Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
PLoS One ; 9(6): e101408, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24971995

RESUMEN

Selenium (Se) is an element that in trace quantities is both essential in mammals but also toxic to bacteria, yeast, plants and animals, including C. elegans. Our previous studies showed that selenite was four times as toxic as selenate to C. elegans, but that deletion of thioredoxin reductase did not modulate Se toxicity. To characterize Se regulation of the full transcriptome, we conducted a microarray study in C. elegans cultured in axenic media supplemented with 0, 0.05, 0.1, 0.2, and 0.4 mM Se as selenite. C. elegans cultured in 0.2 and 0.4 mM Se displayed a significant delay in growth as compared to 0, 0.05, or 0.1 mM Se, indicating Se-induced toxicity, so worms were staged to mid-L4 larval stage for these studies. Relative to 0.1 mM Se treatment, culturing C. elegans at these Se concentrations resulted in 1.9, 9.7, 5.5, and 2.3%, respectively, of the transcriptome being altered by at least 2-fold. This toxicity altered the expression of 295 overlapping transcripts, which when filtered against gene sets for sulfur and cadmium toxicity, identified a dataset of 182 toxic-Se specific genes that were significantly enriched in functions related to oxidoreductase activity, and significantly depleted in genes related to structural components of collagen and the cuticle. Worms cultured in low Se (0 mM Se) exhibited no signs of deficiency, but low Se was accompanied by a transcriptional response of 59 genes changed ≥2-fold when compared to all other Se concentrations, perhaps due to decreases in Se-dependent TRXR-1 activity. Overall, these results suggest that Se toxicity in C. elegans causes an increase in ROS and stress responses, marked by increased expression of oxidoreductases and reduced expression of cuticle-associated genes, which together underlie the impaired growth observed in these studies.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/efectos de los fármacos , Selenio/toxicidad , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Transcriptoma , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Perfilación de la Expresión Génica , Estrés Fisiológico/genética , Reductasa de Tiorredoxina-Disulfuro/genética
2.
PLoS One ; 8(8): e71525, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23936512

RESUMEN

Thioredoxin reductase-1 (TRXR-1) is the sole selenoprotein in C. elegans, and selenite is a substrate for thioredoxin reductase, so TRXR-1 may play a role in metabolism of selenium (Se) to toxic forms. To study the role of TRXR in Se toxicity, we cultured C. elegans with deletions of trxr-1, trxr-2, and both in axenic media with increasing concentrations of inorganic Se. Wild-type C. elegans cultured for 12 days in Se-deficient axenic media grow and reproduce equivalent to Se-supplemented media. Supplementation with 0-2 mM Se as selenite results in inverse, sigmoidal response curves with an LC50 of 0.20 mM Se, due to impaired growth rather than reproduction. Deletion of trxr-1, trxr-2 or both does not modulate growth or Se toxicity in C. elegans grown axenically, and (75)Se labeling showed that TRXR-1 arises from the trxr-1 gene and not from bacterial genes. Se response curves for selenide (LC50 0.23 mM Se) were identical to selenite, but selenate was 1/4(th) as toxic (LC50 0.95 mM Se) as selenite and not modulated by TRXR deletion. These nutritional and genetic studies in axenic media show that Se and TRXR are not essential for C. elegans, and that TRXR alone is not essential for metabolism of inorganic Se to toxic species.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/enzimología , Técnicas de Inactivación de Genes , Ácido Selénico/toxicidad , Ácido Selenioso/toxicidad , Reductasa de Tiorredoxina-Disulfuro/deficiencia , Reductasa de Tiorredoxina-Disulfuro/genética , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Masculino , Tiorredoxina Reductasa 1/deficiencia , Tiorredoxina Reductasa 1/genética , Tiorredoxina Reductasa 1/metabolismo , Tiorredoxina Reductasa 2/deficiencia , Tiorredoxina Reductasa 2/genética , Tiorredoxina Reductasa 2/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo
3.
Pancreas ; 39(3): 377-84, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19904225

RESUMEN

OBJECTIVES: Our aim was to determine if total parenteral nutrition (TPN)-induced pancreatic atrophy and Hsp70 expression attenuates cerulein-induced pancreatitis in rats. METHODS: Rats were randomized to a 7-day course of saline infusion plus a semipurified diet or TPN, with or without an intravenous cerulein injection or vehicle on day 7, and killed 1 or 6 hours after the injection. Based on a pilot study, 1 hour was the primary time point. Pancreatic atrophy was determined by mass, protein, and DNA contents. Pancreatic heat shock protein 70 (Hsp70) expression was measured by Western analysis. Histological examination of the pancreas assessed for edema, inflammation, vacuolization, and apoptosis. Serum amylase activity was measured using the Phadebas assay. Pancreatic trypsinogen activation was measured using a fluorometric substrate assay. RESULTS: The saline-infused rats fed orally gained significantly more weight than TPN rats. The TPN decreased the pancreatic mass and protein content and the protein-DNA ratio and increased the pancreatic DNA content compared with the saline. The TPN increased the pancreatic Hsp70 expression by 91% compared with the saline. The TPN reduced the cerulein-induced pancreatic histological edema, the vacuolization, and the inflammation compared with the saline. The increase in the serum amylase level after cerulein injection was significantly attenuated, and trypsinogen activation was reduced in TPN animals compared with the saline group. CONCLUSIONS: Lack of luminal nutrients with a 7-day course of TPN provides moderate protection against cerulein-induced pancreatitis in rats.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Pancreatitis/terapia , Nutrición Parenteral Total , Amilasas/sangre , Animales , Ceruletida/toxicidad , Masculino , Pancreatitis/inducido químicamente , Pancreatitis/metabolismo , Ratas , Ratas Sprague-Dawley , Tripsinógeno/metabolismo
4.
JPEN J Parenter Enteral Nutr ; 33(6): 629-38; discussion 638-9, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19644131

RESUMEN

BACKGROUND: Bowel resection may lead to short bowel syndrome (SBS), which often requires parenteral nutrition (PN) due to inadequate intestinal adaptation. The objective of this study was to determine the time course of adaptation and proglucagon system responses after bowel resection in a PN-dependent rat model of SBS. METHODS: Rats underwent jugular catheter placement and a 60% jejunoileal resection + cecectomy with jejunoileal anastomosis or transection control surgery. Rats were maintained exclusively with PN and killed at 4 hours to 12 days. A nonsurgical group served as baseline. Bowel growth and digestive capacity were assessed by mucosal mass, protein, DNA, histology, and sucrase activity. Plasma insulin-like growth factor I (IGF-I) and bioactive glucagon-like peptide 2 (GLP-2) were measured by radioimmunoassay. RESULTS: Jejunum cellularity changed significantly over time with resection but not transection, peaking at days 3-4 and declining by day 12. Jejunum sucrase-specific activity decreased significantly with time after resection and transection. Colon crypt depth increased over time with resection but not transection, peaking at days 7-12. Plasma bioactive GLP-2 and colon proglucagon levels peaked from days 4-7 after resection and then approached baseline. Plasma IGF-I increased with resection through day 12. Jejunum and colon GLP-2 receptor RNAs peaked by day 1 and then declined below baseline. CONCLUSIONS: After bowel resection resulting in SBS in the rat, peak proglucagon, plasma GLP-2, and GLP-2 receptor levels are insufficient to promote jejunal adaptation. The colon adapts with resection, expresses proglucagon, and should be preserved when possible in massive intestinal resection.


Asunto(s)
Colon/metabolismo , Péptido 2 Similar al Glucagón/metabolismo , Yeyuno/patología , Proglucagón/metabolismo , Síndrome del Intestino Corto/metabolismo , Animales , Colon/cirugía , Péptido 2 Similar al Glucagón/sangre , Receptor del Péptido 2 Similar al Glucagón , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Yeyuno/metabolismo , Yeyuno/cirugía , Masculino , Modelos Animales , Nutrición Parenteral , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Glucagón/sangre , Síndrome del Intestino Corto/patología , Síndrome del Intestino Corto/fisiopatología , Sacarosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA