-peptides), could sustain growth of T. forsythia wild-type, while T. forsythia ΔampG suffered from growth inhibition. In supernatants of T. forsythia ΔampG, the presence of GlcNAc-anhMurNAc and, unexpectedly, also GlcNAc-MurNAc was revealed by tandem mass spectrometry analysis, indicating that both disaccharides are substrates of AmpG. The importance of AmpG in the utilization of PGN fragments as MurNAc source was substantiated by a significant ampG upregulation in T. forsythia cells cultivated with PGN, as determined by quantitative real-time PCR. Further, our results indicate that PGN-degrading amidase, lytic transglycosylase and muramidase activities in a T. forsythia cell extract are involved in PGN scavenging. CONCLUSION: T. forsythia metabolizes intact PGN as well as muropeptides released from various bacteria and the bacterium's inner membrane transporter AmpG is essential for growth on these MurNAc sources, and, contrary to the situation in E. coli, imports both, GlcNAc-anhMurNAc and GlcNAc-MurNAc fragments.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ácidos Murámicos/metabolismo , Tannerella forsythia/metabolismo , Proteínas Bacterianas/genética , Biopelículas , Pared Celular/química , Pared Celular/metabolismo , Expresión Génica , Proteínas de Transporte de Membrana/genética , Boca/microbiología , Ácidos Murámicos/química , Peptidoglicano/química , Peptidoglicano/metabolismo , Especificidad por Sustrato , Tannerella forsythia/genética , Tannerella forsythia/crecimiento & desarrollo , Tannerella forsythia/ultraestructura
7.
J Am Chem Soc ; 141(19): 7946-7954, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31010286

RESUMEN

Lipooligosaccharides (LOS) from the bacterium Rhizobium radiobacter Rv3 are structurally related to antigenic mammalian oligomannoses on the HIV-1 envelope glycoprotein spike that are targets for broadly neutralizing antibodies. Here, we prepared a hybrid structure of viral and bacterial epitopes as part of a vaccine design strategy to elicit oligomannose-specific HIV-neutralizing antibodies using glycoconjugates based on the Rv3 LOS structure. Starting from a Kdo2GlcNAc2 tetrasaccharide precursor, a central orthogonally protected mannose trichloroacetimidate donor was coupled to OH-5 of the innermost Kdo residue. To assemble larger glycans, the N-acetylamino groups of the glucosamine units were converted to imides to prevent formation of unwanted imidate byproducts. Blockwise coupling of the pentasaccharide acceptor with an α-(1→2)-linked mannotriosyl trichloroacetimidate donor introduced the D1-arm fragment. Glycosylation of O-6 of the central branching mannose with an α-(1→2)-α-(1→6)-linked mannotriosyl trichloroacetimidate donor unit then furnished the undecasaccharide harboring a D3-arm extension. Global deprotection yielded the 3-aminopropyl ligand, which was activated as an isothiocyanate or adipic acid succinimidoyl ester and conjugated to CRM197. However, representative oligomannose-specific HIV-neutralizing antibodies bound the undecasaccharide conjugates poorly. Possible reasons for this outcome are discussed herein along with paths for improvement.


Asunto(s)
Agrobacterium tumefaciens/química , Anticuerpos Neutralizantes/inmunología , Glicoconjugados/síntesis química , VIH-1 , Lípido A/química , Oligosacáridos/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Técnicas de Química Sintética , Glicoconjugados/química , Modelos Moleculares , Conformación Proteica
8.
Chembiochem ; 20(23): 2936-2948, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31233657

RESUMEN

4-Amino-4-deoxy-l-arabinopyranose (Ara4N) residues have been linked to antibiotic resistance due to reduction of the negative charge in the lipid A and core regions of the bacterial lipopolysaccharide (LPS). To study the enzymatic transfer of Ara4N onto lipid A, which is catalysed by the ArnT transferase, we chemically synthesised a series of anomeric phosphodiester-linked lipid Ara4N derivatives containing linear aliphatic chains as well as E- and Z-configured monoterpene units. Coupling reactions were based on sugar-derived H-phosphonates, followed by oxidation and global deprotection. The enzymatic Ara4N transfer was performed in vitro with crude membranes from a deep-rough mutant from Escherichia coli as acceptor. Product formation was detected by TLC and LC-ESI-QTOF mass spectrometry. Out of seven analogues tested, only the α-neryl derivative was accepted by the Burkholderia cenocepacia ArnT protein, leading to substitution of the Kdo2 -lipid A acceptor and thus affording evidence that ArnT is an inverting glycosyl transferase that requires the Z-configured double bond next to the anomeric phosphate moiety. This approach provides an easily accessible donor substrate for biochemical studies relating to modifications of bacterial LPS that modulate antibiotic resistance and immune recognition.


Asunto(s)
Amino Azúcares/química , Proteínas Bacterianas/química , Lípido A/química , Pentosiltransferasa/química , Amino Azúcares/síntesis química , Burkholderia cenocepacia/enzimología , Pruebas de Enzimas , Escherichia coli/química , Organofosfatos/síntesis química , Organofosfatos/química , Organofosfonatos/síntesis química , Organofosfonatos/química , Especificidad por Sustrato
9.
Int J Mol Sci ; 21(1)2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31861593

RESUMEN

By using molecular dynamics simulations with an efficient enhanced sampling technique and in combination with nuclear magnetic resonance (NMR) spectroscopy quantitative structural information on α -2,8-linked sialic acids is presented. We used a bottom-up approach to obtain a set of larger ensembles for tetra- and deca-sialic acid from model dimer and trimer systems that are in agreement with the available J-coupling constants and nuclear Overhauser effects. The molecular dynamic (MD) simulations with enhanced sampling are used to validate the force field used in this study for its further use. This empowered us to couple NMR observables in the MD framework via J-coupling and distance restraining simulations to obtain conformations that are supported by experimental data. We used these conformations in thermodynamic integration and one-step perturbation simulations to calculate the free-energy of suggested helical conformations. This study brings most of the available NMR experiments together and supplies information to resolve the conflict on the structures of poly- α -2,8-linked sialic acid.


Asunto(s)
Ácido N-Acetilneuramínico/química , Entropía , Espectroscopía de Resonancia Magnética , Conformación Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Termodinámica
10.
Int J Mol Sci ; 20(19)2019 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-31590345

RESUMEN

Glycoconjugates are the most diverse biomolecules of life. Mostly located at the cell surface, they translate into cell-specific "barcodes" and offer a vast repertoire of functions, including support of cellular physiology, lifestyle, and pathogenicity. Functions can be fine-tuned by non-carbohydrate modifications on the constituting monosaccharides. Among these modifications is pyruvylation, which is present either in enol or ketal form. The most commonly best-understood example of pyruvylation is enol-pyruvylation of N-acetylglucosamine, which occurs at an early stage in the biosynthesis of the bacterial cell wall component peptidoglycan. Ketal-pyruvylation, in contrast, is present in diverse classes of glycoconjugates, from bacteria to algae to yeast-but not in humans. Mild purification strategies preventing the loss of the acid-labile ketal-pyruvyl group have led to a collection of elucidated pyruvylated glycan structures. However, knowledge of involved pyruvyltransferases creating a ring structure on various monosaccharides is scarce, mainly due to the lack of knowledge of fingerprint motifs of these enzymes and the unavailability of genome sequences of the organisms undergoing pyruvylation. This review compiles the current information on the widespread but under-investigated ketal-pyruvylation of monosaccharides, starting with different classes of pyruvylated glycoconjugates and associated functions, leading to pyruvyltransferases, their specificity and sequence space, and insight into pyruvate analytics.


Asunto(s)
Glicoconjugados/metabolismo , Piruvatos/metabolismo , Aciltransferasas/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Glicoconjugados/química , Piruvatos/química
11.
Anal Chem ; 90(1): 928-935, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29182268

RESUMEN

Despite years of research, the glycome of the model nematode Caenorhabditis elegans is still not fully understood. Certainly, data over the years have indicated that this organism synthesizes unusual N-glycans with a range of galactose and fucose modifications on the Man2-3GlcNAc2 core region. Previously, up to four fucose residues were detected on its N-glycans, despite these lacking the fucosylated antennae typical of many other eukaryotes; some of these fucose residues are capped with hexose residues as shown by the studies of us and others. There have, though, been contrasting reports regarding the maximal number of fucose substitutions in C. elegans, which in part may be due to different methodological approaches, including use of either peptide:N-glycosidases F and A (PNGase F and A) or anhydrous hydrazine to cleave the N-glycans from glycopeptides. Here we compare the use of hydrazine with that of a new enzyme (rice PNGase Ar) and show that both enable release of glycans with more sugar residues on the proximal GlcNAc than previously resolved. By use of exoglycosidase sequencing, in conjunction with high-performance liquid chromatography (HPLC) and matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF MS/MS), we now reveal that actually up to five fucose residues modify the core region of C. elegans N-glycans and that the α1,3-fucose on the reducing terminus can be substituted by an α-linked galactose. Thus, traditional PNGase F and A release may be insufficient for release of the more highly core-modified N-glycans, especially those occurring in C. elegans, but novel enzymes can compete against chemical methods in terms of safety, ease of cleanup, and quality of resulting glycomic data.


Asunto(s)
Hidrazinas/química , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/química , Polisacáridos/química , Animales , Caenorhabditis elegans , Chryseobacterium/enzimología , Glicómica/métodos , Glicoproteínas/química , Oryza/enzimología , Prunus dulcis/enzimología
12.
Proc Natl Acad Sci U S A ; 112(6): E576-85, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25624472

RESUMEN

Unique to Gram-positive bacteria, wall teichoic acids are anionic glycopolymers cross-stitched to a thick layer of peptidoglycan. The polyol phosphate subunits of these glycopolymers are decorated with GlcNAc sugars that are involved in phage binding, genetic exchange, host antibody response, resistance, and virulence. The search for the enzymes responsible for GlcNAcylation in Staphylococcus aureus has recently identified TarM and TarS with respective α- and ß-(1-4) glycosyltransferase activities. The stereochemistry of the GlcNAc attachment is important in balancing biological processes, such that the interplay of TarM and TarS is likely important for bacterial pathogenicity and survival. Here we present the crystal structure of TarM in an unusual ternary-like complex consisting of a polymeric acceptor substrate analog, UDP from a hydrolyzed donor, and an α-glyceryl-GlcNAc product formed in situ. These structures support an internal nucleophilic substitution-like mechanism, lend new mechanistic insight into the glycosylation of glycopolymers, and reveal a trimerization domain with a likely role in acceptor substrate scaffolding.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Pared Celular/enzimología , Glicosiltransferasas/metabolismo , Modelos Moleculares , Staphylococcus aureus/enzimología , Ácidos Teicoicos/metabolismo , Proteínas Bacterianas/genética , Clonación Molecular , Cristalización , Estabilidad de Enzimas , Glicosiltransferasas/química , Glicosiltransferasas/genética , Espectrometría de Masas , Metales/análisis , Resonancia Magnética Nuclear Biomolecular , Polimerizacion , Conformación Proteica
13.
J Biol Chem ; 290(8): 4887-4895, 2015 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-25533455

RESUMEN

CAZy glycoside hydrolase family GH3 consists primarily of stereochemistry-retaining ß-glucosidases but also contains a subfamily of ß-N-acetylglucosaminidases. Enzymes from this subfamily were recently shown to use a histidine residue within a His-Asp dyad contained in a signature sequence as their catalytic acid/base residue. Reasons for their use of His rather than the Glu or Asp found in other glycosidases were not apparent. Through studies on a representative member, the Nag3 ß-N-acetylglucosaminidase from Cellulomonas fimi, we now show that these enzymes act preferentially as glycoside phosphorylases. Their need to accommodate an anionic nucleophile within the enzyme active site explains why histidine is used as an acid/base catalyst in place of the anionic glutamate seen in other GH3 family members. Kinetic and mechanistic studies reveal that these enzymes also employ a double-displacement mechanism involving a covalent glycosyl-enzyme intermediate, which was directly detected by mass spectrometry. Phosphate has no effect on the rates of formation of the glycosyl-enzyme intermediate, but it accelerates turnover of the N-acetylglucosaminyl-enzyme intermediate ∼3-fold, while accelerating turnover of the glucosyl-enzyme intermediate several hundredfold. These represent the first reported examples of retaining ß-glycoside phosphorylases, and the first instance of free ß-GlcNAc-1-phosphate in a biological context.


Asunto(s)
Proteínas Bacterianas/química , Cellulomonas/enzimología , Glutamatos/química , Glicósido Hidrolasas/química , Fosforilasas/química , Proteínas Bacterianas/metabolismo , Glutamatos/metabolismo , Glicósido Hidrolasas/metabolismo , Cinética , Fosforilasas/metabolismo , Especificidad por Sustrato
14.
Plant Physiol ; 168(1): 94-106, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25829465

RESUMEN

Western redcedar (WRC; Thuja plicata) produces high amounts of oxygenated thujone monoterpenoids associated with resistance against herbivore feeding, particularly ungulate browsing. Thujones and other monoterpenoids accumulate in glandular structures in the foliage of WRC. Thujones are produced from (+)-sabinene by sabinol and sabinone. Using metabolite analysis, enzyme assays with WRC tissue extracts, cloning, and functional characterization of cytochrome P450 monooxygenases, we established that trans-sabin-3-ol but not cis-sabin-3-ol is the intermediate in thujone biosynthesis in WRC. Based on transcriptome analysis, full-length complementary DNA cloning, and characterization of expressed P450 proteins, we identified CYP750B1 and CYP76AA25 as the enzymes that catalyze the hydroxylation of (+)-sabinene to trans-sabin-3-ol. Gene-specific transcript analysis in contrasting WRC genotypes producing high and low amounts of monoterpenoids, including a glandless low-terpenoid clone, as well as assays for substrate specificity supported a biological role of CYP750B1 in α- and ß-thujone biosynthesis. This P450 belongs to the apparently gymnosperm-specific CYP750 family and is, to our knowledge, the first member of this family to be functionally characterized. In contrast, CYP76AA25 has a broader substrate spectrum, also converting the sesquiterpene farnesene and the herbicide isoproturon, and its transcript profiles are not well correlated with thujone accumulation.


Asunto(s)
Biocatálisis , Vías Biosintéticas , Sistema Enzimático del Citocromo P-450/metabolismo , Monoterpenos/metabolismo , Thuja/enzimología , Monoterpenos Bicíclicos , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Estudios de Asociación Genética , Hidroxilación , Datos de Secuencia Molecular , Monoterpenos/química , NAD/metabolismo , Compuestos de Fenilurea/metabolismo , Filogenia , Corteza de la Planta/metabolismo , Hojas de la Planta/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estereoisomerismo , Especificidad por Sustrato , Terpenos/metabolismo , Thuja/genética , Extractos de Tejidos
15.
J Med Chem ; 67(8): 6610-6623, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38598312

RESUMEN

Inhibition of the biosynthesis of bacterial heptoses opens novel perspectives for antimicrobial therapies. The enzyme GmhA responsible for the first committed biosynthetic step catalyzes the conversion of sedoheptulose 7-phosphate into d-glycero-d-manno-heptose 7-phosphate and harbors a Zn2+ ion in the active site. A series of phosphoryl- and phosphonyl-substituted derivatives featuring a hydroxamate moiety were designed and prepared from suitably protected ribose or hexose derivatives. High-resolution crystal structures of GmhA complexed to two N-formyl hydroxamate inhibitors confirmed the binding interactions to a central Zn2+ ion coordination site. Some of these compounds were found to be nanomolar inhibitors of GmhA. While devoid of HepG2 cytotoxicity and antibacterial activity of their own, they demonstrated in vitro lipopolysaccharide heptosylation inhibition in Enterobacteriaceae as well as the potentiation of erythromycin and rifampicin in a wild-type Escherichia coli strain. These inhibitors pave the way for a novel treatment of Gram-negative infections.


Asunto(s)
Antibacterianos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Humanos , Bacterias Gramnegativas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Cristalografía por Rayos X , Sinergismo Farmacológico , Células Hep G2 , Modelos Moleculares , Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/síntesis química , Zinc/química
16.
Sci Rep ; 13(1): 13394, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591902

RESUMEN

Pyruvylation is a biologically versatile but mechanistically unexplored saccharide modification. 4,6-Ketal pyruvylated N-acetylmannosamine within bacterial secondary cell wall polymers serves as a cell wall anchoring epitope for proteins possessing a terminal S-layer homology domain trimer. The pyruvyltransferase CsaB from Paenibacillus alvei served as a model to investigate the structural basis of the pyruvyltransfer reaction by a combination of molecular modelling and site-directed mutagenesis together with an enzyme assay using phosphoenolpyruvate (PEP; donor) and synthetic ß-D-ManNAc-(1 → 4)-α-D-GlcNAc-diphosphoryl-11-phenoxyundecyl (acceptor). CsaB protein structure modelling was done using Phyre2 and I-Tasser based on the partial crystal structure of the Schizosaccharomyces pombe pyruvyltransferase Pvg1p and by AlphaFold. The models informed the construction of twelve CsaB mutants targeted at plausible PEP and acceptor binding sites and KM and kcat values were determined to evaluate the mutants, indicating the importance of a loop region for catalysis. R148, H308 and K328 were found to be critical to PEP binding and insight into acceptor binding was obtained from an analysis of Y14 and F16 mutants, confirming the modelled binding sites and interactions predicted using Molecular Operating Environment. These data lay the basis for future mechanistic studies of saccharide pyruvylation as a novel target for interference with bacterial cell wall assembly.


Asunto(s)
Bacillus , Paenibacillus , Paenibacillus/genética , Mutagénesis Sitio-Dirigida , Sitios de Unión
17.
European J Org Chem ; 2012(1): 119-131, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23136534

RESUMEN

Disaccharides that contain 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) and d-glycero-d-talo-oct-2-ulosonic acid (Ko) substituted at the 8-position by 4-amino-4-deoxy-ß-l-arabinopyranosyl (Ara4N) residues have been prepared. Coupling an N-phenyltrifluoroacetimidate-4-azido-4-deoxy-l-arabinosylglycosyl donor to acetyl-protected allyl glycosides of Kdo and Ko afforded anomeric mixtures of disaccharide products in 74 and 90 % yield, respectively, which were separated by chromatography. Further extension of an intermediate Ara4N-(1→8)-Kdo disaccharide acceptor, which capitalized on a regioselective glycosylation with a Kdo bromide donor under Helferich conditions, afforded the branched trisaccharide α-Kdo-(2→4)[ß-l-Ara4N-(1→8)]-α-Kdo derivative. Deprotection of the protected di- and trisaccharide allyl glycosides was accomplished by TiCl(4)-promoted benzyl ether cleavage followed by the removal of ester groups and reduction of the azido group with thiol or Staudinger reagents, respectively. The reaction of the anomeric allyl group with 1,3-propanedithiol under radical conditions afforded the thioether-bridged spacer glycosides, which were efficiently coupled to maleimide-activated bovine serum albumin. The neoglycoconjugates serve as immunoreagents with specificity for inner core epitopes of Burkholderia and Proteus lipopolysaccharides.

18.
Curr Opin Chem Biol ; 71: 102208, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36108403

RESUMEN

A sustainable bioeconomy that includes increased agricultural productivity and new technologies to convert renewable biomass to value-added products may help meet the demands of a growing world population for food, energy and materials. The potential use of plant biomass is determined by the properties of the cell walls, consisting of polysaccharides, proteins, and the polyphenolic polymer lignin. Comprehensive knowledge of cell wall glycan structure and biosynthesis is therefore essential for optimal utilization. However, several areas of plant cell wall research are hampered by a lack of available pure oligosaccharide samples that represent structural features of cell wall glycans. Here, we provide an update on recent chemical syntheses of plant cell wall oligosaccharides and their application in characterizing plant cell wall-directed antibodies and carbohydrate-active enzymes including glycosyltransferases and glycosyl hydrolases, with a particular focus on glycan array technology.


Asunto(s)
Pared Celular , Polisacáridos , Pared Celular/metabolismo , Polisacáridos/metabolismo , Plantas/metabolismo , Glicosiltransferasas/metabolismo , Oligosacáridos , Biología
19.
Pure Appl Chem ; 84(1): 11-21, 2011 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-22942477

RESUMEN

Attachment of 4-amino-4-deoxy-l-arabinose to phosphates or sugar hydroxyl groups of lipopolysaccharide contributes to bacterial resistance against common antibiotics. For a detailed study of antigenic properties and binding interactions, Ara4N-containing inner core ligands related to Burkholderia and Proteus LPS have been synthesized in good yields. Glycosylation at position 8 of allyl glycosides of oct-2-ulosonic acids (Ko, Kdo) has been accomplished using an N-phenyltrifluoroacetimidate 4-azido-4-deoxy-l-arabinosyl glycosyl donor followed by azide reduction and global deprotection. The ß-l-Ara4N-(1→8)-α-Kdo disaccharide was further extended into the branched ß-l-Ara4N-(1→8)[α-Kdo-(2→4)]-α-Kdo trisaccharide via a regioselective glycosylation of a protected triol intermediate. Synthesis of Ara4N-modified lipid A - part structure occurring in the LPS of Burkholderia, Pseudomonas and Klebsiellla strains was accomplished using the H-phosphonate approach. The stereocontrolled assembly of the phosphodiester linkage connecting glycosidic centres of two aminosugars was elaborated employing an anomeric H-phosphonate of cyclic silyl-ether protected 4-azido-4-deoxy-ß-l-arabinose which was coupled to the hemiacetal of the lipid A GlcN-disaccharide backbone. Conditions for global deprotection which warrant the integrity of "double anomeric" phosphodiester linkage were successfully developed. Introduction of thiol-terminated spacer at the synthetic ligands allows both coupling to BSA and immobilization on gold nanoparticles as well as generation of glycoarrays.

20.
Front Plant Sci ; 12: 643249, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33981323

RESUMEN

Microalgae of the Chlorella clade are extensively investigated as an environmentally friendly source of renewable biofuels and high-value nutrients. In addition, essentially unprocessed Chlorella serves as wholesome food additive. A recent study on 80 commercial Chlorella preparations revealed an unexpected variety of protein-linked N-glycan patterns with unprecedented structural features, such as the occurrence of arabinose. Two groups of products exhibited a characteristic major N-glycan isobaric to the Man2GlcNAc2XylFuc N-glycan known from pineapple stem bromelain, but tandem mass spectrometry (MS/MS) analysis pointed at two types of N-glycan different from the bromelain structure, as well as from each other. Here we report the exact structures of these two novel N-glycan structures, elucidated by nuclear magnetic resonance spectroscopy and MS/MS, as well as on their phylogenetic context. Despite their humble size, these two N-glycans exhibited a very different design with structural features unrelated to those recently described for other Chlorella-clade strains. The major glycans of this study presented several novel structural features such as substitution by arabinose or xylose of the internal N-acetylglucosamine, as well as methylated sugars. ITS1-5.8S-ITS2 rDNA barcode analyses revealed that the xylose-containing structure derived from a product primarily comprising Scenedesmus species, and the arabinose-containing glycan type related to Chlorella species (SAG211-34 and FACHB-31) and to Auxenochlorella. This is another example where characteristic N-glycan structures distinguish phylogenetically different groups of microalgae.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA