Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
NPJ Vaccines ; 3: 22, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29900011

RESUMEN

Amebiasis caused by Entamoeba histolytica is the third leading cause of parasitic mortality globally, with some 100,000 deaths annually, primarily among young children. Protective immunity to amebiasis is associated with fecal IgA and IFN-γ in humans; however, no vaccine exists. We have previously identified recombinant LecA as a potential protective vaccine antigen. Here we describe the development of a stable, manufacturable PEGylated liposomal adjuvant formulation containing two synthetic Toll-like receptor (TLR) ligands: GLA (TLR4) and 3M-052 (TLR7/8). The liposomes stimulated production of monocyte/macrophage chemoattractants MCP-1 and Mip-1ß, and Th1-associated cytokines IL-12p70 and IFN-γ from human whole blood dependent on TLR ligand composition and dose. The liposomes also demonstrated acceptable physicochemical compatibility with the recombinant LecA antigen. Whereas mice immunized with LecA and GLA-liposomes demonstrated enhanced antigen-specific fecal IgA titers, mice immunized with LecA and 3M-052-liposomes showed a stronger Th1 immune profile. Liposomes containing GLA and 3M-052 together elicited both LecA-specific fecal IgA and Th1 immune responses. Furthermore, the quality of the immune response could be modulated with modifications to the liposomal formulation based on PEG length. Compared to subcutaneous administration, the optimized liposome adjuvant composition with LecA antigen administered intranasally resulted in significantly enhanced fecal IgA, serum IgG2a, as well as systemic IFN-γ and IL-17A levels in mice. The optimized intranasal regimen provided greater than 80% protection from disease as measured by parasite antigen in the colon. This work demonstrates the physicochemical and immunological characterization of an optimized mucosal adjuvant system containing a combination of TLR ligands with complementary activities and illustrates the importance of adjuvant composition and route of delivery to enhance a multifaceted and protective immune response to amebiasis.

2.
Ther Adv Vaccines ; 5(2): 31-38, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28515938

RESUMEN

OBJECTIVES: Several vaccine adjuvants comprise complex nano- or micro-particle formulations, such as oil-in-water emulsions. In order to characterize interactions and compatibility of oil-in-water emulsion adjuvants with protein antigens in vaccines, effective protein characterization methods that can accommodate potential interference from high concentrations of lipid-based particles are needed. METHODS: Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) is a standard protein characterization technique which is affected by the presence of adjuvants such as oil-in-water emulsions. In this article, we investigate variations in SDS-PAGE methods that result in a reduction of adjuvant-induced staining artifacts. We have investigated whether the SDS method or the adjuvant composition were the reason for these artifacts and succeeded in reducing the artifacts with a modified sample preparation and different staining procedures. RESULTS: The best results were obtained by using gold staining or silver staining instead of a Coomassie Blue staining procedure. Moreover, the replacement of the dilution buffer (20% SDS to disrupt emulsion) by alternative detergents such as Tween® 80 and Triton® X-100 removed adjuvant-induced streaking artifacts at the top of the gel. CONCLUSIONS: These methods may be useful for improving characterization approaches of antigen-adjuvant mixtures by SDS-PAGE.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA