Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Toxicol Pathol ; 51(7-8): 470-481, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38288963

RESUMEN

Toxicogenomic technologies query the genome, transcriptome, proteome, and the epigenome in a variety of toxicological conditions. Due to practical considerations related to the dynamic range of the assays, sensitivity, cost, and technological limitations, transcriptomic approaches are predominantly used in toxicogenomics. Toxicogenomics is being used to understand the mechanisms of toxicity and carcinogenicity, evaluate the translational relevance of toxicological responses from in vivo and in vitro models, and identify predictive biomarkers of disease and exposure. In this session, a brief overview of various transcriptomic technologies and practical considerations related to experimental design was provided. The advantages of gene network analyses to define mechanisms were also discussed. An assessment of the utility of toxicogenomic technologies in the environmental and pharmaceutical space showed that these technologies are being increasingly used to gain mechanistic insights and determining the translational relevance of adverse findings. Within the environmental toxicology area, there is a broader regulatory consideration of benchmark doses derived from toxicogenomics data. In contrast, these approaches are mainly used for internal decision-making in pharmaceutical development. Finally, the development and application of toxicogenomic signatures for prediction of apical endpoints of regulatory concern continues to be area of intense research.


Asunto(s)
Hígado , Toxicogenética , Perfilación de la Expresión Génica , Proteómica , Transcriptoma
2.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34884436

RESUMEN

Cancer therapies targeting the vascular endothelial growth factor (VEGF) signaling pathway can lead to renal damage by disrupting the glomerular ultrafiltration apparatus. The objective of the current study was to identify sensitive biomarkers for VEGF inhibition-induced glomerular changes in rats. Male Sprague-Dawley rats were administered an experimental VEGF receptor (VEGFR) inhibitor, ABT-123, for seven days to investigate the correlation of several biomarkers with microscopic and ultrastructural changes. Glomeruli obtained by laser capture microdissection were also subjected to gene expression analysis to investigate the underlying molecular events of VEGFR inhibition in glomerulus. ABT-123 induced characteristic glomerular ultrastructural changes in rats, including fusion of podocyte foot processes, the presence of subendothelial electron-dense deposits, and swelling and loss of fenestrations in glomerular endothelium. The subtle morphological changes cannot be detected with light microscopy or by changes in standard clinical chemistry and urinalysis. However, urinary albumin increased 44-fold as early as Day three. Urinary ß2-microglobulin levels were also increased. Other urinary biomarkers that are typically associated with tubular injury were not significantly impacted. Such patterns in urinary biomarkers can provide valuable diagnostic insight to VEGF inhibition therapy-induced glomeruli injuries.


Asunto(s)
Enfermedades Renales/orina , Inhibidores de Proteínas Quinasas/efectos adversos , Transducción de Señal/efectos de los fármacos , Microglobulina beta-2/orina , Albúminas/metabolismo , Animales , Biomarcadores/orina , Modelos Animales de Enfermedad , Enfermedades Renales/inducido químicamente , Enfermedades Renales/metabolismo , Captura por Microdisección con Láser , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
Regul Toxicol Pharmacol ; 96: 18-29, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29679677

RESUMEN

Toxicogenomics held great promise as an approach to enable early detection of toxicities induced by xenobiotics; however, there remain questions regarding the impact of the discipline on pharmaceutical nonclinical safety assessment. To understand the current state of toxicogenomics in the sector, an industry group surveyed companies to determine the frequency of toxicogenomics use in in vivo studies at various stages of drug discovery and development and to assess how toxicogenomics use has evolved over time. Survey data were compiled during 2016 from thirteen pharmaceutical companies. Toxicogenomic analyses were infrequently conducted in the development phase and when performed were done to address specific mechanistic questions. Prior to development, toxicogenomics use was more frequent; however, there were significant differences in approaches among companies. Across all phases, gaining mechanistic insight was the most frequent reason cited for pursing toxicogenomics with few companies using toxicogenomics to predict toxicities. These data were consistent with the commentary submitted in response to survey questions asking companies to describe the evolution of their toxicogenomics strategy. Overall, these survey data indicate that toxicogenomics is not widely used as a predictive tool in the pharmaceutical industry but is used regularly by some companies and serves a broader role in mechanistic investigations and as a complement to other technologies.


Asunto(s)
Evaluación Preclínica de Medicamentos/efectos adversos , Industria Farmacéutica , Toxicogenética , Animales , Humanos
4.
Chem Res Toxicol ; 29(4): 473-504, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-26588328

RESUMEN

Attrition due to nonclinical safety represents a major issue for the productivity of pharmaceutical research and development (R&D) organizations, especially during the compound optimization stages of drug discovery and the early stages of clinical development. Focusing on decreasing nonclinical safety-related attrition is not a new concept, and various approaches have been experimented with over the last two decades. Front-loading testing funnels in Discovery with in vitro toxicity assays designed to rapidly identify unfavorable molecules was the approach adopted by most pharmaceutical R&D organizations a few years ago. However, this approach has also a non-negligible opportunity cost. Hence, significant refinements to the "fail early, fail often" paradigm have been proposed recently to reflect the complexity of accurately categorizing compounds with early data points without taking into account other important contextual aspects, in particular efficacious systemic and tissue exposures. This review provides an overview of toxicology approaches and models that can be used in pharmaceutical Discovery at the series/lead identification and lead optimization stages to guide and inform chemistry efforts, as well as a personal view on how to best use them to meet nonclinical safety-related attrition objectives consistent with a sustainable pharmaceutical R&D model. The scope of this review is limited to small molecules, as large molecules are associated with challenges that are quite different. Finally, a perspective on how several emerging technologies may impact toxicity evaluation is also provided.


Asunto(s)
Descubrimiento de Drogas/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Pruebas de Toxicidad/métodos , Animales , Biología Computacional/métodos , Simulación por Computador , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/diagnóstico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Modelos Biológicos , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Proteínas/metabolismo
5.
Toxicol Mech Methods ; 23(7): 479-90, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23581556

RESUMEN

INTRODUCTION: In vitro assays using rat and human hepatocytes are used for hepatotoxicity studies; however, in vitro methods are less established for canine hepatocytes. In particular, little is known about the effects of plating and culture on canine hepatocytes. The goal of this study was to conduct a descriptive analysis of an in vitro canine hepatocyte system to evaluate its utility and limitations. The study objectives were to determine if canine hepatocytes shipped in suspension or pre-plated were transcriptomically different from one another and their liver of origin, and to understand temporal transcriptomic changes. MATERIALS AND METHODS: Frozen canine liver samples were delivered on dry ice; hepatocytes from these livers were delivered in a cell/media suspension (S) or pre-plated (P). Hepatocytes were harvested at arrival and after up to 120 hr of culture in naïve media, or after 48 hr treatment with prototypical enzyme inducing xenobiotics (phenobarbital or rifampin). RESULTS: A global transcriptomic comparison between liver and hepatocyte preparations indicated that the transcriptome was affected post-plating; transporters and genes involved in xenobiotic metabolism were generally down-regulated. Basal mRNA levels of CYP3A12 and CYP2B11 decreased temporally; after 120 hr CYP3A12 levels decreased by 1000-fold. CYP3A12 and CYP2B11 induction after phenobarbital or rifampin treatment was robust in both cell types but stronger in S cells. CONCLUSIONS: These results indicate that S and P hepatocytes cultured under the current conditions are appropriate for specific in vitro tests. Further characterization of endpoints should be conducted for a thorough understanding of the model's limitations.


Asunto(s)
Hepatocitos/citología , Hígado/citología , Transcriptoma , Animales , Secuencia de Bases , Criopreservación , Sistema Enzimático del Citocromo P-450/metabolismo , Cartilla de ADN , Perros , Hepatocitos/enzimología , Hepatocitos/metabolismo , Isoenzimas/metabolismo , Hígado/enzimología , Hígado/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
J Pharmacol Toxicol Methods ; 123: 107468, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37553032

RESUMEN

In drug discovery, during the lead optimization and candidate characterization stages, novel small molecules are frequently evaluated in a battery of in vitro pharmacology assays to identify potential unintended, off-target interactions with various receptors, transporters, ion channels, and enzymes, including kinases. Furthermore, these screening panels may also provide utility at later stages of development to provide a mechanistic understanding of unexpected safety findings. Here, we present a compendium of the most likely functional and pathological outcomes associated with interaction(s) to a panel of 95 kinases based on an extensive curation of the scientific literature. This panel of kinases was designed by AbbVie based on safety-related data extracted from the literature, as well as from over 20 years of institutional knowledge generated from discovery efforts. For each kinase, the scientific literature was reviewed using online databases and the most often reported functional and pathological effects were summarized. This work should serve as a practical guide for small molecule drug discovery scientists and clinical investigators to predict and/or interpret adverse effects related to pharmacological interactions with these kinases.


Asunto(s)
Descubrimiento de Drogas , Bases de Datos Factuales
7.
Front Genet ; 13: 1078050, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36733943

RESUMEN

The evaluation of toxicity in preclinical species is important for identifying potential safety liabilities of experimental medicines. Toxicology studies provide translational insight into potential adverse clinical findings, but data interpretation may be limited due to our understanding of cross-species biological differences. With the recent technological advances in sequencing and analyzing omics data, gene expression data can be used to predict cross species biological differences and improve experimental design and toxicology data interpretation. However, interpreting the translational significance of toxicogenomics analyses can pose a challenge due to the lack of comprehensive preclinical gene expression datasets. In this work, we performed RNA-sequencing across four preclinical species/strains widely used for safety assessment (CD1 mouse, Sprague Dawley rat, Beagle dog, and Cynomolgus monkey) in ∼50 relevant tissues/organs to establish a comprehensive preclinical gene expression body atlas for both males and females. In addition, we performed a meta-analysis across the large dataset to highlight species and tissue differences that may be relevant for drug safety analyses. Further, we made these databases available to the scientific community. This multi-species, tissue-, and sex-specific transcriptomic database should serve as a valuable resource to enable informed safety decision-making not only during drug development, but also in a variety of disciplines that use these preclinical species.

8.
Arch Toxicol ; 85(5): 513-23, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21046364

RESUMEN

Dibromoacetic acid (DBAA), a by-product formed during disinfection of drinking water, alters spermatogenesis in rats through defective spermiation. The mechanism underlying this toxicity is not fully understood. In this study, gene expression data generated with microarrays from testes were used to generate a mechanistic understanding of DBAA-induced testicular toxicity. Testes were collected from male Sprague-Dawley rats dosed orally for 1 and 4 days with DBAA at 250 mg/kg/day. At both time points, DBAA administration induced delayed spermiation in Stage X tubules and regulated the expression of a small number of genes, including a mild but consistent downregulation of cytochrome P450c17α (CYP17) mRNA, an enzyme expressed by Leydig cells and essential for the production of testicular androgens. Downregulation of CYP17 was confirmed at the protein level and its biological significance was substantiated by demonstrating reduced testicular testosterone levels in DBAA-dosed rats. Furthermore, testosterone production by human chorionic gonadotrophin (hCG)-stimulated rat primary Leydig cells was reduced following treatment with 100 µM DBAA. Collectively, these results indicate that DBAA can directly target rat Leydig cells and downregulate testicular CYP17 expression with a resulting decreased testicular testosterone production. This disruption of testicular steroidogenesis is likely to contribute to the mechanism of failed spermiation observed in rats following exposure to DBAA.


Asunto(s)
Acetatos/toxicidad , Esteroide 17-alfa-Hidroxilasa/metabolismo , Enfermedades Testiculares/patología , Testículo/patología , Animales , Gonadotropina Coriónica/metabolismo , Regulación hacia Abajo , Perfilación de la Expresión Génica , Humanos , Células Intersticiales del Testículo/metabolismo , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Espermatogénesis/efectos de los fármacos , Esteroide 17-alfa-Hidroxilasa/genética , Enfermedades Testiculares/inducido químicamente , Testosterona/biosíntesis
9.
Int J Mol Sci ; 12(4): 2502-17, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21731455

RESUMEN

Blood is an ideal tissue for the identification of novel genomic biomarkers for toxicity or efficacy. However, using blood for transcriptomic profiling presents significant technical challenges due to the transcriptomic changes induced by ex vivo handling and the interference of highly abundant globin mRNA. Most whole blood RNA stabilization and isolation methods also require significant volumes of blood, limiting their effective use in small animal species, such as rodents. To overcome these challenges, a QIAzol-based RNA stabilization and isolation method (QSI) was developed to isolate sufficient amounts of high quality total RNA from 25 to 500 µL of rat whole blood. The method was compared to the standard PAXgene Blood RNA System using blood collected from rats exposed to saline or lipopolysaccharide (LPS). The QSI method yielded an average of 54 ng total RNA per µL of rat whole blood with an average RNA Integrity Number (RIN) of 9, a performance comparable with the standard PAXgene method. Total RNA samples were further processed using the NuGEN Ovation Whole Blood Solution system and cDNA was hybridized to Affymetrix Rat Genome 230 2.0 Arrays. The microarray QC parameters using RNA isolated with the QSI method were within the acceptable range for microarray analysis. The transcriptomic profiles were highly correlated with those using RNA isolated with the PAXgene method and were consistent with expected LPS-induced inflammatory responses. The present study demonstrated that the QSI method coupled with NuGEN Ovation Whole Blood Solution system is cost-effective and particularly suitable for transcriptomic profiling of minimal volumes of whole blood, typical of those obtained with small animal species.


Asunto(s)
Biomarcadores/sangre , Perfilación de la Expresión Génica/métodos , Animales , Análisis por Conglomerados , Perfilación de la Expresión Génica/economía , Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN/sangre , ARN/aislamiento & purificación , Estabilidad del ARN/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transcriptoma
10.
Int J Mol Sci ; 11(11): 4697-714, 2010 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21151465

RESUMEN

Idiosyncratic drug reactions (IDRs) are poorly understood, unpredictable, and not detected in preclinical studies. Although the cause of these reactions is likely multi-factorial, one hypothesis is that an underlying inflammatory state lowers the tolerance to a xenobiotic. Previously used in an inflammation IDR model, bacterial lipopolysaccharide (LPS) is heterogeneous in nature, making development of standardized testing protocols difficult. Here, the use of rat tumor necrosis factor-α (TNFα) to replace LPS as an inflammatory stimulus was investigated. Sprague-Dawley rats were treated with separate preparations of LPS or TNFα, and hepatic transcriptomic effects were compared. TNFα showed enhanced consistency at the transcriptomic level compared to LPS. TNFα and LPS regulated similar biochemical pathways, although LPS was associated with more robust inflammatory signaling than TNFα. Rats were then codosed with TNFα and trovafloxacin (TVX), an IDR-associated drug, and evaluated by liver histopathology, clinical chemistry, and gene expression analysis. TNFα/TVX induced unique gene expression changes that clustered separately from TNFα/levofloxacin, a drug not associated with IDRs. TNFα/TVX cotreatment led to autoinduction of TNFα resulting in potentiation of underlying gene expression stress signals. Comparison of TNFα/TVX and LPS/TVX gene expression profiles revealed similarities in the regulation of biochemical pathways. In conclusion, TNFα could be used in lieu of LPS as an inflammatory stimulus in this model of IDRs.


Asunto(s)
Antiinfecciosos/toxicidad , Fluoroquinolonas/toxicidad , Lipopolisacáridos/toxicidad , Hígado/efectos de los fármacos , Naftiridinas/toxicidad , Factor de Necrosis Tumoral alfa/toxicidad , Animales , Antiinfecciosos/antagonistas & inhibidores , Interacciones Farmacológicas , Fluoroquinolonas/antagonistas & inhibidores , Inflamación/inducido químicamente , Inflamación/metabolismo , Lipopolisacáridos/antagonistas & inhibidores , Hígado/metabolismo , Naftiridinas/antagonistas & inhibidores , Ratas , Ratas Sprague-Dawley , Transcriptoma , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
11.
Nat Rev Drug Discov ; 19(2): 131-148, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31748707

RESUMEN

Drug-induced liver injury (DILI) is a patient-specific, temporal, multifactorial pathophysiological process that cannot yet be recapitulated in a single in vitro model. Current preclinical testing regimes for the detection of human DILI thus remain inadequate. A systematic and concerted research effort is required to address the deficiencies in current models and to present a defined approach towards the development of new or adapted model systems for DILI prediction. This Perspective defines the current status of available models and the mechanistic understanding of DILI, and proposes our vision of a roadmap for the development of predictive preclinical models of human DILI.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Modelos Animales de Enfermedad , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Humanos , Valor Predictivo de las Pruebas
12.
Toxicol Lett ; 186(1): 22-31, 2009 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-18996174

RESUMEN

Hepatotoxicity is a common cause of failure in drug discovery and development and is also frequently the source of adverse drug reactions. Therefore, a better prediction, characterization and understanding of drug-induced hepatotoxicity could result in safer drugs and a more efficient drug discovery and development process. Among the 'omics technologies, toxicogenomics (or the use of gene expression profiling in toxicology) represents an attractive approach to predict toxicity and to gain a mechanistic understanding of toxic changes. In this review, we illustrate, using selected examples, how toxicogenomics can be applied to investigate drug-induced hepatotoxicity in animal models and in vitro systems. In general, this technology can not only improve the discipline of toxicology and risk assessment but also represent an extremely effective, hypothesis-generating alternative to rapidly understand mechanisms of hepatotoxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Descubrimiento de Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Hígado/efectos de los fármacos , Toxicogenética/métodos , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hígado/metabolismo , Hígado/patología
13.
Front Big Data ; 2: 25, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-33693348

RESUMEN

Most small molecule drugs interact with unintended, often unknown, biological targets and these off-target interactions may lead to both preclinical and clinical toxic events. Undesired off-target interactions are often not detected using current drug discovery assays, such as experimental polypharmacological screens. Thus, improvement in the early identification of off-target interactions represents an opportunity to reduce safety-related attrition rates during preclinical and clinical development. In order to better identify potential off-target interactions that could be linked to predictable safety issues, a novel computational approach to predict safety-relevant interactions currently not covered was designed and evaluated. These analyses, termed Off-Target Safety Assessment (OTSA), cover more than 7,000 targets (~35% of the proteome) and > 2,46,704 preclinical and clinical alerts (as of January 20, 2019). The approach described herein exploits a highly curated training set of >1 million compounds (tracking >20 million compound-structure activity relationship/SAR data points) with known in vitro activities derived from patents, journals, and publicly available databases. This computational process was used to predict both the primary and secondary pharmacological activities for a selection of 857 diverse small molecule drugs for which extensive secondary pharmacology data are readily available (456 discontinued and 401 FDA approved). The OTSA process predicted a total of 7,990 interactions for these 857 molecules. Of these, 3,923 and 4,067 possible high-scoring interactions were predicted for the discontinued and approved drugs, respectively, translating to an average of 9.3 interactions per drug. The OTSA process correctly identified the known pharmacological targets for >70% of these drugs, but also predicted a significant number of off-targets that may provide additional insight into observed in vivo effects. About 51.5% (2,025) and 22% (900) of these predicted high-scoring interactions have not previously been reported for the discontinued and approved drugs, respectively, and these may have a potential for repurposing efforts. Moreover, for both drug categories, higher promiscuity was observed for compounds with a MW range of 300 to 500, TPSA of ~200, and clogP ≥7. This computation also revealed significantly lower promiscuity (i.e., number of confirmed off-targets) for compounds with MW > 700 and MW<200 for both categories. In addition, 15 internal small molecules with known off-target interactions were evaluated. For these compounds, the OTSA framework not only captured about 56.8% of in vitro confirmed off-target interactions, but also identified the right pharmacological targets for 14 compounds as one of the top scoring targets. In conclusion, the OTSA process demonstrates good predictive performance characteristics and represents an additional tool with utility during the lead optimization stage of the drug discovery process. Additionally, the computed physiochemical properties such as clogP (i.e., lipophilicity), molecular weight, pKa and logS (i.e., solubility) were found to be statistically different between the approved and discontinued drugs, but the internal compounds were close to the approved drugs space in most part.

14.
J Pharmacol Exp Ther ; 327(3): 634-44, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18801949

RESUMEN

Diclofenac (DCLF) is a nonsteroidal anti-inflammatory drug that is associated with idiosyncratic adverse drug reactions in humans. Previous studies revealed a crucial role for intestine-derived bacteria and/or lipopolysaccharide (LPS) in DCLF-induced hepatotoxicity. We further explored this mechanism by conducting gene expression analysis of livers from rats treated with a hepatotoxic dose of DCLF (100 mg/kg) with or without oral antibiotic pretreatment. Genes for which expression was altered by DCLF were divided into two groups: genes with expression altered by antibiotic treatment and those unaffected by antibiotics. The former group of genes represented the ones for which DCLF-induced alterations in expression depended on intestinal bacteria. The expression of the latter group of genes was probably changed by direct effect of DCLF rather than by intestinal bacteria. Functional analysis of genes in the former group revealed LPS-related signaling, further suggesting a role for bacterial endotoxin in the liver injury. Functional analysis of genes in the latter group revealed changes in signaling pathways related to inflammation, hypoxia, oxidative stress, the aryl hydrocarbon receptor, and peroxisome proliferator-activated receptor alpha. Neutrophil depletion failed to protect from DCLF-induced hepatotoxicity, suggesting that intestinal bacteria contribute to liver injury in a neutrophil-independent manner. Hypoxia occurred in the livers of rats treated with DCLF, and hypoxia in vitro rendered hepatocytes sensitive to DCLF-induced cytotoxicity. These results support the hypothesis that intestinal bacteria are required for DCLF-induced hepatotoxicity and suggest that hypoxia plays an important role in the pathogenesis.


Asunto(s)
Bacterias/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Diclofenaco/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Intestinos/microbiología , Hígado/metabolismo , Animales , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/microbiología , Diclofenaco/administración & dosificación , Diclofenaco/efectos adversos , Quimioterapia Combinada , Perfilación de la Expresión Génica , Hipoxia/complicaciones , Hígado/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
15.
J Pharmacol Exp Ther ; 324(2): 507-16, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18025247

RESUMEN

Acetyl CoA carboxylase (ACC) 2, which catalyzes the carboxylation of acetyl-CoA to form malonyl-CoA, has been identified as a potential target for type 2 diabetes and obesity. Small-molecule inhibitors of ACC2 would be expected to reduce de novo lipid synthesis and increase lipid oxidation. Treatment of ob/ob mice with compound A-908292 (S) ({(S)-3-[2-(4-isopropoxy-phenoxy)-thiazol-5-yl]-1-methyl-prop-2-ynyl}-carbamic acid methyl ester), a small-molecule inhibitor with an IC(50) of 23 nM against ACC2, resulted in a reduction of serum glucose and triglyceride levels. However, compound A-875400 (R) ({(R)-3-[2-(4-isopropoxy-phenoxy)-thiazol-5-yl]-1-methyl-prop-2-ynyl}-carbamic acid methyl ester), an inactive enantiomer of A-908292 (S) with approximately 50-fold less activity against ACC2, also caused a similar reduction in glucose and triglycerides, suggesting that the glucose-lowering effects in ob/ob mice may be mediated by other metabolic pathways independent of ACC2 inhibition. To characterize the pharmacological activity of these experimental compounds at a transcriptional level, rats were orally dosed for 3 days with either A-908292 (S) or A-875400 (R), and gene expression analysis was performed. Gene expression analysis of livers showed that treatment with A-908292 (S) or A-875400 (R) resulted in gene expression profiles highly similar to known peroxisome proliferator-activated receptor (PPAR)-alpha activators. The results suggest that, in vivo, both A-908292 (S) and A-875400 (R) stimulated the PPAR-alpha-dependent signaling pathway. These results were further supported by both an in vitro genomic evaluation using rat hepatocytes and immunohistochemical evaluation using 70-kDa peroxisomal membrane protein. Overall, the gene expression analysis suggests a plausible mechanism for the similar pharmacological findings with active and inactive enantiomers of an ACC2 inhibitor.


Asunto(s)
Acetil-CoA Carboxilasa/antagonistas & inhibidores , Regulación Enzimológica de la Expresión Génica/fisiología , PPAR alfa/metabolismo , Transducción de Señal/fisiología , Acetil-CoA Carboxilasa/metabolismo , Animales , Inhibidores Enzimáticos/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Hepatocitos , Humanos , Ratones , Ratones Obesos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
16.
Drug Metab Dispos ; 36(2): 223-33, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17967932

RESUMEN

Primary human hepatocytes (PHH) are a main instrument in drug metabolism research and in the prediction of drug-induced phase I/II enzyme induction in humans. The HepG2 liver-derived cell line is commonly used as a surrogate for human hepatocytes, but its use in absorption, distribution, metabolism, and excretion and toxicity studies can be limited because of lowered basal levels of metabolizing enzymes. Despite the widespread use of HepG2 cells, a comparison of their transcriptomes with those of PHH has not been well characterized. In this study, microarray analysis was conducted to ascertain the differences and similarities in mRNA expression between HepG2 cells and human hepatocytes before and after exposure to a panel of fluoroquinolone compounds. Comparison of the naive HepG2 cell and PHH transcriptomes revealed a substantial number of basal gene expression differences. When HepG2 cells were dosed with a series of fluoroquinolones, trovafloxacin (TVX), which has been associated with human idiosyncratic hepatotoxicity, induced substantially more gene expression changes than the other quinolones, similar to previous observations with PHH. Although TVX-treatment resulted in many gene expression differences between HepG2 cells and PHH, there were also a number of TVX-induced commonalities, including genes involved in RNA processing and mitochondrial function. Taken together, these results provide insight for interpretation of results from drug metabolism and toxicity studies conducted with HepG2 cells in lieu of PHH and could provide further insight into the mechanistic evaluation of TVX-induced hepatotoxicity.


Asunto(s)
Antiinfecciosos/farmacología , Fluoroquinolonas/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Línea Celular , Células Cultivadas , Perfilación de la Expresión Génica , Hepatocitos/metabolismo , Humanos
17.
Drug Metab Dispos ; 36(3): 500-7, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18096673

RESUMEN

Drug-drug interactions involving induction of cytochrome P450 enzymes (P450s) can lead to loss of drug efficacy. Certain drugs, particularly those used to treat mycobacterial and human immunodeficiency virus (HIV) infections, are especially prone to induce P450s. During studies to examine drug-interaction potential of compounds in cultured human hepatocytes, exposure with (S)-1-[(1S,3S,4S)-4-[(S)-2-(3-benzyl-2-oxo-imidazolidin-1-yl)-3,3-dimethyl-butyrylamino]-3-hydroxy-5-phenyl-1-(4-pyridin-2-yl-benzyl)-pentylcarbamoyl]-2,2-dimethyl-propyl-carbamic acid methyl ester (A-792611), a novel HIV protease inhibitor (PI) previously under investigation for the treatment of HIV infection, resulted in significant down-regulation of constitutive CYP3A4 expression. Furthermore, coadministration of A-792611 was found to attenuate CYP3A4 induction mediated by known inducers rifampin and efavirenz. A-792611 also attenuated the rifampin and ritonavir-mediated activation of the human pregnane X receptor (PXR) in luciferase reporter assays. Microarray analysis on cultured human hepatocytes revealed that A-792611 treatment down-regulated the expression of PXR target genes CYP3A4, CYP2B6, CYP2C8, and CYP2C9, whereas there was a lack of inductive effect observed in treated rat hepatocytes. A-792611 did not interact with other ligand-activated nuclear receptors that regulate P450 expression such as constitutive androstane receptor, farnesoid X receptor, vitamin D receptor, and peroxisome proliferator-activated receptor alpha. These data suggest that A-792611 is a functional and effective human PXR inhibitor. Among the class of HIV-PIs, which are typically PXR activators, A-792611 seems to have a unique property for PXR antagonism and could be a useful tool for studying nuclear receptor pathway regulation.


Asunto(s)
Dipéptidos/farmacología , Inhibidores de la Proteasa del VIH/farmacología , Piridinas/farmacología , Receptores de Esteroides/antagonistas & inhibidores , Animales , Hidrocarburo de Aril Hidroxilasas/biosíntesis , Hidrocarburo de Aril Hidroxilasas/genética , Células Cultivadas , Receptor de Androstano Constitutivo , Citocromo P-450 CYP2B6 , Citocromo P-450 CYP3A/biosíntesis , Citocromo P-450 CYP3A/genética , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Hepatocitos/metabolismo , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidorreductasas N-Desmetilantes/biosíntesis , Oxidorreductasas N-Desmetilantes/genética , PPAR alfa/metabolismo , Receptor X de Pregnano , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Receptores de Calcitriol/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Ritonavir/farmacología , Factores de Transcripción/metabolismo , Activación Transcripcional/efectos de los fármacos
18.
Neurosci Res ; 60(3): 266-74, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18164502

RESUMEN

The nicotinic acetylcholine receptors (nAChRs) play critical roles in neuronal transmission and modulation. Among the diverse nAChRs, the alpha7 subtype has been considered as a potential therapeutic target for treating cognitive deficits associated with neuropsychiatric and neurodegenerative diseases. Although a number of mechanisms including neurotransmitter and biochemical effects linking alpha7 nAChR activation and cognitive function are beginning to be described, the underlying molecular processes especially following repeated administration remain unclear. To address this, we have performed gene expression analysis in rats treated with nicotine and a selective alpha7 nAChR agonist, PNU-282987. Our results showed significant overlap in gene expression changes induced by PNU-282987 and nicotine, suggesting convergent pathways triggered by these compounds. Treatment with nicotine also resulted in regulation of a number of genes that were not regulated by PNU-282987, consistent with the interaction of nicotine with other nAChRs beyond the alpha7 subtype. Interestingly, these gene expression changes were observed 24 h post-dose, suggesting that both nicotine and PNU-282987 cause protracted changes in gene expression. Overall, our results identify gene expression changes that may contribute to further defining the roles of nAChR activation in cognitive function.


Asunto(s)
Perfilación de la Expresión Génica , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Receptores Nicotínicos/fisiología , Animales , Benzamidas/farmacología , Compuestos Bicíclicos con Puentes/farmacología , Ratas , Ratas Sprague-Dawley , Transcripción Genética/efectos de los fármacos , Transcripción Genética/fisiología , Receptor Nicotínico de Acetilcolina alfa 7
19.
Methods Mol Biol ; 460: 23-44, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18449481

RESUMEN

Microarray technologies can be used to generate massive amounts of gene expression information as an initial step to decipher the molecular mechanisms of toxicologic changes. Identifying genes whose expression is associated with specific toxic end points is an initial step in predicting, characterizing, and understanding toxicity. Analysis of gene function and the chronology of gene expression changes represent additional methods to generate hypotheses of the mechanisms of toxicity. Follow-up experiments are typically required to confirm or refute hypotheses derived from toxicogenomic data. Understanding the mechanism of toxicity for a compound is a critical step in forming a rational plan for developing counterscreens for toxicity and for increasing productivity of research and development while decreasing the risk of late-stage failure in pharmaceutical development.


Asunto(s)
Regulación de la Expresión Génica , Genómica , Pruebas de Toxicidad , Toxicología , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas , Corazón/efectos de los fármacos , Humanos , Hepatopatías/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo
20.
Toxicol Lett ; 176(2): 138-48, 2008 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-18164877

RESUMEN

Preclinical pharmacokinetic (PK) evaluations are typically conducted in rats before in vivo toxicologic evaluations. It is unclear how the serial bleeding procedures in PK studies affect tissue homeostasis or sensitivity to toxicity. In this study, our objective was to evaluate the impact of serial bleeding on the transcriptome of various major tissues (kidney, heart, liver, spleen) and their response to two well-characterized molecules, doxorubicin and cisplatin. Rats received single i.v. injections of saline, doxorubicin (8 mg/kg) or cisplatin (4 mg/kg). In each group, half of the rats were serially bled by tail vein. Serial bleeding was associated with slight decreases of red blood cell parameters, but did not result in histopathological changes or in increased sensitivity to doxorubicin and cisplatin toxicity based on clinical pathology and histopathology evaluation. In addition, serial bleeding did not induce significant gene expression changes in either vehicle- or compound-treated rats when compared to their respective control groups. Overall, these results suggest that the serial bleeding procedure used in PK studies in our institution minimally affects the tissue response to toxicants, and support the use of these studies to generate early toxicology data in drug discovery.


Asunto(s)
Cisplatino/toxicidad , Doxorrubicina/toxicidad , Perfilación de la Expresión Génica/métodos , Flebotomía/métodos , Animales , Proteínas Sanguíneas/análisis , Cisplatino/administración & dosificación , Doxorrubicina/administración & dosificación , Recuento de Eritrocitos , Expresión Génica/efectos de los fármacos , Corazón/efectos de los fármacos , Hematócrito , Hemoglobinas/análisis , Inyecciones Intravenosas , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Recuento de Leucocitos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Miocardio/metabolismo , Miocardio/patología , Patología Clínica/métodos , Ratas , Ratas Sprague-Dawley , Análisis de Regresión , Bazo/efectos de los fármacos , Bazo/metabolismo , Bazo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA