Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Haematologica ; 103(1): 136-147, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29122993

RESUMEN

Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) is known to play an important role in the pathogenesis of chronic lymphocytic leukemia (CLL). Several NF-κB inhibitors were shown to successfully induce apoptosis of CLL cells in vitro Since the microenvironment is known to be crucial for the survival of CLL cells, herein, we tested whether NF-κB inhibition may still induce apoptosis in these leukemic cells in the presence of protective stromal interaction. We used the specific NF-κB inhibitor dehydroxymethylepoxyquinomicin (DHMEQ). Microenvironmental support was mimicked by co-culturing CLL cells with bone marrow-derived stromal cell lines (HS-5 and M2-10B4). NF-κB inhibition by DHMEQ in CLL cells could be confirmed in both the monoculture and co-culture setting. In line with previous reports, NF-κB inhibition induced apoptosis in the monoculture setting by activating the intrinsic apoptotic pathway resulting in poly (ADP-ribose) polymerase (PARP)-cleavage; however, it was unable to induce apoptosis in leukemic cells co-cultured with stromal cells. Similarly, small interfering ribonucleic acid (siRNA)-mediated RELA downregulation induced apoptosis of CLL cells cultured alone, but not in the presence of supportive stromal cells. B-cell activating factor (BAFF) was identified as a microenvironmental messenger potentially protecting the leukemic cells from NF-κB inhibition-induced apoptosis. Finally, we show improved sensitivity of stroma-supported CLL cells to NF-κB inhibition when combining the NF-κB inhibitor with the SYK inhibitor R406 or the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, agents known to inhibit the stroma-leukemia crosstalk. We conclude that NF-κB inhibitors are not promising as monotherapies in CLL, but may represent attractive therapeutic partners for ibrutinib and R406.


Asunto(s)
Apoptosis/efectos de los fármacos , Leucemia Linfocítica Crónica de Células B/metabolismo , Leucemia Linfocítica Crónica de Células B/patología , Células Madre Mesenquimatosas/metabolismo , FN-kappa B/antagonistas & inhibidores , Microambiente Tumoral , Antineoplásicos/farmacología , Benzamidas/farmacología , Biomarcadores , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo , Ciclohexanonas/farmacología , Humanos , Leucemia Linfocítica Crónica de Células B/genética , FN-kappa B/metabolismo , ARN Interferente Pequeño/genética , Transducción de Señal/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética
3.
Chembiochem ; 10(10): 1678-88, 2009 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-19492395

RESUMEN

The quantification of cellular proteins is essential for the study of many different biological processes. This study describes an assay for the detection of the intracellular mutant huntingtin, the causative agent of Huntington's disease, with a method that may be generally applicable to other cellular proteins. A small recombinant protein tag that is recognized by a pair of readily available, high-affinity monoclonal antibodies was designed. This tag was then added to an inducible fragment of the mutant huntingtin protein by genetic engineering. We show that it is possible to use time-resolved FRET to detect low intracellular levels of huntingtin by a simple lysis and detection procedure. This assay was then adapted into a homogeneous, miniaturized format suitable for screening in 1536-well plates. The use of time-resolved FRET also permits the assay to be multiplexed with a standard readout of cell toxicity, thus allowing the identification of conditions causing reduction of protein levels simply due to cytotoxicity. The screening results demonstrated that the assay is able to identify compounds that modulate the levels of huntingtin both positively and negatively and that represent valuable starting points for drug discovery programs.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas del Tejido Nervioso/análisis , Proteínas Nucleares/análisis , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Línea Celular , Proteína Huntingtina , Ratones , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Oxazinas/química , Proteínas Recombinantes/análisis , Proteínas Recombinantes/genética , Bibliotecas de Moléculas Pequeñas , Xantenos/química
4.
Nat Neurosci ; 21(9): 1291, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30018355

RESUMEN

In the version of this article initially published, the catalog numbers for BoNT A and B were given in the Methods section as T0195 and T5644; the correct numbers are B8776 and B6403. The error has been corrected in the HTML and PDF versions of the article.

5.
Neuromuscul Disord ; 13(2): 143-50, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12565912

RESUMEN

Duchenne muscular dystrophy is an X-linked genetic disease caused by the absence of functional dystrophin. Pharmacological upregulation of utrophin, the autosomal homologue of dystrophin, offers a potential therapeutic approach to treat Duchenne patients. Full-length utrophin mRNA is transcribed from two alternative promoters, called A and B. In contrast to the utrophin promoter A, little is known about the factors regulating the activity of the utrophin promoter B. Computer analysis of this second promoter revealed the presence of several conserved binding motives for Ets-transcription factors. Using electrotransfer of cDNA into mouse muscles, we demonstrate that a genetically modified beta-subunit of the Ets-transcription factor GA-binding protein potently activates a utrophin promoter B reporter construct in innervated muscle fibers in vivo. These results make the GA-binding protein and the signaling cascade regulating its activity in muscle cells, potential targets for the pharmacological modulation of utrophin expression in Duchenne patients.


Asunto(s)
Proteínas del Citoesqueleto/genética , Proteínas de Unión al ADN/fisiología , Proteínas de la Membrana/genética , Mioblastos/metabolismo , Regiones Promotoras Genéticas/genética , Subunidades de Proteína/metabolismo , Factores de Transcripción/fisiología , Activación Transcripcional , Secuencias de Aminoácidos/fisiología , Animales , Sitios de Unión , Western Blotting , Células CHO , Línea Celular , Núcleo Celular/metabolismo , Creatina Quinasa/metabolismo , Forma MM de la Creatina-Quinasa , Cricetinae , Citoplasma/metabolismo , Proteínas del Citoesqueleto/clasificación , Proteínas del Citoesqueleto/metabolismo , Proteínas de Unión al ADN/clasificación , Proteínas de Unión al ADN/genética , Factor de Transcripción de la Proteína de Unión a GA , Regulación de la Expresión Génica , Isoenzimas/metabolismo , Proteínas de la Membrana/clasificación , Proteínas de la Membrana/metabolismo , Ratones , Datos de Secuencia Molecular , Mutación , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neurregulina-1/metabolismo , Plásmidos/metabolismo , Subunidades de Proteína/clasificación , ARN Mensajero/biosíntesis , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Ácido Nucleico , Factores de Transcripción/clasificación , Factores de Transcripción/genética , Transfección/métodos , Regulación hacia Arriba , Utrofina , alfa Carioferinas/metabolismo
6.
Nat Neurosci ; 17(8): 1064-72, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25017010

RESUMEN

In Huntington's disease (HD), whether transneuronal spreading of mutant huntingtin (mHTT) occurs and its contribution to non-cell autonomous damage in brain networks is largely unknown. We found mHTT spreading in three different neural network models: human neurons integrated in the neural network of organotypic brain slices of HD mouse model, an ex vivo corticostriatal slice model and the corticostriatal pathway in vivo. Transneuronal propagation of mHTT was blocked by two different botulinum neurotoxins, each known for specifically inactivating a single critical component of the synaptic vesicle fusion machinery. Moreover, healthy human neurons in HD mouse model brain slices displayed non-cell autonomous changes in morphological integrity that were more pronounced when these neurons bore mHTT aggregates. Altogether, our findings suggest that transneuronal propagation of mHTT might be an important and underestimated contributor to the pathophysiology of HD.


Asunto(s)
Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Neuronas/patología , Animales , Línea Celular , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Células Madre Embrionarias , Femenino , Genotipo , Humanos , Proteína Huntingtina , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Mutación/genética , Red Nerviosa/citología , Red Nerviosa/patología , Proteínas del Tejido Nervioso/fisiología , Neuronas/metabolismo , Neuronas/fisiología
7.
J Neurodev Disord ; 5(1): 8, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23548045

RESUMEN

BACKGROUND: Hypermethylation of the fragile X mental retardation 1 gene FMR1 results in decreased expression of FMR1 protein FMRP, which is the underlying cause of Fragile X syndrome - an incurable neurological disorder characterized by mental retardation, anxiety, epileptic episodes and autism. Disease-modifying therapies for Fragile X syndrome are thus aimed at treatments that increase the FMRP expression levels in the brain. We describe the development and characterization of two assays for simple and quantitative detection of FMRP protein. METHOD: Antibodies coupled to fluorophores that can be employed for time-resolved Förster's resonance energy transfer were used for the development of homogeneous, one-step immunodetection. Purified recombinant human FMRP and patient cells were used as control samples for assay development. RESULTS: The assays require small sample amounts, display high stability and reproducibility and can be used to quantify endogenous FMRP in human fibroblasts and peripheral blood mononuclear cells. Application of the assays to FXS patient cells showed that the methods can be used both for the characterization of clinical FXS patient samples as well as primary readouts in drug-discovery screens aimed at increasing endogenous FMRP levels in human cells. CONCLUSION: This study provides novel quantitative detection methods for FMRP in FXS patient cells. Importantly, due to the simplicity of the assay protocol, the method is suited to be used in screening applications to identify compounds or genetic interventions that result in increased FMRP levels in human cells.

8.
Neurobiol Aging ; 34(12): 2866-78, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23870837

RESUMEN

Heterologous expression of the functional amyloid beta (Aß) antibody ß1 in the central nervous system was engineered to maximize antibody exposure in the brain and assess the effects on Aß production and accumulation in these conditions. A single open reading frame encoding the heavy and light chains of ß1 linked by the mouth and foot virus peptide 2A was expressed in brain neurons of transgenic mice. Two of the resulting BIN66 transgenic lines were crossed with APP23 mice, which develop severe central amyloidosis. Brain concentrations at steady-state 5 times greater than those found after peripheral ß1 administration were obtained. Similar brain and plasma ß1 concentrations indicated robust antibody efflux from the brain. In preplaque mice, ß1 formed a complex with Aß that caused a modest Aß increase in brain and plasma. At 11 months of age, ß1 expression reduced amyloid by 97% compared with age-matched APP23 mice. Interference of ß1 with ß-secretase cleavage of amyloid precursor protein was relatively small. Our data suggest that severely impaired amyloid formation was primarily mediated by a complex of ß1 with soluble Aß, which might have prevented Aß aggregation or favored transport out of the brain.


Asunto(s)
Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/inmunología , Péptidos beta-Amiloides/metabolismo , Anticuerpos/fisiología , Encéfalo/inmunología , Encéfalo/metabolismo , Inmunoterapia , Enfermedad de Alzheimer/inmunología , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Anticuerpos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Solubilidad
9.
Mol Neurodegener ; 5: 26, 2010 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-20569486

RESUMEN

BACKGROUND: Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion within the huntingtin gene. Mutant huntingtin protein misfolds and accumulates within neurons where it mediates its toxic effects. Promoting mutant huntingtin clearance by activating macroautophagy is one approach for treating Huntington's disease (HD). In this study, we evaluated the mTOR kinase inhibitor and macroautophagy promoting drug everolimus in the R6/2 mouse model of HD. RESULTS: Everolimus decreased phosphorylation of the mTOR target protein S6 kinase indicating brain penetration. However, everolimus did not activate brain macroautophagy as measured by LC3B Western blot analysis. Everolimus protected against early declines in motor performance; however, we found no evidence for neuroprotection as determined by brain pathology. In muscle but not brain, everolimus significantly decreased soluble mutant huntingtin levels. CONCLUSIONS: Our data suggests that beneficial behavioral effects of everolimus in R6/2 mice result primarily from effects on muscle. Even though everolimus significantly modulated its target brain S6 kinase, this did not decrease mutant huntingtin levels or provide neuroprotection.

10.
Mol Neurodegener ; 5: 58, 2010 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-21156064

RESUMEN

BACKGROUND: The mutation in Huntington's disease is a polyglutamine expansion near the N-terminus of huntingtin. Huntingtin expressed in immortalized neurons is cleaved near the N-terminus to form N-terminal polypeptides known as cleavage products A and B (cpA and cpB). CpA and cpB with polyglutamine expansion form inclusions in the nucleus and cytoplasm, respectively. The formation of cpA and cpB in primary neurons has not been established and the proteases involved in the formation of these fragments are unknown. RESULTS: Delivery of htt cDNA into the mouse striatum using adeno-associated virus or into primary cortical neurons using lentivirus generated cpA and cpB, indicating that neurons in brain and in vitro can form these fragments. A screen of small molecule protease inhibitors introduced to clonal striatal X57 cells and HeLa cells identified compounds that reduced levels of cpA and are inhibitors of the aspartyl proteases cathepsin D and cathepsin E. The most effective compound, P1-N031, is a transition state mimetic for aspartyl proteases. By western blot analysis, cathepsin D was easily detected in clonal striatal X57 cells, mouse brain and primary neurons, whereas cathepsin E was only detectible in clonal striatal X57 cells. In primary neurons, levels of cleavage product A were not changed by the same compounds that were effective in clonal striatal cells or by mRNA silencing to partially reduce levels of cathepsin D. Instead, treating primary neurons with compounds that are known to inhibit gamma secretase activity either indirectly (Imatinib mesylate, Gleevec) or selectively (LY-411,575 or DAPT) reduced levels of cpA. LY-411,575 or DAPT also increased survival of primary neurons expressing endogenous full-length mutant huntingtin. CONCLUSION: We show that cpA and cpB are produced from a larger huntingtin fragment in vivo in mouse brain and in primary neuron cultures. The aspartyl protease involved in forming cpA has cathepsin-D like properties in immortalized neurons and gamma secretase-like properties in primary neurons, suggesting that cell type may be a critical factor that specifies the aspartyl protease responsible for cpA. Since gamma secretase inhibitors were also protective in primary neurons, further study of the role of gamma-secretase activity in HD neurons is justified.

11.
J Biol Chem ; 281(48): 36835-45, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17012237

RESUMEN

Agrin induces the aggregation of postsynaptic proteins at the neuromuscular junction (NMJ). This activity requires the receptor-tyrosine kinase MuSK. Agrin isoforms differ in short amino acid stretches at two sites, called A and B, that are localized in the two most C-terminal laminin G (LG) domains. Importantly, agrin isoforms greatly differ in their activities of inducing MuSK phosphorylation and of binding to alpha-dystroglycan. By using site-directed mutagenesis, we characterized the amino acids important for these activities of agrin. We find that the conserved tripeptide asparagineglutamate-isoleucine in the eight-amino acid long insert at the B-site is necessary and sufficient for full MuSK phosphorylation activity. However, even if all eight amino acids were replaced by alanines, this agrin mutant still has significantly higher MuSK phosphorylation activity than the splice version lacking any insert. We also show that binding to alpha-dystroglycan requires at least two LG domains and that amino acid inserts at the A and the B splice sites negatively affect binding.


Asunto(s)
Agrina/química , Empalme Alternativo , Músculos/enzimología , ARN Mensajero/metabolismo , Proteínas Tirosina Quinasas Receptoras/química , Agrina/biosíntesis , Secuencia de Aminoácidos , Animales , Sitios de Unión , Pollos , Distroglicanos/química , Humanos , Laminina/química , Ratones , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA