Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Virol ; 88(24): 14310-25, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25275134

RESUMEN

UNLABELLED: The influence of major histocompatibility complex class I (MHC-I) alleles on human immunodeficiency virus (HIV) diversity in humans has been well characterized at the population level. MHC-I alleles likely affect viral diversity in the simian immunodeficiency virus (SIV)-infected pig-tailed macaque (Macaca nemestrina) model, but this is poorly characterized. We studied the evolution of SIV in pig-tailed macaques with a range of MHC-I haplotypes. SIV(mac251) genomes were amplified from the plasma of 44 pig-tailed macaques infected with SIV(mac251) at 4 to 10 months after infection and characterized by Illumina deep sequencing. MHC-I typing was performed on cellular RNA using Roche/454 pyrosequencing. MHC-I haplotypes and viral sequence polymorphisms at both individual mutations and groups of mutations spanning 10-amino-acid segments were linked using in-house bioinformatics pipelines, since cytotoxic T lymphocyte (CTL) escape can occur at different amino acids within the same epitope in different animals. The approach successfully identified 6 known CTL escape mutations within 3 Mane-A1*084-restricted epitopes. The approach also identified over 70 new SIV polymorphisms linked to a variety of MHC-I haplotypes. Using functional CD8 T cell assays, we confirmed that one of these associations, a Mane-B028 haplotype-linked mutation in Nef, corresponded to a CTL epitope. We also identified mutations associated with the Mane-B017 haplotype that were previously described to be CTL epitopes restricted by Mamu-B*017:01 in rhesus macaques. This detailed study of pig-tailed macaque MHC-I genetics and SIV polymorphisms will enable a refined level of analysis for future vaccine design and strategies for treatment of HIV infection. IMPORTANCE: Cytotoxic T lymphocytes select for virus escape mutants of HIV and SIV, and this limits the effectiveness of vaccines and immunotherapies against these viruses. Patterns of immune escape variants are similar in HIV type 1-infected human subjects that share the same MHC-I genes, but this has not been studied for SIV infection of macaques. By studying SIV sequence diversity in 44 MHC-typed SIV-infected pigtail macaques, we defined over 70 sites within SIV where mutations were common in macaques sharing particular MHC-I genes. Further, pigtail macaques sharing nearly identical MHC-I genes with rhesus macaques responded to the same CTL epitope and forced immune escape. This allows many reagents developed to study rhesus macaques to also be used to study pigtail macaques. Overall, our study defines sites of immune escape in SIV in pigtailed macaques, and this enables a more refined level of analysis of future vaccine design and strategies for treatment of HIV infection.


Asunto(s)
Epítopos de Linfocito T/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Mutación Missense , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Epítopos de Linfocito T/genética , Haplotipos , Antígenos de Histocompatibilidad Clase I/genética , Evasión Inmune , Macaca nemestrina , Virus de la Inmunodeficiencia de los Simios/clasificación , Virus de la Inmunodeficiencia de los Simios/genética
2.
Immunogenetics ; 66(1): 15-24, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24241691

RESUMEN

Deep sequencing has revolutionized major histocompatibility complex (MHC) class I analysis of nonhuman primates by enabling high-throughput, economical, and comprehensive genotyping. Full-length MHC class I cDNA sequences, which are required to generate reagents such as MHC-peptide tetramers, cannot be directly obtained by short read deep sequencing. We combined data from two next-generation sequencing platforms to discover novel full-length MHC class I mRNA/cDNA transcripts in Chinese rhesus macaques. We first genotyped macaques by Roche/454 pyrosequencing using a 530-bp amplicon spanning the densely polymorphic exons 2 through 4 of the MHC class I loci that encode the peptide-binding region. We then mapped short paired-end 250 bp Illumina sequence reads spanning the full-length transcript to each 530-bp amplicon at high stringency and used paired-end information to reconstruct full-length allele sequences. We characterized 65 full-length sequences from six Chinese rhesus macaques. Overall, approximately 70 % of the alleles distinguished in these six animals contained new sequence information, including 29 novel transcripts. The flexibility of this approach should make full-length MHC class I allele genotyping accessible for any nonhuman primate population of interest. We are currently optimizing this method for full-length characterization of other highly polymorphic, duplicated loci such as the MHC class II DRB and killer immunoglobulin-like receptors. We anticipate that this method will facilitate rapid expansion and near completion of sequence libraries of polymorphic loci, such as MHC class I, within a few years.


Asunto(s)
Exones/genética , Genes MHC Clase I/genética , Variación Genética/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Alelos , Animales , ADN Complementario/genética , Genotipo , Antígenos de Histocompatibilidad Clase I/genética , Macaca mulatta , Análisis de Secuencia de ADN
3.
Virology ; 493: 100-12, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27017056

RESUMEN

To study CD4(+)T-cell suppression of AIDS virus replication, we isolated nine rhesus macaque SIVGag-specific CD4(+)T-cell clones. One responding clone, Gag68, produced a typical cytotoxic CD8(+)T-cell response: induction of intracellular IFN-γ, MIP-1α, MIP-1ß, and CD107a degranulation. Gag68 effectively suppressed the spread of SIVmac239 in CD4(+)T cells with a corresponding reduction of infected Gag68 effector cells, suggesting that CD4(+)effectors need to suppress their own infection in addition to their targets to be effective. Gag68 TCR cloning and gene transfer into CD4(+)T cells enabled additional experiments with this unique specificity after the original clone senesced. Our data supports the idea that CD4(+)T cells can directly limit AIDS virus spread in T cells. Furthermore, Gag68 TCR transfer into CD4(+)T-cell clones with differing properties holds promise to better understand the suppressive effector mechanisms used by this important component of the antiviral response using the rhesus macaque model.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Virus de la Inmunodeficiencia de los Simios/fisiología , Replicación Viral , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Células Cultivadas , Células Clonales , Productos del Gen gag/inmunología , Macaca mulatta , Receptores de Antígenos de Linfocitos T/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Especificidad del Receptor de Antígeno de Linfocitos T
4.
Conserv Genet Resour ; 8(1): 23-26, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-27182286

RESUMEN

Immunogenetic data from wild primate populations have been difficult to obtain, due to logistic and methodological constraints. We applied a well-characterized deep sequencing method for MHC I typing, developed for macaques, to a population of wild red colobus to assess the feasibility of identifying MHC I-A/B haplotypes. Ten individuals produced sufficient data from blood and tissue samples to assign haplotypes. Eighty-two sequences were classified as red colobus MHC I alleles distributed across six MHC I loci. Individuals averaged ~13k reads across six MHC I loci, with 83% of all alleles representing either MHC I-A or MHC I-B loci. This study not only represents an important advance in the identification and genotyping of MHC in the endangered red colobus but also shows the potential for using this approach in other endangered wild primates.

5.
ILAR J ; 54(2): 196-210, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24174442

RESUMEN

Major histocompatibility complex (MHC) gene products control the repertoire of T cell responses that an individual may create against pathogens and foreign tissues. This text will review the current understanding of MHC genetics in nonhuman primates, with a focus on Mauritian-origin cynomolgus macaques (Macaca fascicularis) and Indian-origin rhesus macaques (Macaca mulatta). These closely related macaque species provide important experimental models for studies of infectious disease pathogenesis, vaccine development, and transplantation research. Recent advances resulting from the application of several cost effective, high-throughput approaches, with deep sequencing technologies have revolutionized our ability to perform MHC genotyping of large macaque cohorts. Pyrosequencing of cDNA amplicons with a Roche/454 GS Junior instrument, provides excellent resolution of MHC class I allelic variants with semi-quantitative estimates of relative levels of transcript abundance. Introduction of the Illumina MiSeq platform significantly increased the sample throughput, since the sample loading workflow is considerably less labor intensive, and each instrument run yields approximately 100-fold more sequence data. Extension of these sequencing methods from cDNA to genomic DNA amplicons further streamlines the experimental workflow and opened opportunities for retrospective MHC genotyping of banked DNA samples. To facilitate the reporting of MHC genotypes, and comparisons between groups of macaques, this text also introduces an intuitive series of abbreviated rhesus MHC haplotype designations based on a major Mamu-A or Mamu-B transcript characteristic for ancestral allele combinations. The authors believe that the use of MHC-defined macaques promises to improve the reproducibility, and predictability of results from pre-clinical studies for translation to humans.


Asunto(s)
Haplotipos/genética , Macaca/genética , Complejo Mayor de Histocompatibilidad/genética , Polimorfismo Genético/genética , Análisis de Secuencia de ADN/veterinaria , Animales , Haplotipos/inmunología , Macaca/inmunología , Complejo Mayor de Histocompatibilidad/inmunología , Polimorfismo Genético/inmunología , Análisis de Secuencia de ADN/instrumentación , Análisis de Secuencia de ADN/métodos
6.
G3 (Bethesda) ; 3(7): 1195-201, 2013 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-23696100

RESUMEN

The use of Chinese-origin rhesus macaques (Macaca mulatta) for infectious disease immunity research is increasing despite the relative lack of major histocompatibility complex (MHC) class I immunogenetics information available for this population. We determined transcript-based MHC class I haplotypes for 385 Chinese rhesus macaques from five different experimental cohorts, providing a concise representation of the full complement of MHC class I major alleles expressed by each animal. In total, 123 Mamu-A and Mamu-B haplotypes were defined in the full Chinese rhesus macaque cohort. We then performed an analysis of haplotype frequencies across the experimental cohorts of Chinese rhesus macaques, as well as a comparison against a group of 96 Indian rhesus macaques. Notably, 35 of the 51 Mamu-A and Mamu-B haplotypes observed in Indian rhesus macaques were also detected in the Chinese population, with 85% of the 385 Chinese-origin rhesus macaques expressing at least one of these class I haplotypes. This unexpected conservation of Indian rhesus macaque MHC class I haplotypes in the Chinese rhesus macaque population suggests that immunologic insights originally gleaned from studies using Indian rhesus macaques may be more applicable to Chinese rhesus macaques than previously appreciated and may provide an opportunity for studies of CD8(+) T-cell responses between populations. It may also be possible to extend these studies across multiple species of macaques, as we found evidence of shared ancestral haplotypes between Chinese rhesus and Mauritian cynomolgus macaques.


Asunto(s)
Genes MHC Clase I/genética , Variación Genética , Haplotipos , Macaca mulatta/genética , Alelos , Secuencia de Aminoácidos , Animales , Frecuencia de los Genes , Genes MHC Clase I/inmunología , Macaca mulatta/inmunología , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA