Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 524
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biomacromolecules ; 25(4): 2323-2337, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38437165

RESUMEN

Genipin-cross-linked silk fibroin (SF) hydrogel is considered to be biocompatible and mechanically robust. However, its use remains a challenge for in situ forming applications due to its prolonged gelation process. In our attempt to facilitate the in situ fabrication of a genipin-mediated SF hydrogel, alginate dialdehyde (ADA) was utilized as a reinforcement template. Here, SF/ADA-based hydrogels with different compositions were synthesized covalently and ionically. Incorporating ADA into the SF hydrogel increased pore size (44.66-174.66 µm), porosity (61.59-80.40%), and the equilibrium swelling degree (7.60-30.17). Moreover, a wide range of storage modulus and compressive modulus were obtained by adjusting the proportions of SF and ADA networks within the hydrogel. The in vitro cell analysis using preosteoblast cells (MC3T3-E1) demonstrated the cytocompatibility of all hydrogels. Overall, the covalently and ionically cross-linked SF/ADA hydrogel represents a promising solution for in situ forming hydrogels for applications in tissue regeneration.


Asunto(s)
Fibroínas , Hidrogeles , Alginatos , Iridoides , Seda , Ingeniería de Tejidos
2.
Biomacromolecules ; 24(11): 5183-5193, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37906697

RESUMEN

Chitosan (CS)-based scaffolds loaded with Pinus radiata extract bark (PE) and grape seed extract (GSE) were successfully developed for wound dressing applications. The effects of incorporating GSE and PE in CS scaffolds were investigated in relation to their physicochemical and biological properties. All scaffolds exhibited porous structures with the ability to absorb more than 70 times their weight when contacted with blood and phosphate buffer solution. The incorporation of GSE and PE into the CS scaffolds increased their blood absorption ability and degradation rates over time. All scaffolds showed a clotting ability above 95%, with their surfaces being favorable for red blood cell attachment. Both GSE and PE were released from the CS scaffolds in a sustained manner. Scaffolds loaded with GSE and PE inhibited the bacterial activity of S. aureus and E. coli by 40% and 44% after 24 h testing. In vitro cell viability studies demonstrated that all scaffolds were nontoxic to HaCaT cells. Importantly, the addition of GSE and PE further increased cell viability compared to that of the CS scaffold. This study provides a new synthesis method to immobilize GSE and PE on CS scaffolds, enabling the formation of novel material platforms with a high potential for wound dressing applications.


Asunto(s)
Quitosano , Quitosano/química , Staphylococcus aureus , Escherichia coli , Andamios del Tejido/química , Vendajes , Antibacterianos/farmacología , Antibacterianos/química
3.
Biomacromolecules ; 24(7): 2982-2997, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37002864

RESUMEN

Alginate-based hydrogels are a promising class of biomaterials due to their usability, biocompatibility, and high water-binding capacity which is the reason for their broad use in biofabrication. One challenge of these biomaterials is, however, the lack of cell adhesion motifs. This drawback can be overcome by oxidizing alginate to alginate dialdehyde (ADA) and by subsequent cross-linking with gelatin (GEL) to fabricate ADA-GEL hydrogels, which offer improved cell-material interactions. The present work investigates four pharmaceutical grade alginates of different algae sources and their respective oxidized forms regarding their molecular weight and M/G ratio using 1H NMR spectroscopy and gel permeation chromatography. In addition, three different methods for determining the degree of oxidation (% DO) of ADA, including iodometric, spectroscopic, and titration methods, are applied and compared. Furthermore, the aforementioned properties are correlated with the resulting viscosity, degradation behavior, and cell-material interactions to predict the material behavior in vitro and thus choose a suitable alginate for an intended application in biofabrication. In the framework of the present work, easy and practicable detection methods for the investigations of alginate-based bioinks were summarized and shown. In this regard, the success of oxidation of alginate was confirmed by the three aforementioned methods and was further proven by solid-state 13C NMR, for the first time in the literature, that only guluronic acid (G) was attacked during the oxidation, leading to the formation of hemiacetals. Furthermore, it was shown that ADA-GEL hydrogels of alginates with longer G-blocks are more suitable for long-term experiments due to their stability over an incubation period of 21 days, while ADA-GEL hydrogels of alginates with longer mannuronic acid (M)-blocks are more suitable for short-term applications such as sacrificial inks due to their extensive swelling and subsequent loss of shape. Finally, it was proven that the M/G ratio did not show any influence on the biocompatibility or printability of the investigated alginate-based hydrogels. The physicochemical findings provide an alginate library for tailored application in biofabrication.


Asunto(s)
Alginatos , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Alginatos/química , Ácido Glucurónico/química , Materiales Biocompatibles , Hidrogeles/química , Gelatina/química
4.
J Mater Sci Mater Med ; 34(11): 53, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37855952

RESUMEN

In the present study, we investigated commercial dental floss coated with chitosan or chitosan + mesoporous bioactive glass nanoparticles (MBGNs) in order to determine the antimicrobial and mechanical properties of the newly fabricated flosses. Whereas these coatings showed notable ability to inhibit growth of both Gram (+) and Gram (-) bacteria after 24 h, the impact was negligible at 3 h. Furthermore, the tensile strength of the floss was improved by the addition of these layers, making it more durable and effective for cleaning between teeth. We therefore propose enhanced investigations of these composites since they demonstrate enormous potential in promoting oral health.


Asunto(s)
Quitosano , Nanopartículas , Dispositivos para el Autocuidado Bucal , Antibacterianos/farmacología , Vidrio
5.
Int J Mol Sci ; 24(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37894787

RESUMEN

Tendon injuries caused by overuse or age-related deterioration are frequent. Incomplete knowledge of somatic tendon cell biology and their progenitors has hindered interventions for the effective repair of injured tendons. Here, we sought to compare and contrast distinct tendon-derived cell populations: type I and II tendon stem cells (TSCs) and tenocytes (TNCs). Porcine type I and II TSCs were isolated via the enzymatic digestion of distinct membranes (paratenon and endotenon, respectively), while tenocytes were isolated through an explant method. Resultant cell populations were characterized by morphology, differentiation, molecular, flow cytometry, and immunofluorescence analysis. Cells were isolated, cultured, and evaluated in two alternate oxygen concentrations (physiological (2%) and air (21%)) to determine the role of oxygen in cell biology determination within this relatively avascular tissue. The different cell populations demonstrated distinct proliferative potential, morphology, and transcript levels (both for tenogenic and stem cell markers). In contrast, all tendon-derived cell populations displayed multipotent differentiation potential and immunophenotypes (positive for CD90 and CD44). Type II TSCs emerged as the most promising tendon-derived cell population for expansion, given their enhanced proliferative potential, multipotency, and maintenance of a tenogenic profile at early and late passage. Moreover, in all cases, physoxia promoted the enhanced proliferation and maintenance of a tenogenic profile. These observations help shed light on the biological mechanisms of tendon cells, with the potential to aid in the development of novel therapeutic approaches for tendon disorders.


Asunto(s)
Traumatismos de los Tendones , Tendones , Animales , Porcinos , Diferenciación Celular , Células Madre , Traumatismos de los Tendones/terapia , Oxígeno
6.
Small ; 18(12): e2104996, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35102718

RESUMEN

Bioprinting has seen significant progress in recent years for the fabrication of bionic tissues with high complexity. However, it remains challenging to develop cell-laden bioinks exhibiting superior physiochemical properties and bio-functionality. In this study, a multifunctional nanocomposite bioink is developed based on amine-functionalized copper (Cu)-doped mesoporous bioactive glass nanoparticles (ACuMBGNs) and a hydrogel formulation relying on dynamic covalent chemistry composed of alginate dialdehyde (oxidized alginate) and gelatin, with favorable rheological properties, improved shape fidelity, and structural stability for extrusion-based bioprinting. The reversible dynamic microenvironment in combination with the impact of cell-adhesive ligands introduced by aminated particles enables the rapid spreading (within 3 days) and high survival (>90%) of embedded human osteosarcoma cells and immortalized mouse bone marrow-derived stroma cells. Osteogenic differentiation of primary mouse bone marrow stromal stem cells (BMSCs) and angiogenesis are promoted in the bioprinted alginate dialdehyde-gelatin (ADA-GEL or AG)-ACuMBGN scaffolds without additional growth factors in vitro, which is likely due to ion stimulation from the incorporated nanoparticles and possibly due to cell mechanosensing in the dynamic matrix. In conclusion, it is envisioned that these nanocomposite bioinks can serve as promising platforms for bioprinting complex 3D matrix environments providing superior physiochemical and biological performance for bone tissue engineering.


Asunto(s)
Bioimpresión , Nanocompuestos , Nanopartículas , Animales , Hidrogeles/química , Ratones , Nanocompuestos/química , Nanopartículas/química , Osteogénesis , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido/química
7.
Small ; 18(13): e2104758, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35132776

RESUMEN

Stem cell bioengineering and therapy require different model systems and materials in different stages of development. If a chemically defined biomatrix system can fulfill most tasks, it can minimize the discrepancy among various setups. By screening biomaterials synthesized through a coacervation-mediated self-assembling mechanism, a biomatrix system optimal for 2D human mesenchymal stromal cell (hMSC) culture and osteogenesis is identified. Its utility for hMSC bioengineering is further demonstrated in coating porous bioactive glass scaffolds and nanoparticle synthesis for esiRNA delivery to knock down the SOX-9 gene with high delivery efficiency. The self-assembled injectable system is further utilized for 3D cell culture, segregated co-culture of hMSC with human umbilical vein endothelial cells (HUVEC) as an angiogenesis model, and 3D bioprinting. Most interestingly, the coating of bioactive glass with the self-assembled biomatrix not only supports the proliferation and osteogenesis of hMSC in the 3D scaffold but also induces the amorphous bioactive glass (BG) scaffold surface to form new apatite crystals resembling bone-shaped plate structures. Thus, the self-assembled biomatrix system can be utilized in various dimensions, scales, and geometries for many different bioengineering applications.


Asunto(s)
Bioimpresión , Células Madre Mesenquimatosas , Diferenciación Celular , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Osteogénesis , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
8.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35563143

RESUMEN

The use of organic-inorganic 3D printed composites with enhanced properties in biomedical applications continues to increase. The present study focuses on the development of 3D printed alginate-based composites incorporating inorganic fillers with different shapes (angular and round), for bone regeneration. Reactive fillers (bioactive glass 13-93 and hydroxyapatite) and non-reactive fillers (inert soda-lime glass) were investigated. Rheological studies and the characterization of various extrusion-based parameters, including material throughput, printability, shape fidelity and filament fusion, were carried out to identify the parameters dominating the printing process. It was shown that the effective surface area of the filler particle has the highest impact on the printing behavior, while the filler reactivity presents a side aspect. Composites with angular particle morphologies showed the same high resolution during the printing process, almost independent from their reactivity, while composites with comparable amounts of round filler particles lacked stackability after printing. Further, it could be shown that a higher effective surface area of the particles can circumvent the need for a higher filler content for obtaining convincing printing results. In addition, it was proven that, by changing the particle shape, the critical filler content for the obtained adequate printability can be altered. Preliminary in vitro biocompatibility investigations were carried out with the bioactive glass containing ink. The 3D printed ink, forming an interconnected porous scaffold, was analyzed regarding its biocompatibility in direct or indirect contact with the pre-osteoblast cell line MC3T3-E1. Both kinds of cell tests showed increased viability and a high rate of proliferation, with complete coverage of the 3D scaffolds' surface already after 7 d post cell-seeding.


Asunto(s)
Alginatos , Bioimpresión , Bioimpresión/métodos , Regeneración Ósea , Hidrogeles , Impresión Tridimensional , Andamios del Tejido
9.
Int J Mol Sci ; 23(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35897771

RESUMEN

We embedded copper-doped mesoporous bioactive glass nanospheres (Cu-MBGN) with antibacterial and ion-releasing properties into experimental dental composites and investigated the effect of Cu-MBGN on the polymerisation properties. We prepared seven composites with a BisGMA/TEGDMA (60/40) matrix and 65 wt.% total filler content, added Cu-MBGN or a combination of Cu-MBGN and silanised silica to the silanised barium glass base, and examined nine parameters: light transmittance, degree of conversion (DC), maximum polymerisation rate (Rmax), time to reach Rmax, linear shrinkage, shrinkage stress (PSS), maximum PSS rate, time to reach maximum PSS rate, and depth of cure. Cu-MBGN without silica accelerated polymerisation, reduced light transmission, and had the highest DC (58.8 ± 0.9%) and Rmax (9.8 ± 0.2%/s), but lower shrinkage (3 ± 0.05%) and similar PSS (0.89 ± 0.07 MPa) versus the inert reference (0.83 ± 0.13 MPa). Combined Cu-MBGN and silica slowed the Rmax and achieved a similar DC but resulted in higher shrinkage. However, using a combined 5 wt.% Cu-MBGN and silica, the PSS resembled that of the inert reference. The synergistic action of 5 wt.% Cu-MBGN and silanised silica in combination with silanised barium glass resulted in a material with the highest likelihood for dental applications in future.


Asunto(s)
Cobre , Nanosferas , Resinas Compuestas , Materiales Dentales , Cinética , Ensayo de Materiales , Polimerizacion , Dióxido de Silicio , Propiedades de Superficie
10.
J Mater Sci Mater Med ; 33(1): 3, 2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-34940923

RESUMEN

Bioactive glasses (BGs) have been a focus of research for over five decades for several biomedical applications. Although their use in bone substitution and bone tissue regeneration has gained important attention, recent developments have also seen the expansion of BG applications to the field of soft tissue engineering. Hard and soft tissue repair therapies can benefit from the biological activity of metallic ions released from BGs. These metallic ions are incorporated in the BG network not only for their biological therapeutic effects but also in many cases for influencing the structure and processability of the glass and to impart extra functional properties. The "classical" elements in silicate BG compositions are silicon (Si), phosphorous (P), calcium (Ca), sodium (Na), and potassium (K). In addition, other well-recognized biologically active ions have been incorporated in BGs to provide osteogenic, angiogenic, anti-inflammatory, and antibacterial effects such as zinc (Zn), magnesium (Mg), silver (Ag), strontium (Sr), gallium (Ga), fluorine (F), iron (Fe), cobalt (Co), boron (B), lithium (Li), titanium (Ti), and copper (Cu). More recently, rare earth and other elements considered less common or, some of them, even "exotic" for biomedical applications, have found room as doping elements in BGs to enhance their biological and physical properties. For example, barium (Ba), bismuth (Bi), chlorine (Cl), chromium (Cr), dysprosium (Dy), europium (Eu), gadolinium (Gd), ytterbium (Yb), thulium (Tm), germanium (Ge), gold (Au), holmium (Ho), iodine (I), lanthanum (La), manganese (Mn), molybdenum (Mo), nickel (Ni), niobium (Nb), nitrogen (N), palladium (Pd), rubidium (Rb), samarium (Sm), selenium (Se), tantalum (Ta), tellurium (Te), terbium (Tb), erbium (Er), tin (Sn), tungsten (W), vanadium (V), yttrium (Y) as well as zirconium (Zr) have been included in BGs. These ions have been found to be particularly interesting for enhancing the biological performance of doped BGs in novel compositions for tissue repair (both hard and soft tissue) and for providing, in some cases, extra functionalities to the BG, for example fluorescence, luminescence, radiation shielding, anti-inflammatory, and antibacterial properties. This review summarizes the influence of incorporating such less-common elements in BGs with focus on tissue engineering applications, usually exploiting the bioactivity of the BG in combination with other functional properties imparted by the presence of the added elements.


Asunto(s)
Cerámica/química , Cerámica/farmacología , Materiales Biocompatibles Revestidos/síntesis química , Diseño de Equipo/tendencias , Animales , Fenómenos Biofísicos/efectos de los fármacos , Regeneración Ósea/efectos de los fármacos , Regeneración Ósea/fisiología , Sustitutos de Huesos/síntesis química , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Materiales Biocompatibles Revestidos/química , Diseño de Equipo/métodos , Humanos , Iones , Osteogénesis/efectos de los fármacos
11.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34884519

RESUMEN

Magnesium (Mg2+) is known to play a crucial role in mineral and matrix metabolism of bone tissue and is thus increasingly considered in the field of bone tissue engineering. Bioactive glasses (BGs) offer the promising possibility of the incorporation and local delivery of therapeutically active ions as Mg2+. In this study, two Mg2+-doped derivatives of the ICIE16-BG composition (49.46 SiO2, 36.27 CaO, 6.6 Na2O, 1.07 P2O5, 6.6 K2O (mol%)), namely 6Mg-BG (49.46 SiO2, 30.27 CaO, 6.6 Na2O, 1.07 P2O5, 6.6 K2O, 6.0 MgO (mol%) and 3Mg-BG (49.46 SiO2, 33.27 CaO, 6.6 Na2O, 1.07 P2O5, 6.6 K2O, 3.0 MgO (mol%)) were examined. Their influence on viability, proliferation and osteogenic differentiation of human mesenchymal stromal cells (MSCs) was explored in comparison to the original ICIE16-BG. All BGs showed good biocompatibility. The Mg2+-doped BGs had a positive influence on MSC viability alongside with inhibiting effects on MSC proliferation. A strong induction of osteogenic differentiation markers was observed, with the Mg2+-doped BGs significantly outperforming the ICIE16-BG regarding the expression of genes encoding for protein members of the osseous extracellular matrix (ECM) at certain observation time points. However, an overall Mg2+-induced enhancement of the expression of genes encoding for ECM proteins could not be observed, possibly due to a too moderate Mg2+ release. By adaption of the Mg2+ release from BGs, an even stronger impact on the expression of genes encoding for ECM proteins might be achieved. Furthermore, other BG-types such as mesoporous BGs might provide a higher local presence of the therapeutically active ions and should therefore be considered for upcoming studies.


Asunto(s)
Huesos/citología , Diferenciación Celular , Vidrio/química , Magnesio/química , Células Madre Mesenquimatosas/citología , Osteogénesis , Ingeniería de Tejidos/métodos , Proliferación Celular , Humanos , Técnicas In Vitro
12.
Int J Mol Sci ; 22(5)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652991

RESUMEN

A hydrogel system based on oxidized alginate covalently crosslinked with gelatin (ADA-GEL) has been utilized for different biofabrication approaches to design constructs, in which cell growth, proliferation and migration have been observed. However, cell-bioink interactions are not completely understood and the potential effects of free aldehyde groups on the living cells have not been investigated. In this study, alginate, ADA and ADA-GEL were characterized via FTIR and NMR, and their effect on cell viability was investigated. In the tested cell lines, there was a concentration-dependent effect of oxidation degree on cell viability, with the strongest cytotoxicity observed after 72 h of culture. Subsequently, primary human cells, namely fibroblasts and endothelial cells (ECs) were grown in ADA and ADA-GEL hydrogels to investigate the molecular effects of oxidized material. In ADA, an extremely strong ROS generation resulting in a rapid depletion of cellular thiols was observed in ECs, leading to rapid necrotic cell death. In contrast, less pronounced cytotoxic effects of ADA were noted on human fibroblasts. Human fibroblasts had higher cellular thiol content than primary ECs and entered apoptosis under strong oxidative stress. The presence of gelatin in the hydrogel improved the primary cell survival, likely by reducing the oxidative stress via binding to the CHO groups. Consequently, ADA-GEL was better tolerated than ADA alone. Fibroblasts were able to survive the oxidative stress in ADA-GEL and re-entered the proliferative phase. To the best of our knowledge, this is the first report that shows in detail the relationship between oxidative stress-induced intracellular processes and alginate di-aldehyde-based bioinks.


Asunto(s)
Alginatos/química , Materiales Biocompatibles/química , Células Endoteliales/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Gelatina/química , Estrés Oxidativo/efectos de los fármacos , Alginatos/toxicidad , Animales , Materiales Biocompatibles/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Endoteliales/citología , Fibroblastos/citología , Gelatina/toxicidad , Humanos , Ratones , Células 3T3 NIH , Andamios del Tejido/química
13.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34884623

RESUMEN

The present study analyzes the capacity of collagen (coll)/sulfated glycosaminoglycan (sGAG)-based surface coatings containing bioactive glass nanoparticles (BGN) in promoting the osteogenic differentiation of human mesenchymal stroma cells (hMSC). Physicochemical characteristics of these coatings and their effects on proliferation and osteogenic differentiation of hMSC were investigated. BGN were stably incorporated into the artificial extracellular matrices (aECM). Oscillatory rheology showed predominantly elastic, gel-like properties of the coatings. The complex viscosity increased depending on the GAG component and was further elevated by adding BGN. BGN-containing aECM showed a release of silicon ions as well as an uptake of calcium ions. hMSC were able to proliferate on coll and coll/sGAG coatings, while cellular growth was delayed on aECM containing BGN. However, a stimulating effect of BGN on ALP activity and calcium deposition was shown. Furthermore, a synergistic effect of sGAG and BGN was found for some donors. Our findings demonstrated the promising potential of aECM and BGN combinations in promoting bone regeneration. Still, future work is required to further optimize the BGN/aECM combination for increasing its combined osteogenic effect.


Asunto(s)
Diferenciación Celular , Matriz Extracelular/química , Vidrio/química , Células Madre Mesenquimatosas/citología , Nanopartículas/administración & dosificación , Osteogénesis , Proliferación Celular , Células Cultivadas , Colágeno/química , Glicosaminoglicanos/química , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Nanopartículas/química
14.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921909

RESUMEN

In this study, as a measure to enhance the antimicrobial activity of biomaterials, the selenium ions have been substituted into hydroxyapatite (HA) at different concentration levels. To balance the potential cytotoxic effects of selenite ions (SeO32-) in HA, strontium (Sr2+) was co-substituted at the same concentration. Selenium and strontium-substituted hydroxyapatites (Se-Sr-HA) at equal molar ratios of x Se/(Se + P) and x Sr/(Sr + Ca) at (x = 0, 0.01, 0.03, 0.05, 0.1, and 0.2) were synthesized via the wet precipitation route and sintered at 900 °C. The effect of the two-ion concentration on morphology, surface charge, composition, antibacterial ability, and cell viability were studied. X-ray diffraction verified the phase purity and confirmed the substitution of selenium and strontium ions. Acellular in vitro bioactivity tests revealed that Se-Sr-HA was highly bioactive compared to pure HA. Se-Sr-HA samples showed excellent antibacterial activity against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus carnosus) bacterial strains. In vitro cell-material interaction, using human osteosarcoma cells MG-63 studied by WST-8 assay, showed that Se-HA has a cytotoxic effect; however, the co-substitution of strontium in Se-HA offsets the negative impact of selenium and enhanced the biological properties of HA. Hence, the prepared samples are a suitable choice for antibacterial coatings and bone filler applications.


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Hidroxiapatitas/química , Selenio/química , Estroncio/química , Antibacterianos/efectos adversos , Antibacterianos/química , Supervivencia Celular/efectos de los fármacos , Staphylococcus/efectos de los fármacos
15.
Int J Mol Sci ; 22(2)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33430065

RESUMEN

Mesoporous silica-based nanoparticles (MSNs) are considered promising drug carriers because of their ordered pore structure, which permits high drug loading and release capacity. The dissolution of Si and Ca from MSNs can trigger osteogenic differentiation of stem cells towards extracellular matrix calcification, while Mg and Sr constitute key elements of bone biology and metabolism. The aim of this study was the synthesis and characterization of sol-gel-derived MSNs co-doped with Ca, Mg and Sr. Their physico-chemical properties were investigated by X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence spectroscopy (XRF), Brunauer Emmett Teller and Brunauer Joyner Halenda (BET/BJH), dynamic light scattering (DLS) and ζ-potential measurements. Moxifloxacin loading and release profiles were assessed with high performance liquid chromatography (HPLC) cell viability on human periodontal ligament fibroblasts and their hemolytic activity in contact with human red blood cells (RBCs) at various concentrations were also investigated. Doped MSNs generally retained their textural characteristics, while different compositions affected particle size, hemolytic activity and moxifloxacin loading/release profiles. All co-doped MSNs revealed the formation of hydroxycarbonate apatite on their surface after immersion in simulated body fluid (SBF) and promoted mitochondrial activity and cell proliferation.


Asunto(s)
Sistemas de Liberación de Medicamentos , Moxifloxacino/farmacología , Nanopartículas/química , Ingeniería de Tejidos , Proliferación Celular/efectos de los fármacos , Dispersión Dinámica de Luz , Humanos , Magnesio/química , Microscopía Electrónica de Rastreo , Moxifloxacino/química , Osteogénesis/efectos de los fármacos , Porosidad , Dióxido de Silicio/química , Difracción de Rayos X
16.
Molecules ; 26(11)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073377

RESUMEN

Bioactive glasses (BGs) are being increasingly considered for biomedical applications. One convenient approach to utilize BGs in tissue engineering and drug delivery involves their combination with organic biomaterials in order to form composites with enhanced biocompatibility and biodegradability. In this work, mesoporous bioactive glass nanoparticles (MBGN) have been merged with polyhydroxyalkanoate microspheres with the purpose to develop drug carriers. The composite carriers (microspheres) were loaded with curcumin as a model drug. The toxicity and delivery rate of composite microspheres were tested in vitro, reaching a curcumin loading efficiency of over 90% and an improving of biocompatibility of different concentrations of MBGN due to its administrations through the composite. The composite microspheres were tested in terms of controlled release, biocompatibility and bioactivity. Our results demonstrate that the composite microspheres can be potentially used in biomedicine due to their dual effects: bioactivity (due to the presence of MBGN) and curcumin release capability.


Asunto(s)
Materiales Biocompatibles/química , Sistemas de Liberación de Medicamentos , Vidrio , Nanopartículas/química , Poliésteres/química , Línea Celular , Curcumina , Portadores de Fármacos , Durapatita/química , Emulsiones , Humanos , Concentración de Iones de Hidrógeno , Cinética , Microscopía Electrónica de Rastreo , Microesferas , Osteoblastos/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Ingeniería de Tejidos/métodos , Difracción de Rayos X
17.
Langmuir ; 36(7): 1793-1803, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32017853

RESUMEN

The surface structure of biomaterials is of key importance to control its interactions with biological environments. Industrial fabrication and coating processes often introduce particulate nanostructures at implant surfaces. Understanding the cellular interaction with particle-based surface topologies and feature sizes in the colloidal length scale therefore offers the possibility to improve the biological response of synthetic biomaterials. Here, surfaces with controlled topography and regular feature sizes covering the relevant length scale of particulate coatings (100-1000 nm) are fabricated by colloidal templating. Using fluorescent microscopy, WST assay, and morphology analysis, results show that adhesion and attachment of bone-marrow derived murine stromal cells (ST2) are strongly influenced by the surface feature size while geometric details play an insignificant role. Quantitative analysis shows enhanced cell adhesion, spreading, viability, and activity when surface feature size decreases below 200 nm compared to flat surfaces, while larger feature sizes are detrimental to cell adhesion. Kinetic studies reveal that most cells on surfaces with larger features lose contact with the substrate over time. This study identifies colloidal templating as a simple method for creating highly defined model systems to investigate complex cell functions and provides design criteria for the choice of particulate coatings on commercial implant materials.


Asunto(s)
Huesos/citología , Materiales Biocompatibles Revestidos/química , Coloides/química , Células Madre Mesenquimatosas/metabolismo , Animales , Huesos/metabolismo , Adhesión Celular , Membranas Artificiales , Ratones , Propiedades de Superficie , Ingeniería de Tejidos/métodos
18.
J Mater Sci Mater Med ; 31(3): 31, 2020 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-32152812

RESUMEN

Alginate dialdehyde-gelatin (ADA-GEL) hydrogels have been reported to be suitable matrices for cell encapsulation. In general, application of ADA-GEL as bioink has been limited to planar structures due to its low viscosity. In this work, ring shaped constructs of ADA-GEL hydrogel were fabricated by casting the hydrogel into sacrificial molds which were 3D printed from 9% methylcellulose and 5% gelatin. Dissolution of the supporting structure was observed during the 1st week of sample incubation. In addition, the effect of different crosslinkers (Ba2+ and Ca2+) on the physicochemical properties of ADA-GEL and on the behavior of encapsulated MG-63 cells was investigated. It was found that Ba2+ crosslinked network had more than twice higher storage modulus, and mass decrease to 70% during incubation compared to 42% in case of hydrogels crosslinked with Ca2+. In addition, faster increase in cell viability during incubation and earlier cell network formation were observed after Ba2+ crosslinking. No negative effects on cell activity due to the use of sacrificial materials were observed. The approach presented here could be further developed for cell-laden ADA-GEL bioink printing into complex 3D structures.


Asunto(s)
Aldehídos/química , Alginatos/química , Gelatina/química , Hidrogeles/química , Impresión Tridimensional , Bario/química , Bioimpresión , Calcio/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Reactivos de Enlaces Cruzados/química , Humanos , Ingeniería de Tejidos , Andamios del Tejido/química , Viscosidad
19.
J Mater Sci Mater Med ; 31(11): 105, 2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33141369

RESUMEN

3D printing has emerged as vanguard technique of biofabrication to assemble cells, biomaterials and biomolecules in a spatially controlled manner to reproduce native tissues. In this work, gelatin methacrylate (GelMA)/alginate hydrogel scaffolds were obtained by 3D printing and 14-3-3ε protein was encapsulated in the hydrogel to induce osteogenic differentiation of human adipose-derived mesenchymal stem cells (hASC). GelMA/alginate-based grid-like structures were printed and remained stable upon photo-crosslinking. The viscosity of alginate allowed to control the pore size and strand width. A higher viscosity of hydrogel ink enhanced the printing accuracy. Protein-loaded GelMA/alginate-based hydrogel showed a clear induction of the osteogenic differentiation of hASC cells. The results are relevant for future developments of GelMA/alginate for bone tissue engineering given the positive effect of 14-3-3ε protein on both cell adhesion and proliferation.


Asunto(s)
Proteínas 14-3-3/química , Hidrogeles/química , Osteogénesis/fisiología , Impresión Tridimensional , Tejido Adiposo/metabolismo , Alginatos/química , Adhesión Celular , Diferenciación Celular , Proliferación Celular , Reactivos de Enlaces Cruzados , Gelatina , Humanos , Tinta , Células Madre Mesenquimatosas/metabolismo , Metacrilatos/química , Osteogénesis/efectos de los fármacos , Proteínas Recombinantes/química , Viscosidad
20.
J Mater Sci Mater Med ; 31(5): 43, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32358696

RESUMEN

Bioactive glasses (BGs), due to their ability to influence osteogenic cell functions, have become attractive materials to improve loaded and unloaded bone regeneration. BG systems can be easily doped with several metallic ions (e.g., Ag, Sr, Cu, Nb) in order to confer antibacterial properties. In particular, Nb, when compared with other metal ions, has been reported to be less cytotoxic and possess the ability to enhance mineralization process in human osteoblast populations. In this study, we co-deposited, through one-pot electrophoretic deposition (EPD), chitosan (CS), gelatin (GE) and a modified BG containing Nb to obtain substrates with antibacterial activity for unloaded bone regeneration. Self-standing composite scaffolds, with a defined porosity (15-90 µm) and homogeneous dispersion of BGs were obtained. TGA analysis revealed a BG loading of about 10% in the obtained scaffolds. The apatite formation ability of the scaffolds was evaluated in vitro in simulated body fluid (SBF). SEM observations, XRD and FT-IR spectra showed a slow (21-28 days) yet effective nucleation of CaP species on BGs. In particular, FT-IR peak around 603 cm-1 and XRD peak at 2θ = 32°, denoted the formation of a mineral phase after SBF immersion. In vitro biological investigation revealed that the release of Nb from composite scaffolds had no cytotoxic effects. Interestingly, BG-doped Nb scaffolds displayed antibacterial properties, reducing S. lutea and E. coli growth of ≈60% and ≈50%, respectively. Altogether, the obtained results disclose the produced composite scaffolds as promising materials with inherent antibacterial activity for bone tissue engineering applications.


Asunto(s)
Regeneración Ósea/fisiología , Cerámica/química , Quitosano/química , Vidrio/química , Niobio/química , Materiales Biocompatibles , Línea Celular Tumoral , Electroforesis , Gelatina , Humanos , Concentración de Iones de Hidrógeno , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Osteosarcoma , Espectroscopía Infrarroja por Transformada de Fourier , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA