Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(11): 6629-6646, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38567728

RESUMEN

Enzyme activity is determined by various different mechanisms, including posttranslational modifications and allosteric regulation. Allosteric activators are often metabolites but other molecules serve similar functions. So far, examples of long non-coding RNAs (lncRNAs) acting as allosteric activators of enzyme activity are missing. Here, we describe the function of mitolnc in cardiomyocytes, a nuclear encoded long non-coding RNA, located in mitochondria and directly interacting with the branched-chain ketoacid dehydrogenase (BCKDH) complex to increase its activity. The BCKDH complex is critical for branched-chain amino acid catabolism (BCAAs). Inactivation of mitolnc in mice reduces BCKDH complex activity, resulting in accumulation of BCAAs in the heart and cardiac hypertrophy via enhanced mTOR signaling. We found that mitolnc allosterically activates the BCKDH complex, independent of phosphorylation. Mitolnc-mediated regulation of the BCKDH complex constitutes an important additional layer to regulate the BCKDH complex in a tissue-specific manner, evading direct coupling of BCAA metabolism to ACLY-dependent lipogenesis.


Asunto(s)
Aminoácidos de Cadena Ramificada , Cardiomegalia , ARN Largo no Codificante , Animales , Regulación Alostérica , Ratones , Cardiomegalia/metabolismo , Cardiomegalia/genética , Aminoácidos de Cadena Ramificada/metabolismo , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , Miocitos Cardíacos/metabolismo , Humanos , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/metabolismo , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/genética , Transducción de Señal , Ratones Endogámicos C57BL , Serina-Treonina Quinasas TOR/metabolismo , Masculino , Ratones Noqueados
2.
EMBO J ; 39(22): e105098, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-32960481

RESUMEN

Chromatin remodeling complexes have functions in transcriptional regulation and chromosome maintenance, but it is mostly unknown how the function of these normally ubiquitous complexes is specified in the cellular context. Here, we describe that the evolutionary conserved long non-coding RNA linc-MYH regulates the composition of the INO80 chromatin remodeler complex in muscle stem cells and prevents interaction with WDR5 and the transcription factor YY1. Linc-MYH acts as a selective molecular switch in trans that governs the pro-proliferative function of the ubiquitous INO80 complex but does not affect its role in maintaining genomic stability. The molecular switch is essential for restricting generation of quiescent MuSCs and proliferation of myoblasts in homeostasis and regeneration. Since linc-MYH is expressed in proliferating myoblasts but not in quiescent MuSCs, we reason that the extent of myoblast proliferation has decisive effects on the size of the quiescent MuSC pool.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Unión al ADN/metabolismo , Hipertrofia/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , ARN Largo no Codificante/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Animales , Proliferación Celular , Cromatina , ADN Glicosilasas/genética , Proteínas de Unión al ADN/genética , Epigenómica , Regulación Enzimológica de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/citología , Mioblastos/citología , ARN Largo no Codificante/genética , ARN no Traducido , Regeneración/fisiología , Transcriptoma , Factor de Transcripción YY1/genética
3.
Nature ; 529(7585): 216-20, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26735015

RESUMEN

Endothelial cells (ECs) are plastic cells that can switch between growth states with different bioenergetic and biosynthetic requirements. Although quiescent in most healthy tissues, ECs divide and migrate rapidly upon proangiogenic stimulation. Adjusting endothelial metabolism to the growth state is central to normal vessel growth and function, yet it is poorly understood at the molecular level. Here we report that the forkhead box O (FOXO) transcription factor FOXO1 is an essential regulator of vascular growth that couples metabolic and proliferative activities in ECs. Endothelial-restricted deletion of FOXO1 in mice induces a profound increase in EC proliferation that interferes with coordinated sprouting, thereby causing hyperplasia and vessel enlargement. Conversely, forced expression of FOXO1 restricts vascular expansion and leads to vessel thinning and hypobranching. We find that FOXO1 acts as a gatekeeper of endothelial quiescence, which decelerates metabolic activity by reducing glycolysis and mitochondrial respiration. Mechanistically, FOXO1 suppresses signalling by MYC (also known as c-MYC), a powerful driver of anabolic metabolism and growth. MYC ablation impairs glycolysis, mitochondrial function and proliferation of ECs while its EC-specific overexpression fuels these processes. Moreover, restoration of MYC signalling in FOXO1-overexpressing endothelium normalizes metabolic activity and branching behaviour. Our findings identify FOXO1 as a critical rheostat of vascular expansion and define the FOXO1-MYC transcriptional network as a novel metabolic checkpoint during endothelial growth and proliferation.


Asunto(s)
Endotelio Vascular/crecimiento & desarrollo , Endotelio Vascular/metabolismo , Factores de Transcripción Forkhead/metabolismo , Animales , Proliferación Celular , Respiración de la Célula , Endotelio Vascular/citología , Femenino , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/deficiencia , Factores de Transcripción Forkhead/genética , Glucólisis , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-myc/deficiencia , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal
4.
EMBO J ; 36(9): 1199-1214, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28314781

RESUMEN

Control of energy homeostasis and metabolism is achieved by integrating numerous pathways, and miRNAs are involved in this process by regulating expression of multiple target genes. However, relatively little is known about the posttranscriptional processing of miRNAs and a potential role for the precursors they derive from. Here, we demonstrate that mature miRNA-22 is more abundant in muscle from male mice relative to females and that this enables sex-specific regulation of muscular lipid metabolism and body weight by repressing estrogen receptor alpha (ERα) expression. We found that the ERα adjusts its own activity by preventing processing of miR-22 via direct binding to a conserved ERα-binding element within the primary miR-22 precursor. Mutation of the ERα binding site within the pri-miR-22 in vivo eliminates sex-specific differences in miR-22 expression. We reason that the resulting tissue selective negative feedback regulation is essential to establish sex-specific differences in muscle metabolism and body weight development.


Asunto(s)
Receptor alfa de Estrógeno/biosíntesis , Regulación de la Expresión Génica , Metabolismo de los Lípidos , MicroARNs/metabolismo , Músculos/metabolismo , Animales , Masculino , Ratones , Factores Sexuales
5.
Nucleic Acids Res ; 46(14): 7097-7107, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-29860503

RESUMEN

The two paralogous zinc finger factors CTCF and CTCFL differ in expression such that CTCF is ubiquitously expressed, whereas CTCFL is found during spermatogenesis and in some cancer types in addition to other cell types. Both factors share the highly conserved DNA binding domain and are bound to DNA sequences with an identical consensus. In contrast, both factors differ substantially in the number of bound sites in the genome. Here, we addressed the molecular features for this binding specificity. In contrast to CTCF we found CTCFL highly enriched at 'open' chromatin marked by H3K27 acetylation, H3K4 di- and trimethylation, H3K79 dimethylation and H3K9 acetylation plus the histone variant H2A.Z. CTCFL is enriched at transcriptional start sites and regions bound by transcription factors. Consequently, genes deregulated by CTCFL are highly cell specific. In addition to a chromatin-driven choice of binding sites, we determined nucleotide positions critical for DNA binding by CTCFL, but not by CTCF.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Línea Celular , ADN/química , Humanos , Células K562 , Ratones , Células 3T3 NIH
6.
Arterioscler Thromb Vasc Biol ; 38(2): 414-424, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29217510

RESUMEN

OBJECTIVE: Pressure-induced myogenic tone is involved in autoregulation of local blood flow and confers protection against excessive pressure levels in small arteries and capillaries. Myogenic tone is dependent on smooth muscle microRNAs (miRNAs), but the identity of these miRNAs is unclear. Furthermore, the consequences of altered myogenic tone for hypertension-induced damage to small arteries are not well understood. APPROACH AND RESULTS: The importance of smooth muscle-enriched microRNAs, miR-143/145, for myogenic tone was evaluated in miR-143/145 knockout mice. Furthermore, hypertension-induced vascular injury was evaluated in mesenteric arteries in vivo after angiotensin II infusion. Myogenic tone was abolished in miR-143/145 knockout mesenteric arteries, whereas contraction in response to calyculin A and potassium chloride was reduced by ≈30%. Furthermore, myogenic responsiveness was potentiated by angiotensin II in wild-type but not in knockout mice. Angiotensin II administration in vivo elevated systemic blood pressure in both genotypes. Hypertensive knockout mice developed severe vascular lesions characterized by vascular inflammation, adventitial fibrosis, and neointimal hyperplasia in small mesenteric arteries. This was associated with depolymerization of actin filaments and fragmentation of the elastic laminae at the sites of vascular lesions. CONCLUSIONS: This study demonstrates that miR-143/145 expression is essential for myogenic responsiveness. During hypertension, loss of myogenic tone results in potentially damaging levels of mechanical stress and detrimental effects on small arteries. The results presented herein provide novel insights into the pathogenesis of vascular disease and emphasize the importance of controlling mechanical factors to maintain structural integrity of the vascular wall.


Asunto(s)
Presión Arterial , Hipertensión/metabolismo , MicroARNs/metabolismo , Músculo Liso Vascular/metabolismo , Remodelación Vascular , Vasoconstricción , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patología , Angiotensina II , Animales , Señalización del Calcio , Células Cultivadas , Modelos Animales de Enfermedad , Tejido Elástico/metabolismo , Tejido Elástico/patología , Femenino , Fibrosis , Técnicas de Inactivación de Genes , Hiperplasia , Hipertensión/genética , Hipertensión/patología , Hipertensión/fisiopatología , Masculino , Arterias Mesentéricas/metabolismo , Arterias Mesentéricas/patología , Arterias Mesentéricas/fisiopatología , Ratones Noqueados , MicroARNs/genética , Músculo Liso Vascular/patología , Músculo Liso Vascular/fisiopatología , Neointima , Resistencia Vascular
7.
J Cardiovasc Pharmacol ; 74(5): 409-419, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31425342

RESUMEN

Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke with a high short-term mortality rate which leads to cognitive impairments that reduce the quality of life of the majority of patients. The miRNA-143/145 cluster is highly expressed in vascular smooth muscle cells (VSMC) and has been shown to be necessary for differentiation and function, as well as an important determinant for phenotypic modulation/switching of VSMCs in response to vascular injury. We aimed to determine whether miRNA-143 and miRNA-145 are important regulators of phenotypical changes of VSMCs in relation to SAH, as well as establishing their physiological role in the cerebral vasculature. We applied quantitative PCR to study ischemia-induced alterations in the expression of miRNA-143 and miRNA-145, for rat cerebral vasculature, in an ex vivo organ culture model and an in vivo SAH model. To determine the physiological importance, we did myograph studies on basilar and femoral arteries from miRNA-143/145 knockout mice. miRNA-143 and miRNA-145 are not upregulated in the vasculature following our SAH model, despite the upregulation of miR-145 in the organ culture model. Regarding physiological function, miRNA-143 and miRNA-145 are very important for general contractility in cerebral vessels in response to depolarization, angiotensin II, and endothelin-1. Applying an anti-miRNA targeting approach in SAH does not seem to be a feasible approach because miRNA-143 and miRNA-145 are not upregulated following SAH. The knockout mouse data suggest that targeting miRNA-143 and miRNA-145 would lead to a general reduced contractility of the cerebral vasculature and unwanted dedifferentiation of VSMCs.


Asunto(s)
MicroARNs/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Hemorragia Subaracnoidea/metabolismo , Vasoconstricción , Animales , Arteria Basilar/metabolismo , Arteria Basilar/fisiopatología , Desdiferenciación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Ratones Noqueados , MicroARNs/genética , Arteria Cerebral Media/metabolismo , Arteria Cerebral Media/fisiopatología , Músculo Liso Vascular/fisiopatología , Técnicas de Cultivo de Órganos , Ratas Sprague-Dawley , Hemorragia Subaracnoidea/genética , Hemorragia Subaracnoidea/fisiopatología
8.
J Biol Chem ; 291(7): 3552-68, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26683376

RESUMEN

Both type 1 and type 2 diabetes are associated with increased risk of cardiovascular disease. This is in part attributed to the effects of hyperglycemia on vascular endothelial and smooth muscle cells, but the underlying mechanisms are not fully understood. In diabetic animal models, hyperglycemia results in hypercontractility of vascular smooth muscle possibly due to increased activation of Rho-kinase. The aim of the present study was to investigate the regulation of contractile smooth muscle markers by glucose and to determine the signaling pathways that are activated by hyperglycemia in smooth muscle cells. Microarray, quantitative PCR, and Western blot analyses revealed that both mRNA and protein expression of contractile smooth muscle markers were increased in isolated smooth muscle cells cultured under high compared with low glucose conditions. This effect was also observed in hyperglycemic Akita mice and in diabetic patients. Elevated glucose activated the protein kinase C and Rho/Rho-kinase signaling pathways and stimulated actin polymerization. Glucose-induced expression of contractile smooth muscle markers in cultured cells could be partially or completely repressed by inhibitors of advanced glycation end products, L-type calcium channels, protein kinase C, Rho-kinase, actin polymerization, and myocardin-related transcription factors. Furthermore, genetic ablation of the miR-143/145 cluster prevented the effects of glucose on smooth muscle marker expression. In conclusion, these data demonstrate a possible link between hyperglycemia and vascular disease states associated with smooth muscle contractility.


Asunto(s)
Aterosclerosis/metabolismo , Angiopatías Diabéticas/metabolismo , Regulación de la Expresión Génica , MicroARNs/metabolismo , Músculo Liso Vascular/metabolismo , Transducción de Señal , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patología , Anciano , Animales , Aterosclerosis/enzimología , Aterosclerosis/patología , Células Cultivadas , Proteínas Contráctiles/agonistas , Proteínas Contráctiles/genética , Proteínas Contráctiles/metabolismo , Proteínas del Citoesqueleto/agonistas , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Angiopatías Diabéticas/enzimología , Angiopatías Diabéticas/patología , Humanos , Masculino , Ratones Noqueados , Ratones Mutantes , Músculo Liso Vascular/enzimología , Músculo Liso Vascular/patología , Proteína Quinasa C/química , Proteína Quinasa C/metabolismo , Proteínas de Unión al GTP rho/agonistas , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/química , Quinasas Asociadas a rho/metabolismo
9.
J Vasc Res ; 54(4): 246-256, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28796998

RESUMEN

BACKGROUND: Serotonin (5-HT) is considered to play a role in pulmonary arterial hypertension by regulating vascular remodeling and smooth muscle contractility. Here, arteries from mice with inducible and smooth muscle-specific deletion of Dicer were used to address mechanisms by which microRNAs control 5-HT-induced contraction. METHODS: Mice were used 5 weeks after Dicer deletion, and pulmonary artery contractility was analyzed by wire myography. RESULTS: No change was seen in right ventricular systolic pressure following dicer deletion, but systemic blood pressure was reduced. Enhanced 5-HT-induced contraction in Dicer KO pulmonary arteries was associated with increased 5-HT2A receptor mRNA expression whereas 5-HT1B and 5-HT2B receptor mRNAs were unchanged. Contraction by the 5-HT2A agonist TCB-2 was increased in Dicer KO as was the response to the 5-HT2B agonist BW723C86. Effects of Src and protein kinase C inhibition were similar in control and KO arteries, but the effect of inhibition of Rho kinase was reduced. We identified miR-30c as a potential candidate for 5-HT2A receptor regulation as it repressed 5-HT2A mRNA and protein. CONCLUSION: Our findings show that 5-HT receptor signaling in the arterial wall is subject to regulation by microRNAs and that this entails altered 5-HT2A receptor expression and signaling.


Asunto(s)
MicroARNs/metabolismo , Arteria Pulmonar/efectos de los fármacos , Serotonina/farmacología , Vasoconstricción/efectos de los fármacos , Vasoconstrictores/farmacología , Animales , Células Cultivadas , ARN Helicasas DEAD-box/deficiencia , ARN Helicasas DEAD-box/genética , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica , Genotipo , Masculino , Ratones Noqueados , MicroARNs/genética , Miografía , Fenotipo , Proteína Quinasa C/metabolismo , Arteria Pulmonar/metabolismo , Receptor de Serotonina 5-HT2A/efectos de los fármacos , Receptor de Serotonina 5-HT2A/genética , Receptor de Serotonina 5-HT2A/metabolismo , Ribonucleasa III/deficiencia , Ribonucleasa III/genética , Transducción de Señal/efectos de los fármacos , Transfección , Quinasas Asociadas a rho/metabolismo , Familia-src Quinasas/metabolismo
10.
Circ Res ; 115(2): 296-310, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24807786

RESUMEN

RATIONALE: Myostatin is a major negative regulator of skeletal muscle mass and initiates multiple metabolic changes, including enhanced insulin sensitivity. However, the function of myostatin in the heart is barely understood, although it is upregulated in the myocardium under several pathological conditions. OBJECTIVE: Here, we aimed to decipher the role of myostatin and myostatin-dependent signaling pathways for cardiac function and cardiac metabolism in adult mice. To avoid potential counterregulatory mechanisms occurring in constitutive and germ-line-based myostatin mutants, we generated a mouse model that allows myostatin inactivation in adult cardiomyocytes. METHODS AND RESULTS: Cardiac MRI revealed that genetic inactivation of myostatin signaling in the adult murine heart caused cardiac hypertrophy and heart failure, partially recapitulating effects of the age-dependent decline of the myostatin paralog growth and differentiation factor 11. We found that myostatin represses AMP-activated kinase activation in the heart via transforming growth factor-ß-activated kinase 1, thereby preventing a metabolic switch toward glycolysis and glycogen accumulation. Furthermore, myostatin stimulated expression of regulator of G-protein signaling 2, a GTPase-activating protein that restricts Gaq and Gas signaling and thereby protects against cardiac failure. Inhibition of AMP-activated kinase in vivo rescued cardiac hypertrophy and prevented enhanced glycolytic flow and glycogen accumulation after inactivation of myostatin in cardiomyocytes. CONCLUSIONS: Our results uncover an important role of myostatin in the heart for maintaining cardiac energy homeostasis and preventing cardiac hypertrophy.


Asunto(s)
Cardiomiopatía Hipertrófica Familiar/genética , Metabolismo Energético/fisiología , Insuficiencia Cardíaca/prevención & control , Miocardio/metabolismo , Miostatina/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Cardiomiopatía Hipertrófica Familiar/complicaciones , Linaje de la Célula , Regulación de la Expresión Génica/fisiología , Glucógeno/metabolismo , Glucólisis/fisiología , Insuficiencia Cardíaca/etiología , Homeostasis/fisiología , Quinasas Quinasa Quinasa PAM/fisiología , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Miostatina/deficiencia , Proteínas RGS/fisiología , Proteínas Recombinantes de Fusión , Transducción de Señal/fisiología
11.
Biochem J ; 469(2): 267-78, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25984582

RESUMEN

Mammalian colon harbours trillions of bacteria under physiological conditions; this symbiosis is made possible because of a tolerized response from the mucosal immune system. The mechanisms underlying this tolerogenic phenomenon remain poorly understood. In the present study we show that Slc5a8 (solute carrier gene family 5a, member 8), a Na(+)-coupled high-affinity transporter in colon for the bacterial fermentation product butyrate, plays a critical role in this process. Among various immune cells in colon, dendritic cells (DCs) are unique not only in their accessibility to luminal contents but also in their ability to induce tolerogenic phenotype in T-cells. We found that DCs exposed to butyrate express the immunosuppressive enzymes indoleamine 2,3-dioxygenase 1 (IDO1) and aldehyde dehydrogenase 1A2 (Aldh1A2), promote conversion of naive T-cells into immunosuppressive forkhead box P3(+) (FoxP3(+)) Tregs (regulatory T-cells) and suppress conversion of naive T-cells into pro-inflammatory interferon (IFN)-γ-producing cells. Slc5a8-null DCs do not induce IDO1 and Aldh1A2 and do not generate Tregs or suppress IFN-γ-producing T-cells in response to butyrate. We also provide in vivo evidence for an obligatory role for Slc5a8 in suppression of IFN-γ-producing T-cells. Furthermore, Slc5a8 protects against colitis and colon cancer under conditions of low-fibre intake but not when dietary fibre intake is optimal. This agrees with the high-affinity nature of the transporter to mediate butyrate entry into cells. We conclude that Slc5a8 is an obligatory link between dietary fibre and mucosal immune system via the bacterial metabolite butyrate and that this transporter is a conditional tumour suppressor in colon linked to dietary fibre content.


Asunto(s)
Proteínas de Transporte de Catión/inmunología , Colitis/inmunología , Colon/inmunología , Neoplasias del Colon/inmunología , Fibras de la Dieta/farmacología , Inmunidad Mucosa , Proteínas Supresoras de Tumor/inmunología , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/inmunología , Familia de Aldehído Deshidrogenasa 1 , Animales , Ácido Butírico/farmacología , Proteínas de Transporte de Catión/genética , Colitis/genética , Colitis/patología , Colon/patología , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Células Dendríticas/inmunología , Células Dendríticas/patología , Ácidos Grasos/genética , Ácidos Grasos/inmunología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/inmunología , Antagonistas de los Receptores Histamínicos/farmacología , Tolerancia Inmunológica/efectos de los fármacos , Tolerancia Inmunológica/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Interferón gamma/genética , Interferón gamma/inmunología , Ratones , Ratones Noqueados , Transportadores de Ácidos Monocarboxílicos , Retinal-Deshidrogenasa , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología , Proteínas Supresoras de Tumor/genética
12.
PLoS Genet ; 9(9): e1003793, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24068960

RESUMEN

miRNAs are small RNAs directing many developmental processes by posttranscriptional regulation of protein-coding genes. We uncovered a new role for miR-1-1/133a-2 and miR-1-2/133a-1 clusters in the specification of embryonic cardiomyocytes allowing transition from an immature state characterized by expression of smooth muscle (SM) genes to a more mature fetal phenotype. Concomitant knockout of miR-1-1/133a-2 and miR-1-2/133a-1 released suppression of the transcriptional co-activator myocardin, a major regulator of SM gene expression, but not of its binding partner SRF. Overexpression of myocardin in the embryonic heart essentially recapitulated the miR-1/133a mutant phenotype at the molecular level, arresting embryonic cardiomyocytes in an immature state. Interestingly, the majority of postulated miR-1/133a targets was not altered in double mutant mice, indicating that the ability of miR-1/133a to suppress target molecules strongly depends on the cellular context. Finally, we show that myocardin positively regulates expression of miR-1/133a, thus constituting a negative feedback loop that is essential for early cardiac development.


Asunto(s)
Desarrollo Embrionario , Corazón/embriología , MicroARNs/genética , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Linaje de la Célula , Regulación del Desarrollo de la Expresión Génica , Ratones , MicroARNs/metabolismo , Músculo Liso/metabolismo , Mutación , Miocitos Cardíacos/citología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Regulación hacia Arriba
13.
Proc Natl Acad Sci U S A ; 110(48): 19408-13, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24218554

RESUMEN

Mitochondrial DNA (mtDNA) in adult human heart is characterized by complex molecular forms held together by junctional molecules of unknown biological significance. These junctions are not present in mouse hearts and emerge in humans during postnatal development, concomitant with increased demand for oxidative metabolism. To analyze the role of mtDNA organization during oxidative stress in cardiomyocytes, we used a mouse model, which recapitulates the complex mtDNA organization of human hearts by overexpression of the mitochondrial helicase, TWINKLE. Overexpression of TWINKLE rescued the oxidative damage induced replication stalling of mtDNA, reduced mtDNA point mutation load, and modified mtDNA rearrangements in heterozygous mitochondrial superoxide dismutase knockout hearts, as well as ameliorated cardiomyopathy in mice superoxide dismutase knockout in a p21-dependent manner. We conclude that mtDNA integrity influences cell survival and reason that tissue specific modes of mtDNA maintenance represent an adaptation to oxidative stress.


Asunto(s)
Adaptación Biológica/fisiología , ADN Helicasas/metabolismo , ADN Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Animales , Secuencia de Bases , Southwestern Blotting , Western Blotting , ADN Helicasas/farmacología , Replicación del ADN/efectos de los fármacos , ADN Mitocondrial/fisiología , Electroforesis en Gel Bidimensional , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunohistoquímica , Imagen por Resonancia Magnética , Ratones , Ratones Noqueados , Proteínas Mitocondriales/farmacología , Datos de Secuencia Molecular , Miocitos Cardíacos/fisiología , Superóxido Dismutasa/genética
14.
Am J Physiol Renal Physiol ; 309(6): F523-30, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26109087

RESUMEN

In many circumstances, the pathogenesis of distal renal tubular acidosis (dRTA) is not understood. In the present study, we report that a mouse model lacking the electrogenic Na(+)-HCO3 (-) cotransporter [NBCe2/Slc4a5; NBCe2 knockout (KO) mice] developed dRTA after an oral acid challenge. NBCe2 expression was identified in the connecting tubule (CNT) of wild-type mice, and its expression was significantly increased after acid loading. NBCe2 KO mice did not have dRTA when on a standard mouse diet. However, after acid loading, NBCe2 KO mice exhibited complete features of dRTA, characterized by insufficient urinary acidification, hyperchloremic hypokalemic metabolic acidosis, and hypercalciuria. Additional experiments showed that NBCe2 KO mice had decreased luminal transepithelial potential in the CNT, as revealed by micropuncture. Further immunofluorescence and Western blot experiments found that NBCe2 KO mice had increased expression of H(+)-ATPase B1 in the plasma membrane. These results showed that NBCe2 KO mice with acid loading developed increased urinary K(+) and Ca(2+) wasting due to decreased luminal transepithelial potential in the CNT. NBCe2 KO mice compensated to maintain systemic pH by increasing H(+)-ATPase in the plasma membrane. Therefore, defects in NBCe2 can cause dRTA, and NBCe2 has an important role to regulate urinary acidification and the transport of K(+) and Ca(2+) in the distal nephron.


Asunto(s)
Acidosis Tubular Renal/metabolismo , Túbulos Renales Distales/metabolismo , Simportadores de Sodio-Bicarbonato/genética , Simportadores de Sodio-Bicarbonato/fisiología , Animales , Membrana Celular/metabolismo , Cloro/metabolismo , Hipercalciuria/metabolismo , Hipopotasemia/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ATPasas de Translocación de Protón/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo
15.
Circ Res ; 112(8): 1150-8, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-23476055

RESUMEN

RATIONALE: High-angiotensin-converting enzyme (ACE)-levels are associated with cardiovascular disease, but little is known about the regulation of its expression. OBJECTIVE: To assess the molecular mechanisms regulating endothelial ACE expression focusing on the role of the AMP-activated protein kinase (AMPK) and miR-143/145. METHODS AND RESULTS: Shear stress decreased ACE expression in cultured endothelial cells, an effect prevented by downregulating AMPKα2 but not AMPKα1. AMPKα2(-/-) mice expressed higher ACE levels than wild-type littermates resulting in impaired hindlimb vasodilatation to the ACE substrate, bradykinin. The latter response was also evident in animals lacking the AMPKα2 subunit only in endothelial cells. In cultured endothelial cells, miR-143/145 levels were increased by shear stress in an AMPKα2-dependent manner, and miR-143/145 overexpression decreased ACE expression. The effect of shear stress was unrelated to an increase in miR-143/145 promoter activity and transcription but could be attributed to post-transcriptional regulation of precursor-miR-143/145 by AMPKα2. The AMPK substrate, p53, can enhance the post-transcriptional processing of several microRNAs, including miR-143/145. We found that shear stress elicited the AMPKα2-dependent phosphorylation of p53 (on Ser15), and that p53 downregulation prevented the shear stress-induced decrease in ACE expression. Streptozotocin-induced diabetes mellitus in mice was studied as a pathophysiological model of altered AMPK activity. Diabetes mellitus increased tissue phosphorylation of the AMPK substrates, p53 and acetyl-coenzyme A carboxylase, changes that correlated with increased miR-143/145 levels and decreased ACE expression. CONCLUSIONS: AMPKα2 suppresses endothelial ACE expression via the phosphorylation of p53 and upregulation of miR-143/145. Post-transcriptional regulation of miR-143/145 may contribute to the vascular complications associated with diabetes mellitus.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Regulación Enzimológica de la Expresión Génica , Genes p53/genética , MicroARNs/genética , Peptidil-Dipeptidasa A/deficiencia , Proteínas Quinasas Activadas por AMP/deficiencia , Proteínas Quinasas Activadas por AMP/genética , Animales , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , MicroARNs/metabolismo , Peptidil-Dipeptidasa A/biosíntesis , Peptidil-Dipeptidasa A/genética , Fosforilación/genética , Procesamiento Postranscripcional del ARN/genética
16.
Nucleic Acids Res ; 41(5): 3010-21, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23361464

RESUMEN

The heterogeneous collection of nucleosome remodelling and deacetylation (NuRD) complexes can be grouped into the MBD2- or MBD3-containing complexes MBD2-NuRD and MBD3-NuRD. MBD2 is known to bind to methylated CpG sequences in vitro in contrast to MBD3. Although functional differences have been described, a direct comparison of MBD2 and MBD3 in respect to genome-wide binding and function has been lacking. Here, we show that MBD2-NuRD, in contrast to MBD3-NuRD, converts open chromatin with euchromatic histone modifications into tightly compacted chromatin with repressive histone marks. Genome-wide, a strong enrichment for MBD2 at methylated CpG sequences is found, whereas CpGs bound by MBD3 are devoid of methylation. MBD2-bound genes are generally lower expressed as compared with MBD3-bound genes. When depleting cells for MBD2, the MBD2-bound genes increase their activity, whereas MBD2 plus MBD3-bound genes reduce their activity. Most strikingly, MBD3 is enriched at active promoters, whereas MBD2 is bound at methylated promoters and enriched at exon sequences of active genes.


Asunto(s)
Islas de CpG , Proteínas de Unión al ADN/fisiología , Exones , Regiones Promotoras Genéticas , Animales , Sitios de Unión , Línea Celular , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Eucromatina/metabolismo , Genoma Humano , Humanos , Unión Proteica , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiología , Transporte de Proteínas , Ratas , Sitio de Iniciación de la Transcripción
17.
BMC Biol ; 12: 21, 2014 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-24661562

RESUMEN

BACKGROUND: The high-mobility-group (HMG) proteins are the most abundant non-histone chromatin-associated proteins. HMG proteins are present at high levels in various undifferentiated tissues during embryonic development and their levels are strongly reduced in the corresponding adult tissues, where they have been implicated in maintaining and activating stem/progenitor cells. Here we deciphered the role of the high-mobility-group AT-hook protein 2 (HMGA2) during lung development by analyzing the lung of Hmga2-deficient mice (Hmga2(-/-)). RESULTS: We found that Hmga2 is expressed in the mouse embryonic lung at the distal airways. Analysis of Hmga2(-/-) mice showed that Hmga2 is required for proper cell proliferation and distal epithelium differentiation during embryonic lung development. Hmga2 knockout led to enhanced canonical WNT signaling due to an increased expression of secreted WNT glycoproteins Wnt2b, Wnt7b and Wnt11 as well as a reduction of the WNT signaling antagonizing proteins GATA-binding protein 6 and frizzled homolog 2. Analysis of siRNA-mediated loss-of-function experiments in embryonic lung explant culture confirmed the role of Hmga2 as a key regulator of distal lung epithelium differentiation and supported the causal involvement of enhanced canonical WNT signaling in mediating the effect of Hmga2-loss-of-fuction. Finally, we found that HMGA2 directly regulates Gata6 and thereby modulates Fzd2 expression. CONCLUSIONS: Our results support that Hmga2 regulates canonical WNT signaling at different points of the pathway. Increased expression of the secreted WNT glycoproteins might explain a paracrine effect by which Hmga2-knockout enhanced cell proliferation in the mesenchyme of the developing lung. In addition, HMGA2-mediated direct regulation of Gata6 is crucial for fine-tuning the activity of WNT signaling in the airway epithelium. Our results are the starting point for future studies investigating the relevance of Hmga2-mediated regulation of WNT signaling in the adult lung within the context of proper balance between differentiation and self-renewal of lung stem/progenitor cells during lung regeneration in both homeostatic turnover and repair after injury.


Asunto(s)
Proteína HMGA2/metabolismo , Pulmón/embriología , Pulmón/metabolismo , Vía de Señalización Wnt , Animales , Diferenciación Celular , Proliferación Celular , Embrión de Mamíferos/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Epitelio/embriología , Epitelio/metabolismo , Receptores Frizzled/metabolismo , Factor de Transcripción GATA6/metabolismo , Proteína HMGA2/deficiencia , Ratones , Ratones Noqueados , Fenotipo
18.
Am J Physiol Cell Physiol ; 307(12): C1093-101, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25273883

RESUMEN

MicroRNAs have emerged as regulators of smooth muscle cell phenotype with a role in smooth muscle-related disease. Studies have shown that miR-143 and miR-145 are the most highly expressed microRNAs in smooth muscle cells, controlling differentiation and function. The effect of miR-143/145 knockout has been established in the vasculature but not in smooth muscle from other organs. Using knockout mice we found that maximal contraction induced by either depolarization or phosphatase inhibition was reduced in vascular and airway smooth muscle but maintained in the urinary bladder. Furthermore, a reduction of media thickness and reduced expression of differentiation markers was seen in the aorta but not in the bladder. Supporting the view that phenotype switching depends on a tissue-specific target of miR-143/145, we found induction of angiotensin-converting enzyme in the aorta but not in the bladder where angiotensin-converting enzyme was expressed at a low level. Chronic treatment with angiotensin type-1 receptor antagonist restored contractility in miR-143/145-deficient aorta while leaving bladder contractility unaffected. This shows that tissue-specific targets are critical for the effects of miR-143/145 on smooth muscle differentiation and that angiotensin converting enzyme is one such target.


Asunto(s)
Aorta/enzimología , Eliminación de Gen , MicroARNs/metabolismo , Contracción Muscular , Músculo Liso Vascular/enzimología , Peptidil-Dipeptidasa A/biosíntesis , Vasoconstricción , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Aorta/efectos de los fármacos , Aorta/fisiopatología , Relación Dosis-Respuesta a Droga , Inducción Enzimática , Genotipo , Ratones Noqueados , MicroARNs/genética , Contracción Muscular/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/fisiopatología , Técnicas de Cultivo de Órganos , Peptidil-Dipeptidasa A/genética , Fenotipo , Sistema Respiratorio/enzimología , Sistema Respiratorio/fisiopatología , Transducción de Señal , Vejiga Urinaria/enzimología , Vejiga Urinaria/fisiopatología , Vasoconstricción/efectos de los fármacos , Vasoconstrictores/farmacología
19.
Hum Mol Genet ; 21(5): 1025-36, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22082831

RESUMEN

The human SLC4A5 gene has been identified as a hypertension susceptibility gene based on the association of single nucleotide polymorphisms with blood pressure (BP) levels and hypertension status. The biochemical basis of this association is unknown particularly since no single gene variant was linked to hypertension in humans. SLC4A5 (NBCe2, NBC4) is expressed in the collecting duct of the kidney and acts as an electrogenic ion-transporter that transports sodium and bicarbonate with a 1:2 or 1:3 stoichiometry allowing bicarbonate reabsorption with relatively minor concurrent sodium uptake. We have mutated the Slc4a5 gene in mice, which caused a persistent increase in systolic and diastolic BP. Slc4a5 mutant mice also displayed a compensated metabolic acidosis and hyporeninemic hypoaldosteronism. Analysis of kidney physiology revealed elevated fluid intake and urine excretion and increased glomerular filtration rate. Transcriptome analysis uncovers possible compensatory mechanisms induced by SLC4A5 mutation, including upregulation of SLC4A7 and pendrin as well as molecular mechanisms associated with hypertension. Induction of metabolic alkalosis eliminated the BP difference between wild-type and Slc4a5 mutant mice. We conclude that the impairment of the function of SLC4A5 favors development of a hypertensive state. We reason that the loss of sodium-sparing bicarbonate reabsorption by SLC4A5 initiates a regulatory cascade consisting of compensatory bicarbonate reabsorption via other sodium-bicarbonate transporters (e.g. SLC4A7) at the expense of an increased sodium uptake. This will ultimately raise BP and cause hypoaldosteronism, thus providing a mechanistic explanation for the linkage of the SLC4A5 locus to hypertension in humans.


Asunto(s)
Acidosis Tubular Renal/genética , Regulación de la Expresión Génica , Hipertensión/genética , Túbulos Renales/metabolismo , Riñón/metabolismo , Simportadores de Sodio-Bicarbonato/genética , Simportadores de Sodio-Bicarbonato/metabolismo , Equilibrio Ácido-Base , Acidosis Tubular Renal/metabolismo , Acidosis Tubular Renal/fisiopatología , Aldosterona/sangre , Animales , Factor Natriurético Atrial/sangre , Sangre , Análisis Químico de la Sangre , Presión Sanguínea , Tasa de Filtración Glomerular , Concentración de Iones de Hidrógeno , Hipertensión/metabolismo , Hipertensión/fisiopatología , Hibridación in Situ , Masculino , Ratones , Mutación , Eliminación de Secuencia , Sodio/metabolismo , Bicarbonato de Sodio/metabolismo , Micción , Orina/química
20.
Basic Res Cardiol ; 109(1): 396, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24292852

RESUMEN

Heart failure (HF) is a common and potentially deadly condition, which frequently develops as a consequence of various diseases of the heart. The incidence of heart failure continuously increases in aging societies illustrating the need for new therapeutic approaches. We recently discovered that continuous activation of oncostatin M (OSM), a cytokine of the interleukin-6 family that induces dedifferentiation of cardiomyocytes, promotes progression of heart failure in dilative cardiomyopathy. To evaluate whether inhibition of OSM signaling represents a meaningful therapeutic approach to prevent heart failure we attenuated OSM-receptor (Oß) signaling in a mouse model of inflammatory dilative cardiomyopathy. We found that administration of an antibody directed against the extracellular domain of Oß or genetic inactivation of a single allele of the Oß gene reduced cardiomyocyte remodeling and dedifferentiation resulting in improved cardiac performance and increased survival. We conclude that pharmacological attenuation of long-lasting Oß signaling is a promising strategy to treat different types and stages of HF that go along with infiltration by OSM-releasing inflammatory cells.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Cardiomiopatía Dilatada/metabolismo , Subunidad beta del Receptor de Oncostatina M/antagonistas & inhibidores , Transducción de Señal/fisiología , Animales , Western Blotting , Desdiferenciación Celular , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/metabolismo , Humanos , Inflamación/metabolismo , Factor I del Crecimiento Similar a la Insulina , Imagen por Resonancia Magnética , Ratones , Ratones Noqueados , Ratones Transgénicos , Microscopía Fluorescente , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA