Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 296: 113069, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34225046

RESUMEN

A two-phased bench-scale study was conducted to evaluate various sorbents for possible use as chemical stabilizing agents, along with cement solidification, for possible use in an in-situ solidification/stabilization (immobilization) treatment process for per- and polyfluoroalkyl (PFAS) contaminated soils. The first phase involved sorption experiments for six selected PFAS compounds diluted in a water solution, using five selected sorbents: granular activated carbon (GAC), activated carbon-clay blend, modified clay, biochar, iron (Fe)-amended biochar, and Ottawa sand as a control media. The second phase involved chemical stabilization treatment (via sorption), using the most effective sorbent identified in the first phase, followed by solidification of two soils from PFAS-contaminated sites. Physical solidification was achieved by adding cement as a binding agent. Results from the first phase (sorption experiments) indicated that GAC was slightly more successful than the other sorbents in sorption performance for a 3000 µg/L solution containing a mixture of the six selected PFAS analytes (500 µg/L concentration each of shorter- and longer-chain alkyl acids), and was the only sorbent used in the second phase of this study. While the GAC, activated carbon-clay blend, and modified clay sorbents showed similar sorption performance for the longer chain analytes tested, both the activated carbon-clay blend and modified clay, exhibited slightly less sorptive capacity than GAC for the shorter-chain alkyl acids. Immobilization effectiveness was evaluated by soil leachability testing using Environmental Protection Agency (EPA) Method 1312, Synthetic Precipitation Leaching Procedure (SPLP) on the samples collected from two PFAS-contaminated sites. For the majority of the PFAS soil analytes, the addition of GAC sorbent (chemical stabilization) substantially reduced the leachability of PFAS compounds from the contaminated soil samples, and the addition of cement as a physical binding agent (solidification) further decreased leachability for a few of the PFAS compounds. Overall immobilization of PFAS analytes that were detectable in the leachate from two PFAS contaminated soils ranged from 87.1% to 99.9%. Therefore, it is reasonable to consider that the laboratory testing results presented here may have application to further pilot or limited field-scale studies within a broader suite of PFAS-contaminated site treatment options that are currently available for treating PFAS contaminated soils.


Asunto(s)
Fluorocarburos , Contaminantes del Suelo , Arcilla , Contaminación Ambiental , Fluorocarburos/análisis , Suelo , Contaminantes del Suelo/análisis
2.
J Hazard Mater ; 424(Pt C): 127490, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34740156

RESUMEN

In this study, the feasibility of promoting microbially induced carbonate precipitation (MICP) in mine waste piles by using an environmental bacterial enrichment is explored, with goals to reduce metals and acid leaching. MICP has been explored for remediation applications and stabilization of mine waste. Here, we utilize a native bacterial enrichment to promote MICP on seven mine waste samples with variability in acid production and extent of toxic metal leaching. During fifteen applications of MICP solutions and bacteria on waste rock in bench-scale columns, calcium carbonate formed on grain surfaces within all waste samples, though microscopy revealed uneven distribution of CaCO3 coating. The effluent from acid-producing wastes increased in pH during MICP treatment. MICP performance was evaluated with humidity cell and synthetic precipitation leaching procedure (SPLP) tests. Leaching tests revealed reductions in Cd, Pb and Zn concentrations in leachate of all but one sample, mixed results for Cu, and As increasing in all but one leachate sample after treatment. MICP technology has potential for coating mine waste and reducing release of acid and some metals. This study provides a laboratory assessment of MICP feasibility for stabilizing mine waste in situ and mitigating release of toxic metals into the environment.


Asunto(s)
Carbonato de Calcio , Carbonatos , Bacterias , Metales
3.
Sustainability ; 10(10): 1-19, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30607262

RESUMEN

To limit effluent impacts on eutrophication in receiving waterbodies, a small community water resource recovery facility (WRRF) upgraded their conventional activated sludge treatment process for biological nutrient removal, and considered enhanced primary settling and anaerobic digestion (AD) with co-digestion of high strength organic waste (HSOW). The community initiated the resource recovery hub concept with the intention of converting an energy-consuming wastewater treatment plant into a facility that generates energy and nutrients and reuses water. We applied life cycle assessment and life cycle cost assessment to evaluate the net impact of the potential conversion. The upgraded WRRF reduced eutrophication impacts by 40 percent compared to the legacy system. Other environmental impacts such as global climate change potential (GCCP) and cumulative energy demand (CED) were strongly affected by AD and composting assumptions. The scenario analysis showed that HSOW co-digestion with energy recovery can lead to reductions in GCCP and CED of 7 and 108 percent, respectively, for the upgraded WRRF (high feedstock-base AD performance scenarios) relative to the legacy system. The cost analysis showed that using the full digester capacity and achieving high digester performance can reduce the life cycle cost of WRRF upgrades by 15 percent over a 30-year period.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA