RESUMEN
In neutrophils, nicotinamide adenine dinucleotide phosphate (NADPH) generated via the pentose phosphate pathway fuels NADPH oxidase NOX2 to produce reactive oxygen species for killing invading pathogens. However, excessive NOX2 activity can exacerbate inflammation, as in acute respiratory distress syndrome (ARDS). Here, we use two unbiased chemical proteomic strategies to show that small-molecule LDC7559, or a more potent designed analog NA-11, inhibits the NOX2-dependent oxidative burst in neutrophils by activating the glycolytic enzyme phosphofructokinase-1 liver type (PFKL) and dampening flux through the pentose phosphate pathway. Accordingly, neutrophils treated with NA-11 had reduced NOX2-dependent outputs, including neutrophil cell death (NETosis) and tissue damage. A high-resolution structure of PFKL confirmed binding of NA-11 to the AMP/ADP allosteric activation site and explained why NA-11 failed to agonize phosphofructokinase-1 platelet type (PFKP) or muscle type (PFKM). Thus, NA-11 represents a tool for selective activation of PFKL, the main phosphofructokinase-1 isoform expressed in immune cells.
Asunto(s)
Fagocitosis , Fosfofructoquinasa-1 Tipo Hepático/metabolismo , Estallido Respiratorio , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , Regulación Alostérica/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Glucólisis/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cinética , Viabilidad Microbiana/efectos de los fármacos , Modelos Moleculares , NADPH Oxidasas/metabolismo , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Fagocitosis/efectos de los fármacos , Proteínas de Unión a Fosfato/metabolismo , Fosfofructoquinasa-1 Tipo Hepático/antagonistas & inhibidores , Fosfofructoquinasa-1 Tipo Hepático/ultraestructura , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Recombinantes/aislamiento & purificación , Estallido Respiratorio/efectos de los fármacos , Acetato de Tetradecanoilforbol/farmacologíaRESUMEN
Proteolytic enzymes are key signaling molecules in both normal physiological processes and various diseases. After synthesis, protease activity is tightly controlled. Consequently, levels of protease messenger RNA and protein often are not good indicators of total protease activity. To more accurately assign function to new proteases, investigators require methods that can be used to detect and quantify proteolysis. In this review, we describe basic principles, recent advances, and applications of biochemical methods to track protease activity, with an emphasis on the use of activity-based probes (ABPs) to detect protease activity. We describe ABP design principles and use case studies to illustrate the application of ABPs to protease enzymology, discovery and development of protease-targeted drugs, and detection and validation of proteases as biomarkers.
Asunto(s)
Péptido Hidrolasas/química , Péptido Hidrolasas/fisiología , Animales , Bioquímica/métodos , Biomarcadores/química , Caspasas/química , Química Farmacéutica/métodos , Diseño de Fármacos , Escherichia coli/enzimología , Humanos , Péptidos/química , Proteómica/métodos , Especificidad por SustratoRESUMEN
CD4+ T cell differentiation into multiple T helper (Th) cell lineages is critical for optimal adaptive immune responses. This report identifies an intrinsic mechanism by which programmed death-1 receptor (PD-1) signaling imparted regulatory phenotype to Foxp3+ Th1 cells (denoted as Tbet+iTregPDL1 cells) and inducible regulatory T (iTreg) cells. Tbet+iTregPDL1 cells prevented inflammation in murine models of experimental colitis and experimental graft versus host disease (GvHD). Programmed death ligand-1 (PDL-1) binding to PD-1 imparted regulatory function to Tbet+iTregPDL1 cells and iTreg cells by specifically downregulating endo-lysosomal protease asparaginyl endopeptidase (AEP). AEP regulated Foxp3 stability and blocking AEP imparted regulatory function in Tbet+iTreg cells. Also, Aep-/- iTreg cells significantly inhibited GvHD and maintained Foxp3 expression. PD-1-mediated Foxp3 maintenance in Tbet+ Th1 cells occurred both in tumor infiltrating lymphocytes (TILs) and during chronic viral infection. Collectively, this report has identified an intrinsic function for PD-1 in maintaining Foxp3 through proteolytic pathway.
Asunto(s)
Cisteína Endopeptidasas/metabolismo , Factores de Transcripción Forkhead/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Linfocitos T Reguladores/inmunología , Células TH1/inmunología , Animales , Diferenciación Celular/inmunología , Células Cultivadas , Colitis/inmunología , Colitis/patología , Femenino , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/patología , Coriomeningitis Linfocítica/inmunología , Coriomeningitis Linfocítica/patología , Virus de la Coriomeningitis Linfocítica/inmunología , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T Reguladores/citología , Células TH1/citologíaRESUMEN
Serine hydrolases have important roles in signaling and human metabolism, yet little is known about their functions in gut commensal bacteria. Using bioinformatics and chemoproteomics, we identify serine hydrolases in the gut commensal Bacteroides thetaiotaomicron that are specific to the Bacteroidetes phylum. Two are predicted homologs of the human dipeptidyl peptidase 4 (hDPP4), a key enzyme that regulates insulin signaling. Our functional studies reveal that BT4193 is a true homolog of hDPP4 that can be inhibited by FDA-approved type 2 diabetes medications targeting hDPP4, while the other is a misannotated proline-specific triaminopeptidase. We demonstrate that BT4193 is important for envelope integrity and that loss of BT4193 reduces B. thetaiotaomicron fitness during in vitro growth within a diverse community. However, neither function is dependent on BT4193 proteolytic activity, suggesting a scaffolding or signaling function for this bacterial protease.
Asunto(s)
Bacteroides thetaiotaomicron , Diabetes Mellitus Tipo 2 , Humanos , Dipeptidil Peptidasa 4/genética , SerinaRESUMEN
Staphylococcus aureus (S. aureus) is a major human pathogen that is responsible for a wide range of systemic infections. Since its propensity to form biofilms in vivo poses formidable challenges for both detection and treatment, tools that can be used to specifically image S. aureus biofilms are highly valuable for clinical management. Here, we describe the development of oxadiazolone-based activity-based probes to target the S. aureus-specific serine hydrolase FphE. Because this enzyme lacks homologues in other bacteria, it is an ideal target for selective imaging of S. aureus infections. Using X-ray crystallography, direct cell labeling, and mouse models of infection, we demonstrate that oxadiazolone-based probes enable specific labeling of S. aureus bacteria through the direct covalent modification of the FphE active site serine. These results demonstrate the utility of the oxadizolone electrophile for activity-based probes and validate FphE as a target for the development of imaging contrast agents for the rapid detection of S. aureus infections.
Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Ratones , Humanos , Infecciones Estafilocócicas/microbiología , Biopelículas , Modelos Animales de Enfermedad , Serina , AntibacterianosRESUMEN
Macrocyclic peptides are promising scaffolds for the covalent ligand discovery. However, platforms enabling the direct identification of covalent macrocyclic ligands in a high-throughput manner are limited. In this study, we present an mRNA display platform allowing selection of covalent macrocyclic inhibitors using 1,3-dibromoacetone-vinyl sulfone (DBA-VS). Testcase selections on TEV protease resulted in potent covalent inhibitors with diverse cyclic structures, among which cTEV6-2, a macrocyclic peptide with a unique C-terminal cyclization, emerged as the most potent covalent inhibitor of TEV protease described to-date. This study outlines the workflow for integrating chemical functionalizationâinstallation of a covalent warheadâwith mRNA display and showcases its application in targeted covalent ligand discovery.
Asunto(s)
ARN Mensajero , ARN Mensajero/antagonistas & inhibidores , Ciclización , Sulfuros/química , Sulfuros/farmacología , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/síntesis química , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/farmacología , Compuestos Macrocíclicos/síntesis química , Sulfonas/química , Sulfonas/farmacología , Descubrimiento de Drogas , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/síntesis química , Estructura MolecularRESUMEN
Profiling the substrate sequence preferences of proteases is important for understanding both biological functions as well as for designing protease inhibitors. Several methods are available for profiling the sequence specificity of proteases. However, there is currently no rapid and high-throughput method to profile specificity of proteases for noncanonical substrates. In this study, we described a strategy to use a DNA-encoded noncanonical substrate library to identify the protease substrates composed of both canonical and noncanonical amino acids. This approach uses a DNA-encoded peptide library and introduces a biotin molecule at the N-terminus to immobilize the library on a solid support. Upon protease hydrolysis, the released DNA tag of the substrate peptides can be sequenced to identify the substrate structures. Using this approach, we profiled trypsin and fibroblast activation protein α and discovered noncanonical substrates that were more efficiently cleaved than the commonly used substrates. The identified substrates of FAP were further used to design corresponding covalent inhibitors containing non-canonical sequences with high potency for the target protease. Overall, our approach can aid in the development of new protease substrates and inhibitors.
RESUMEN
Up to 40â¯% of breast cancer patients have a tumor-positive resection margin (TPRM) - defined as cancer cells at the surface of the resected specimen - after breast-conserving surgery (BCS), necessitating re-resection or boost radiation. To prevent these additional treatments, intraoperative near-infrared (NIR) fluorescence imaging with the topically applied, cathepsin-activatable imaging agent AKRO-6qcICG might be used to detect TPRMs and guide additional resection. Here, to validate its performance, the agent is topically applied to all surfaces of freshly resected breast cancer specimens (n = 11 patients) and to 3-5â¯mm thick tissue slices of the specimens (n = 26 patients). NIR fluorescence images of the resection surfaces and tissue slices are acquired and correlated to final histopathology. AKRO-6qcICG detects TPRMs with a sensitivity, specificity, PVV, and NPV of 100â¯%, 67â¯%, 10â¯%, and 100â¯%, respectively. On the tissue slices, the fluorescence signal has a median tumor-to-background ratio of 1.8. These findings indicate that topically applied AKRO-6qcICG can visualize TPRMs ex vivo with a high sensitivity and NPV, with sufficient contrast to adjacent healthy breast tissue.
RESUMEN
Fluorescence imaging is currently being actively developed for surgical guidance; however, it remains underutilized for diagnostic and endoscopic surveillance of incipient colorectal cancer in high-risk patients. Here we demonstrate the utility and potential for clinical translation of a fluorescently labeled cathepsin-activated chemical probe to highlight gastrointestinal lesions. This probe stays optically dark until it is activated by proteases produced by tumor-associated macrophages and accumulates within the lesions, enabling their detection using an endoscope outfitted with a fluorescence detector. We evaluated the probe in multiple murine models and a human-scale porcine model of gastrointestinal carcinogenesis. The probe provides fluorescence-guided surveillance of gastrointestinal lesions and augments histopathological analysis by highlighting areas of dysplasia as small as 400 µm, which were visibly discernible with significant tumor-to-background ratios, even in tissues with a background of severe inflammation and ulceration. Given these results, we anticipate that this probe will enable sensitive fluorescence-guided biopsies, even in the presence of highly inflamed colorectal tissue, which will improve early diagnosis to prevent gastrointestinal cancers.
Asunto(s)
Detección Precoz del Cáncer/métodos , Endoscopía/métodos , Lesiones Precancerosas/diagnóstico , Animales , Colon/patología , Neoplasias del Colon/patología , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Femenino , Fluorescencia , Colorantes Fluorescentes , Neoplasias Gastrointestinales/patología , Tracto Gastrointestinal/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Imagen Molecular/métodos , Lesiones Precancerosas/patología , Ratas , Ratas Endogámicas , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/prevención & control , PorcinosRESUMEN
Enzymatic inactivation of Rho-family GTPases by the glucosyltransferase domain of Clostridioides difficile Toxin B (TcdB) gives rise to various pathogenic effects in cells that are classically thought to be responsible for the disease symptoms associated with C. difficile infection (CDI). Recent in vitro studies have shown that TcdB can, under certain circumstances, induce cellular toxicities that are independent of glucosyltransferase (GT) activity, calling into question the precise role of GT activity. Here, to establish the importance of GT activity in CDI disease pathogenesis, we generated the first described mutant strain of C. difficile producing glucosyltransferase-defective (GT-defective) toxin. Using allelic exchange (AE) technology, we first deleted tcdA in C. difficile 630Δerm and subsequently introduced a deactivating D270N substitution in the GT domain of TcdB. To examine the role of GT activity in vivo, we tested each strain in two different animal models of CDI pathogenesis. In the non-lethal murine model of infection, the GT-defective mutant induced minimal pathology in host tissues as compared to the profound caecal inflammation seen in the wild-type and 630ΔermΔtcdA (ΔtcdA) strains. In the more sensitive hamster model of CDI, whereas hamsters in the wild-type or ΔtcdA groups succumbed to fulminant infection within 4 days, all hamsters infected with the GT-defective mutant survived the 10-day infection period without primary symptoms of CDI or evidence of caecal inflammation. These data demonstrate that GT activity is indispensable for disease pathogenesis and reaffirm its central role in disease and its importance as a therapeutic target for small-molecule inhibition.
Asunto(s)
Proteínas Bacterianas , Toxinas Bacterianas , Clostridioides difficile , Enterocolitis Seudomembranosa , Glucosiltransferasas , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Clostridioides difficile/enzimología , Clostridioides difficile/genética , Clostridioides difficile/patogenicidad , Cricetinae , Modelos Animales de Enfermedad , Enterocolitis Seudomembranosa/enzimología , Enterocolitis Seudomembranosa/genética , Enterocolitis Seudomembranosa/patología , Femenino , Eliminación de Gen , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Masculino , RatonesRESUMEN
The proteasome is a multi-component protease complex responsible for regulating key processes such as the cell cycle and antigen presentation. Compounds that target the proteasome are potentially valuable tools for the treatment of pathogens that depend on proteasome function for survival and replication. In particular, proteasome inhibitors have been shown to be toxic for the malaria parasite Plasmodium falciparum at all stages of its life cycle. Most compounds that have been tested against the parasite also inhibit the mammalian proteasome, resulting in toxicity that precludes their use as therapeutic agents. Therefore, better definition of the substrate specificity and structural properties of the Plasmodium proteasome could enable the development of compounds with sufficient selectivity to allow their use as anti-malarial agents. To accomplish this goal, here we use a substrate profiling method to uncover differences in the specificities of the human and P. falciparum proteasome. We design inhibitors based on amino-acid preferences specific to the parasite proteasome, and find that they preferentially inhibit the ß2-subunit. We determine the structure of the P. falciparum 20S proteasome bound to the inhibitor using cryo-electron microscopy and single-particle analysis, to a resolution of 3.6 Å. These data reveal the unusually open P. falciparum ß2 active site and provide valuable information about active-site architecture that can be used to further refine inhibitor design. Furthermore, consistent with the recent finding that the proteasome is important for stress pathways associated with resistance of artemisinin family anti-malarials, we observe growth inhibition synergism with low doses of this ß2-selective inhibitor in artemisinin-sensitive and -resistant parasites. Finally, we demonstrate that a parasite-selective inhibitor could be used to attenuate parasite growth in vivo without appreciable toxicity to the host. Thus, the Plasmodium proteasome is a chemically tractable target that could be exploited by next-generation anti-malarial agents.
Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Diseño de Fármacos , Plasmodium/efectos de los fármacos , Plasmodium/enzimología , Inhibidores de Proteasoma/química , Inhibidores de Proteasoma/farmacología , Animales , Antimaláricos/efectos adversos , Antimaláricos/toxicidad , Artemisininas/farmacología , Dominio Catalítico , Microscopía por Crioelectrón , Relación Dosis-Respuesta a Droga , Resistencia a Medicamentos , Sinergismo Farmacológico , Activación Enzimática , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Plasmodium/crecimiento & desarrollo , Plasmodium chabaudi/efectos de los fármacos , Plasmodium chabaudi/enzimología , Plasmodium chabaudi/fisiología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Plasmodium falciparum/crecimiento & desarrollo , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/ultraestructura , Inhibidores de Proteasoma/efectos adversos , Inhibidores de Proteasoma/toxicidad , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Especificidad de la Especie , Especificidad por Sustrato/efectos de los fármacosRESUMEN
Therapeutics with novel modes of action and a low risk of generating resistance are urgently needed to combat drug-resistant Plasmodium falciparum malaria. Here, we report that the peptide vinyl sulfones WLL-vs (WLL) and WLW-vs (WLW), highly selective covalent inhibitors of the P. falciparum proteasome, potently eliminate genetically diverse parasites, including K13-mutant, artemisinin-resistant lines, and are particularly active against ring-stage parasites. Selection studies reveal that parasites do not readily acquire resistance to WLL or WLW and that mutations in the ß2, ß5 or ß6 subunits of the 20S proteasome core particle or in components of the 19S proteasome regulatory particle yield only
Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos/efectos de los fármacos , Plasmodium falciparum/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Proteínas Protozoarias , Antimaláricos/química , Resistencia a Medicamentos/genética , Sinergismo Farmacológico , Humanos , Plasmodium falciparum/genética , Inhibidores de Proteasoma/química , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismoRESUMEN
The thyroid gland is both a thyroid hormone (TH) generating as well as a TH responsive organ. It is hence crucial that cathepsin-mediated proteolytic cleavage of the precursor thyroglobulin is regulated and integrated with the subsequent export of TH into the blood circulation, which is enabled by TH transporters such as monocarboxylate transporters Mct8 and Mct10. Previously, we showed that cathepsin K-deficient mice exhibit the phenomenon of functional compensation through cathepsin L upregulation, which is independent of the canonical hypothalamus-pituitary-thyroid axis, thus, due to auto-regulation. Since these animals also feature enhanced Mct8 expression, we aimed to understand if TH transporters are part of the thyroid auto-regulatory mechanisms. Therefore, we analyzed phenotypic differences in thyroid function arising from combined cathepsin K and TH transporter deficiencies, i.e., in Ctsk-/-/Mct10-/-, Ctsk-/-/Mct8-/y, and Ctsk-/-/Mct8-/y/Mct10-/-. Despite the impaired TH export, thyroglobulin degradation was enhanced in the mice lacking Mct8, particularly in the triple-deficient genotype, due to increased cathepsin amounts and enhanced cysteine peptidase activities, leading to ongoing thyroglobulin proteolysis for TH liberation, eventually causing self-thyrotoxic thyroid states. The increased cathepsin amounts were a consequence of autophagy-mediated lysosomal biogenesis that is possibly triggered due to the stress accompanying intrathyroidal TH accumulation, in particular in the Ctsk-/-/Mct8-/y/Mct10-/- animals. Collectively, our data points to the notion that the absence of cathepsin K and Mct8 leads to excessive thyroglobulin degradation and TH liberation in a non-classical pathway of thyroid auto-regulation.
Asunto(s)
Autofagia/fisiología , Catepsina K/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Tiroglobulina/metabolismo , Glándula Tiroides/metabolismo , Hormonas Tiroideas/metabolismo , Animales , Transporte Biológico , Catepsina L/metabolismo , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Hipófisis/metabolismoRESUMEN
Serine hydrolases play diverse roles in regulating host-pathogen interactions in a number of organisms, yet few have been characterized in the human pathogen Staphylococcus aureus. Here we describe a chemical proteomic screen that identified ten previously uncharacterized S. aureus serine hydrolases that mostly lack human homologs. We termed these enzymes fluorophosphonate-binding hydrolases (FphA-J). One hydrolase, FphB, can process short fatty acid esters, exhibits increased activity in response to host cell factors, is located predominantly on the bacterial cell surface in a subset of cells, and is concentrated in the division septum. Genetic disruption of fphB confirmed that the enzyme is dispensable for bacterial growth in culture but crucial for establishing infection in distinct sites in vivo. A selective small molecule inhibitor of FphB effectively reduced infectivity in vivo, suggesting that it may be a viable therapeutic target for the treatment or management of Staphylococcus infections.
Asunto(s)
Proteínas Bacterianas/metabolismo , Hidrolasas/metabolismo , Staphylococcus aureus/metabolismo , Factores de Virulencia/metabolismo , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Sitios de Unión , Clonación Molecular , Ácidos Grasos/química , Técnicas Genéticas , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Hidrólisis , Cinética , Ratones , Pruebas de Sensibilidad Microbiana , Organofosfonatos/química , Filogenia , Proteómica/métodos , Serina/química , Infecciones Estafilocócicas , Virulencia , Factores de Virulencia/genéticaRESUMEN
Clostridioides difficile infection (CDI) is an enteric bacterial disease that is increasing in incidence worldwide. Symptoms of CDI range from mild diarrhea to severe life-threatening inflammation of the colon. While antibiotics are standard-of-care treatments for CDI, they are also the biggest risk factor for development of CDI and recurrence. Therefore, novel therapies that successfully treat CDI and protect against recurrence are an unmet clinical need. Screening for novel drug leads is often tested by manual image analysis. The process is slow, tedious and is subject to human error and bias. So far, little work has focused on computer-aided screening for drug leads based on fluorescence images. Here, we propose a novel method to identify characteristic morphological changes in human fibroblast cells exposed to C. difficile toxins based on computer vision algorithms supported by deep learning methods. Classical image processing algorithms for the pre-processing stage are used together with an adjusted pre-trained deep convolutional neural network responsible for cell classification. In this study, we take advantage of transfer learning methodology by examining pre-trained VGG-19, ResNet50, Xception, and DenseNet121 convolutional neural network (CNN) models with adjusted, densely connected classifiers. We compare the obtained results with those of other machine learning algorithms and also visualize and interpret them. The proposed models have been evaluated on a dataset containing 369 images with 6112 cases. DenseNet121 achieved the highest results with a 93.5% accuracy, 92% sensitivity, and 95% specificity, respectively.
Asunto(s)
Clostridioides difficile , Redes Neurales de la Computación , Clostridioides , Fluorescencia , Humanos , Aprendizaje AutomáticoRESUMEN
The significance of cysteine cathepsins for the liberation of thyroid hormones from the precursor thyroglobulin was previously shown by in vivo and in vitro studies. Cathepsin L is most important for thyroglobulin processing in mice. The present study aims at specifying the possible contribution of its closest relative, cysteine cathepsin L2/V, to thyroid function. Immunofluorescence analysis on normal human thyroid tissue revealed its predominant localization at the apical plasma membrane of thyrocytes and within the follicle lumen, indicating the secretion of cathepsin V and extracellular tasks rather than its acting within endo-lysosomes. To explore the trafficking pathways of cathepsin V in more detail, a chimeric protein consisting of human cathepsin V tagged with green fluorescent protein (GFP) was stably expressed in the Nthy-ori 3-1 thyroid epithelial cell line. Colocalization studies with compartment-specific markers and analyses of post-translational modifications revealed that the chimeric protein was sorted into the lumen of the endoplasmic reticulum and subsequently transported to the Golgi apparatus, while being N-glycosylated. Immunoblotting showed that the chimeric protein reached endo-lysosomes and it became secreted from the transduced cells. Astonishingly, thyroid stimulating hormone (TSH)-induced secretion of GFP-tagged cathepsin V occurred as the proform, suggesting that TSH upregulates its transport to the plasma membrane before it reaches endo-lysosomes for maturation. The proform of cathepsin V was found to be reactive with the activity-based probe DCG-04, suggesting that it possesses catalytic activity. We propose that TSH-stimulated secretion of procathepsin V is the default pathway in the thyroid to enable its contribution to thyroglobulin processing by extracellular means.
Asunto(s)
Catepsinas/biosíntesis , Células Epiteliales Tiroideas/metabolismo , Tirotropina/metabolismo , Secuencia de Aminoácidos , Biomarcadores , Catepsinas/química , Catepsinas/genética , Línea Celular , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Técnica del Anticuerpo Fluorescente , Expresión Génica , Genes Reporteros , Glicosilación , Humanos , Lisosomas/metabolismo , Transporte de Proteínas , Glándula Tiroides/metabolismoRESUMEN
Fluorescently quenched probes that are specifically activated in the cancer microenvironment have great potential application for diagnosis, early detection, and surgical guidance. These probes are often designed to target specific enzymes associated with diseases by direct optimization using single purified enzymes. However, this can result in painstaking chemistry efforts to produce a probe with suboptimal performance when applied inâ vivo. We describe here an alternate, unbiased activity-profiling approach in which whole tissue extracts are used to directly identify optimal peptide sequences for probe design. Screening of tumor extracts with a hybrid combinatorial substrate library (HyCoSuL) identified a combination of natural and non-natural amino-acid residues that was used to generate highly efficient tumor-specific probes. This new strategy simplifies and enhances the process of probe optimization without any aâ priori knowledge of enzyme targets and has the potential to be applied to diverse disease states using clinical or animal-model tissue samples.
Asunto(s)
Colorantes Fluorescentes/química , Imagen Óptica/métodos , Animales , Técnicas Químicas Combinatorias , Xenoinjertos , Humanos , Ratones , Proteolisis , Reproducibilidad de los Resultados , Especificidad por Sustrato , Extractos de Tejidos/química , Microambiente TumoralRESUMEN
The model haloarchaeon, Haloferax volcanii possess an extremely high, and highly specific, basal caspase activity in exponentially growing cells that closely resembles caspase-4. This activity is specifically inhibited by the pan-caspase inhibitor, z-VAD-FMK, and has no cross-reactivity with other known protease families. Although it is one of the dominant cellular proteolytic activities in exponentially growing H. volcanii cells, the interactive cellular roles remain unknown and the protein(s) responsible for this activity remain elusive. Here, biochemical purification and in situ trapping with caspase targeted covalent inhibitors combined with genome-enabled proteomics, structural analysis, targeted gene knockouts and treatment with canavanine demonstrated a catalytic linkage between caspase activity and thermosomes, proteasomes and cdc48b, a cell division protein and proteasomal degradation facilitating ATPase, as part of an 'interactase' of stress-related protein complexes with an established link to the unfolded protein response (UPR). Our findings provide novel cellular and biochemical context for the observed caspase activity in Archaea and add new insight to understanding the role of this activity, implicating their possible role in the establishment of protein stress and ER associated degradation pathways in Eukarya.
Asunto(s)
Caspasas/metabolismo , Haloferax volcanii/enzimología , Proteostasis/fisiología , Adenosina Trifosfatasas/metabolismo , Clorometilcetonas de Aminoácidos/farmacología , Inhibidores de Caspasas/farmacología , Activación Enzimática/efectos de los fármacos , Haloferax volcanii/efectos de los fármacos , Haloferax volcanii/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Proteómica , Proteostasis/efectos de los fármacosRESUMEN
Proteases are regulators of diverse biological pathways including protein catabolism, antigen processing and inflammation, as well as various disease conditions, such as malignant metastasis, viral infection and parasite invasion. The identification of substrates of a given protease is essential to understand its function and this information can also aid in the design of specific inhibitors and active site probes. However, the diversity of putative protein and peptide substrates makes connecting a protease to its downstream substrates technically difficult and time-consuming. To address this challenge in protease research, a range of methods have been developed to identify natural protein substrates as well as map the overall substrate specificity patterns of proteases. In this review, we highlight recent examples of both synthetic and biological methods that are being used to define the substrate specificity of protease so that new protease-specific tools and therapeutic agents can be developed.