Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Angew Chem Int Ed Engl ; 58(52): 18957-18963, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31693786

RESUMEN

Natural products (NPs) from microorganisms have been important sources for discovering new therapeutic and chemical entities. While their corresponding biosynthetic gene clusters (BGCs) can be easily identified by gene-sequence-similarity-based bioinformatics strategies, the actual access to these NPs for structure elucidation and bioactivity testing remains difficult. Deletion of the gene encoding the RNA chaperone, Hfq, results in strains losing the production of most NPs. By exchanging the native promoter of a desired BGC against an inducible promoter in Δhfq mutants, almost exclusive production of the corresponding NP from the targeted BGC in Photorhabdus, Xenorhabdus and Pseudomonas was observed including the production of several new NPs derived from previously uncharacterized non-ribosomal peptide synthetases (NRPS). This easyPACId approach (easy Promoter Activated Compound Identification) facilitates NP identification due to low interference from other NPs. Moreover, it allows direct bioactivity testing of supernatants containing secreted NPs, without laborious purification.


Asunto(s)
Productos Biológicos/química , Vías Biosintéticas/genética , Metabolómica/métodos , Humanos
2.
Environ Microbiol ; 19(11): 4564-4575, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28892274

RESUMEN

Xenorhabdus doucetiae, the bacterial symbiont of the entomopathogenic nematode Steinernema diaprepesi produces several different fatty acid amides. Their biosynthesis has been studied using a combination of analysis of gene deletions and promoter exchanges in X. doucetiae and heterologous expression of candidate genes in E. coli. While a decarboxylase is required for the formation of all observed phenylethylamides and tryptamides, the acyltransferase XrdE encoded in the xenorhabdin biosynthesis gene cluster is responsible for the formation of short chain acyl amides. Additionally, new, long-chain and cytotoxic acyl amides were identified in X. doucetiae infected insects and when X. doucetiae was grown in Galleria Instant Broth (GIB). When the bioactivity of selected amides was tested, a quorum sensing modulating activity was observed for the short chain acyl amides against the two different quorum sensing systems from Chromobacterium and Janthinobacterium.


Asunto(s)
Aciltransferasas/metabolismo , Amidas/metabolismo , Carboxiliasas/metabolismo , Xenorhabdus/metabolismo , Aciltransferasas/genética , Animales , Chromobacterium/genética , Chromobacterium/metabolismo , Escherichia coli/genética , Insectos/microbiología , Familia de Multigenes/genética , Percepción de Quorum/genética , Rabdítidos/microbiología , Estrongílidos/microbiología , Simbiosis/genética
3.
Chembiochem ; 16(7): 1115-9, 2015 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-25826784

RESUMEN

Exchange of the native promoter to the arabinose-inducible promoter PBAD was established in entomopathogenic bacteria to silence and/or activate gene clusters involved in natural product biosynthesis. This allowed the "on-demand" production of GameXPeptides, xenoamicins, and the blue pigment indigoidine. The gene clusters for the novel "mevalagmapeptides" and the highly toxic xenorhabdins were identified by this approach.


Asunto(s)
Productos Biológicos/metabolismo , Ingeniería Genética/métodos , Animales , Arabinosa/farmacología , Línea Celular , Familia de Multigenes/genética , Photorhabdus/efectos de los fármacos , Photorhabdus/genética , Photorhabdus/metabolismo , Plásmidos/genética , Regiones Promotoras Genéticas/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Ratas , Xenorhabdus/efectos de los fármacos , Xenorhabdus/genética , Xenorhabdus/metabolismo
4.
Chembiochem ; 15(6): 826-8, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24616055

RESUMEN

An E. coli strain with deletions in five transaminases (ΔaspC ΔilvE ΔtyrB ΔavtA ΔybfQ) was constructed to be unable to degrade several amino acids. This strain was used as an expression host for the analysis of the amino acid configuration of nonribosomally synthesized peptides, including the novel peptide "xenotetrapeptide" from Xenorhabdus nematophila, by using a combination of labeling experiments and mass spectrometry. Additionally, the number of D-amino acids in the produced peptide was assigned following simple cultivation of the expression strain in D2 O.


Asunto(s)
Péptidos/química , Cromatografía Líquida de Alta Presión , Deuterio/química , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Espectrometría de Masas , Conformación Molecular , Péptidos/metabolismo , Transaminasas/metabolismo , Xenorhabdus/metabolismo
5.
Bio Protoc ; 13(13): e4709, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37449040

RESUMEN

The easyPACId (easy Promoter Activation and Compound Identification) approach is focused on the targeted activation of natural product biosynthetic gene clusters (BGCs) encoding non-ribosomal peptide synthetases (NRPS), polyketide synthases (PKS), NRPS-PKS hybrids, or other BGC classes. It was applied to entomopathogenic bacteria of the genera Xenorhabdus and Photorhabdus by exchanging the natural promoter of desired BGCs against the L-arabinose inducible PBAD promoter in ∆hfq mutants of the respective strains. The crude (culture) extracts of the cultivated easyPACId mutants are enriched with the single compound or compound class and can be tested directly against various target organisms without further purification of the produced natural products. Furthermore, isolation and identification of compounds from these mutants is simplified due to the reduced background in the ∆hfq strains. The approach avoids problems often encountered in heterologous expression hosts, chemical synthesis, or tedious extraction of desired compounds from wild-type crude extracts. This protocol describes easyPACId for Xenorhabdus and Photorhabdus, but it was also successfully adapted to Pseudomonas entomophila and might be suitable for other proteobacteria that carry hfq.

6.
Beilstein J Org Chem ; 8: 749-52, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23015823

RESUMEN

Two new and five known oxazoles were identified from two different Pseudomonas strains in addition to the known pyrones pseudopyronine A and B. Labeling experiments confirmed their structures and gave initial evidence for a novel biosynthesis pathway of these natural oxazoles. In order to confirm their structure, they were synthesized, which also allowed tests of their bioactivity. Additionally, the bioactivities of the synthesis intermediates were also investigated revealing interesting biological activities for several compounds despite their overall simple structures.

7.
J Agric Food Chem ; 70(2): 498-506, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34981939

RESUMEN

Parasitic nematodes infect different species of animals and plants. Root-knot nematodes are members of the genus Meloidogyne, which is distributed worldwide and parasitizes numerous plants, including vegetables, fruits, and crops. To reduce the global burden of nematode infections, only a few chemical therapeutic classes are currently available. The majority of nematicides are prohibited due to their harmful effects on the environment and public health. This study was intended to identify new nematicidal natural products (NPs) from the bacterial genus Xenorhabdus, which exists in symbiosis with Steinernema nematodes. Cell-free culture supernatants of Xenorhabdus bacteria were used for nematicidal bioassay, and high mortality rates for Caenorhabditis elegans and Meloidogyne javanica were observed. Promoter exchange mutants of biosynthetic gene clusters encoding nonribosomal peptide synthetases (NRPS) or NRPS-polyketide synthase hybrids in Xenorhabdus bacteria carrying additionally a hfq deletion produce a single NP class, which have been tested for their bioactivity. Among the NPs tested, fabclavines, rhabdopeptides, and xenocoumacins were highly toxic to nematodes and resulted in mortalities of 95.3, 74.6, and 72.6% to C. elegans and 82.0, 90.0, and 85.3% to M. javanica, respectively. The findings of such nematicidal NPs can provide templates for uncovering effective and environmentally safe alternatives to commercially available nematicides.


Asunto(s)
Productos Biológicos , Tylenchoidea , Xenorhabdus , Animales , Antinematodos , Caenorhabditis elegans/genética , Simbiosis , Xenorhabdus/genética
8.
Sci Rep ; 12(1): 10779, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35750682

RESUMEN

Natural products have been proven to be important starting points for the development of new drugs. Bacteria in the genera Photorhabdus and Xenorhabdus produce antimicrobial compounds as secondary metabolites to compete with other organisms. Our study is the first comprehensive study screening the anti-protozoal activity of supernatants containing secondary metabolites produced by 5 Photorhabdus and 22 Xenorhabdus species against human parasitic protozoa, Acanthamoeba castellanii, Entamoeba histolytica, Trichomonas vaginalis, Leishmania tropica and Trypanosoma cruzi, and the identification of novel bioactive antiprotozoal compounds using the easyPACId approach (easy Promoter Activated Compound Identification) method. Though not in all species, both bacterial genera produce antiprotozoal compounds effective on human pathogenic protozoa. The promoter exchange mutants revealed that antiprotozoal bioactive compounds produced by Xenorhabdus bacteria were fabclavines, xenocoumacins, xenorhabdins and PAX peptides. Among the bacteria assessed, only P. namnaoensis appears to have acquired amoebicidal property which is effective on E. histolytica trophozoites. These discovered antiprotozoal compounds might serve as starting points for the development of alternative and novel pharmaceutical agents against human parasitic protozoa in the future.


Asunto(s)
Antiprotozoarios , Entamoeba histolytica , Photorhabdus , Trypanosoma cruzi , Xenorhabdus , Antiprotozoarios/química , Entamoeba histolytica/metabolismo , Humanos , Photorhabdus/metabolismo
9.
Sci Rep ; 11(1): 11253, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34045620

RESUMEN

Our study aimed to identify the novel acaricidal compound in Xenorhabdus szentirmaii and X. nematophila using the easyPACId approach (easy Promoter Activated Compound Identification). We determined the (1) effects of cell-free supernatant (CFS) obtained from mutant strains against T. urticae females, (2) CFS of the acaricidal bioactive strain of X. nematophila (pCEP_kan_XNC1_1711) against different biological stages of T. urticae, and females of predatory mites, Phytoseiulus persimilis and Neoseiulus californicus, (3) effects of the extracted acaricidal compound on different biological stages of T. urticae, and (4) cytotoxicity of the active substance. The results showed that xenocoumacin produced by X. nematophila was the bioactive acaricidal compound, whereas the acaricidal compound in X. szentirmaii was not determined. The CFS of X. nematophila (pCEP_kan_XNC1_1711) caused 100, 100, 97.3, and 98.1% mortality on larvae, protonymph, deutonymph and adult female of T. urticae at 7 dpa in petri dish experiments; and significantly reduced T. urticae population in pot experiments. However, the same CFS caused less than 36% mortality on the predatory mites at 7dpa. The mortality rates of extracted acaricidal compound (xenocoumacin) on the larva, protonymph, deutonymph and adult female of T. urticae were 100, 100, 97, 96% at 7 dpa. Cytotoxicity assay showed that IC50 value of xenocoumacin extract was 17.71 µg/ml after 48 h. The data of this study showed that xenocoumacin could potentially be used as bio-acaricide in the control of T. urticae; however, its efficacy in field experiments and its phytotoxicity need to be assessed in future.


Asunto(s)
Acaricidas/farmacología , Tetranychidae/efectos de los fármacos , Xenorhabdus , Animales , Larva/efectos de los fármacos
10.
Nat Commun ; 12(1): 3225, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34050176

RESUMEN

Non-Ribosomal Peptides (NRPs) represent a biomedically important class of natural products that include a multitude of antibiotics and other clinically used drugs. NRPs are not directly encoded in the genome but are instead produced by metabolic pathways encoded by biosynthetic gene clusters (BGCs). Since the existing genome mining tools predict many putative NRPs synthesized by a given BGC, it remains unclear which of these putative NRPs are correct and how to identify post-assembly modifications of amino acids in these NRPs in a blind mode, without knowing which modifications exist in the sample. To address this challenge, here we report NRPminer, a modification-tolerant tool for NRP discovery from large (meta)genomic and mass spectrometry datasets. We show that NRPminer is able to identify many NRPs from different environments, including four previously unreported NRP families from soil-associated microbes and NRPs from human microbiota. Furthermore, in this work we demonstrate the anti-parasitic activities and the structure of two of these NRP families using direct bioactivity screening and nuclear magnetic resonance spectrometry, illustrating the power of NRPminer for discovering bioactive NRPs.


Asunto(s)
Antibacterianos/aislamiento & purificación , Productos Biológicos/aislamiento & purificación , Biología Computacional/métodos , Descubrimiento de Drogas/métodos , Péptidos/aislamiento & purificación , Algoritmos , Secuencia de Aminoácidos/genética , Antibacterianos/biosíntesis , Productos Biológicos/metabolismo , Conjuntos de Datos como Asunto , Humanos , Espectrometría de Masas , Redes y Vías Metabólicas/genética , Metabolómica/métodos , Metagenómica/métodos , Microbiota/genética , Familia de Multigenes , Biosíntesis de Péptidos , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Péptidos/genética , Péptidos/metabolismo , Microbiología del Suelo
11.
Mol Microbiol ; 74(2): 497-517, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19788540

RESUMEN

Cell differentiation is widespread during the development of multicellular organisms, but rarely observed in prokaryotes. One example of prokaryotic differentiation is the gram-negative bacterium Myxococcus xanthus. In response to starvation, this gliding bacterium initiates a complex developmental programme that results in the formation of spore-filled fruiting bodies. How the cells metabolically support the necessary complex cellular differentiation from rod-shaped vegetative cells into spherical spores is unknown. Here, we present evidence that intracellular lipid bodies provide the necessary metabolic fuel for the development of spores. Formed at the onset of starvation, these lipid bodies gradually disappear until they are completely used up by the time the cells have become mature spores. Moreover, it appears that lipid body formation in M. xanthus is an important initial step indicating cell fate during differentiation. Upon starvation, two subpopulations of cells occur: cells that form lipid bodies invariably develop into spores, while cells that do not form lipid bodies end up becoming peripheral rods, which are cells that lack signs of morphological differentiation and stay in a vegetative-like state. These data indicate that lipid bodies not only fuel cellular differentiation but that their formation represents the first known morphological sign indicating cell fate during differentiation.


Asunto(s)
Metabolismo de los Lípidos , Myxococcus xanthus/ultraestructura , Esporas Bacterianas/ultraestructura , Lípidos/aislamiento & purificación , Microscopía Electrónica , Mutación , Myxococcus xanthus/genética , Myxococcus xanthus/crecimiento & desarrollo , Myxococcus xanthus/metabolismo , Proteoma , Esporas Bacterianas/genética , Esporas Bacterianas/crecimiento & desarrollo , Esporas Bacterianas/metabolismo , Estrés Fisiológico
12.
Nat Biotechnol ; 25(11): 1281-9, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17965706

RESUMEN

The genus Sorangium synthesizes approximately half of the secondary metabolites isolated from myxobacteria, including the anti-cancer metabolite epothilone. We report the complete genome sequence of the model Sorangium strain S. cellulosum So ce56, which produces several natural products and has morphological and physiological properties typical of the genus. The circular genome, comprising 13,033,779 base pairs, is the largest bacterial genome sequenced to date. No global synteny with the genome of Myxococcus xanthus is apparent, revealing an unanticipated level of divergence between these myxobacteria. A large percentage of the genome is devoted to regulation, particularly post-translational phosphorylation, which probably supports the strain's complex, social lifestyle. This regulatory network includes the highest number of eukaryotic protein kinase-like kinases discovered in any organism. Seventeen secondary metabolite loci are encoded in the genome, as well as many enzymes with potential utility in industry.


Asunto(s)
Genoma Bacteriano/genética , Myxococcales/genética , Myxococcales/metabolismo , Secuencia de Bases , Biotecnología , Datos de Secuencia Molecular , Myxococcales/clasificación , Filogenia , Análisis de Secuencia de ADN
14.
PLoS One ; 8(2): e55045, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23405110

RESUMEN

Janthinobacteria commonly form biofilms on eukaryotic hosts and are known to synthesize antibacterial and antifungal compounds. Janthinobacterium sp. HH01 was recently isolated from an aquatic environment and its genome sequence was established. The genome consists of a single chromosome and reveals a size of 7.10 Mb, being the largest janthinobacterial genome so far known. Approximately 80% of the 5,980 coding sequences (CDSs) present in the HH01 genome could be assigned putative functions. The genome encodes a wealth of secretory functions and several large clusters for polyketide biosynthesis. HH01 also encodes a remarkable number of proteins involved in resistance to drugs or heavy metals. Interestingly, the genome of HH01 apparently lacks the N-acylhomoserine lactone (AHL)-dependent signaling system and the AI-2-dependent quorum sensing regulatory circuit. Instead it encodes a homologue of the Legionella- and Vibrio-like autoinducer (lqsA/cqsA) synthase gene which we designated jqsA. The jqsA gene is linked to a cognate sensor kinase (jqsS) which is flanked by the response regulator jqsR. Here we show that a jqsA deletion has strong impact on the violacein biosynthesis in Janthinobacterium sp. HH01 and that a jqsA deletion mutant can be functionally complemented with the V. cholerae cqsA and the L. pneumophila lqsA genes.


Asunto(s)
Proteínas Bacterianas/genética , Genoma Bacteriano , Legionella pneumophila/genética , Oxalobacteraceae/genética , Factores de Transcripción/genética , Vibrio cholerae/genética , Biopelículas , Genes Bacterianos , Homoserina/análogos & derivados , Homoserina/genética , Lactonas , Legionella pneumophila/enzimología , Filogenia , Percepción de Quorum/genética , Vibrio cholerae/enzimología
15.
PLoS One ; 6(11): e27909, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22125637

RESUMEN

Members of the genus Xenorhabdus are entomopathogenic bacteria that associate with nematodes. The nematode-bacteria pair infects and kills insects, with both partners contributing to insect pathogenesis and the bacteria providing nutrition to the nematode from available insect-derived nutrients. The nematode provides the bacteria with protection from predators, access to nutrients, and a mechanism of dispersal. Members of the bacterial genus Photorhabdus also associate with nematodes to kill insects, and both genera of bacteria provide similar services to their different nematode hosts through unique physiological and metabolic mechanisms. We posited that these differences would be reflected in their respective genomes. To test this, we sequenced to completion the genomes of Xenorhabdus nematophila ATCC 19061 and Xenorhabdus bovienii SS-2004. As expected, both Xenorhabdus genomes encode many anti-insecticidal compounds, commensurate with their entomopathogenic lifestyle. Despite the similarities in lifestyle between Xenorhabdus and Photorhabdus bacteria, a comparative analysis of the Xenorhabdus, Photorhabdus luminescens, and P. asymbiotica genomes suggests genomic divergence. These findings indicate that evolutionary changes shaped by symbiotic interactions can follow different routes to achieve similar end points.


Asunto(s)
Variación Genética , Genoma Bacteriano/genética , Photorhabdus/genética , Xenorhabdus/genética , Animales , Cromosomas Bacterianos/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Enterobacteriaceae/clasificación , Enterobacteriaceae/genética , Enterobacteriaceae/fisiología , Genómica/métodos , Interacciones Huésped-Parásitos , Interacciones Huésped-Patógeno , Insectos/microbiología , Insectos/parasitología , Datos de Secuencia Molecular , Nematodos/microbiología , Nematodos/fisiología , Photorhabdus/clasificación , Photorhabdus/fisiología , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Especificidad de la Especie , Simbiosis , Xenorhabdus/clasificación , Xenorhabdus/fisiología
16.
FEMS Microbiol Lett ; 296(1): 124-30, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19459946

RESUMEN

The fatty acid (FA) profiles of myxobacteria contain FA species with double bonds at the Delta(5) and Delta(11) positions, the latter being rather unusual among bacteria. Despite this knowledge, the mechanism for introduction of these double bonds has never been described before in myxobacteria. Searches for candidate genes in the genome of the model organism Myxococcus xanthus revealed 16 genes, which have been annotated as FA desaturases. However, due to redundant substrate specificity, functional analyses of these enzymes by construction of inactivation mutants did not lead to the identification of their function or substrate specificity. Therefore, we elucidated the regioselectivity of the desaturation reactions by heterologous expression of eight desaturases from M. xanthus in Pseudomonas putida and thus could prove five of them to be indeed active as desaturases, with three (MXAN_1742, MXAN_3495 and MXAN_5461) and two (MXAN_0317 and MXAN_6306) acting as Delta(5) and Delta(11) desaturases, respectively. This is the first report about the heterologous expression and regioselectivity of FA desaturases in myxobacteria.


Asunto(s)
Ácido Graso Desaturasas/metabolismo , Myxococcus xanthus/enzimología , Clonación Molecular , Biología Computacional/métodos , Ácido Graso Desaturasas/genética , Expresión Génica , Técnicas de Inactivación de Genes , Genoma Bacteriano , Myxococcus xanthus/genética , Filogenia , Pseudomonas putida/genética , Análisis de Secuencia de ADN/métodos , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA