Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell ; 186(20): 4404-4421.e20, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37774679

RESUMEN

Persistent DNA double-strand breaks (DSBs) in neurons are an early pathological hallmark of neurodegenerative diseases including Alzheimer's disease (AD), with the potential to disrupt genome integrity. We used single-nucleus RNA-seq in human postmortem prefrontal cortex samples and found that excitatory neurons in AD were enriched for somatic mosaic gene fusions. Gene fusions were particularly enriched in excitatory neurons with DNA damage repair and senescence gene signatures. In addition, somatic genome structural variations and gene fusions were enriched in neurons burdened with DSBs in the CK-p25 mouse model of neurodegeneration. Neurons enriched for DSBs also had elevated levels of cohesin along with progressive multiscale disruption of the 3D genome organization aligned with transcriptional changes in synaptic, neuronal development, and histone genes. Overall, this study demonstrates the disruption of genome stability and the 3D genome organization by DSBs in neurons as pathological steps in the progression of neurodegenerative diseases.


Asunto(s)
Roturas del ADN de Doble Cadena , Enfermedades Neurodegenerativas , Animales , Humanos , Ratones , Enfermedad de Alzheimer/genética , ADN , Reparación del ADN/genética , Enfermedades Neurodegenerativas/genética , Neuronas/fisiología , Análisis de la Célula Individual , Análisis de Secuencia de ARN , Inestabilidad Genómica
2.
Cell ; 186(20): 4386-4403.e29, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37774678

RESUMEN

Altered microglial states affect neuroinflammation, neurodegeneration, and disease but remain poorly understood. Here, we report 194,000 single-nucleus microglial transcriptomes and epigenomes across 443 human subjects and diverse Alzheimer's disease (AD) pathological phenotypes. We annotate 12 microglial transcriptional states, including AD-dysregulated homeostatic, inflammatory, and lipid-processing states. We identify 1,542 AD-differentially-expressed genes, including both microglia-state-specific and disease-stage-specific alterations. By integrating epigenomic, transcriptomic, and motif information, we infer upstream regulators of microglial cell states, gene-regulatory networks, enhancer-gene links, and transcription-factor-driven microglial state transitions. We demonstrate that ectopic expression of our predicted homeostatic-state activators induces homeostatic features in human iPSC-derived microglia-like cells, while inhibiting activators of inflammation can block inflammatory progression. Lastly, we pinpoint the expression of AD-risk genes in microglial states and differential expression of AD-risk genes and their regulators during AD progression. Overall, we provide insights underlying microglial states, including state-specific and AD-stage-specific microglial alterations at unprecedented resolution.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Regulación de la Expresión Génica , Inflamación/patología , Microglía/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma , Epigenoma
3.
Cell ; 186(20): 4422-4437.e21, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37774680

RESUMEN

Recent work has identified dozens of non-coding loci for Alzheimer's disease (AD) risk, but their mechanisms and AD transcriptional regulatory circuitry are poorly understood. Here, we profile epigenomic and transcriptomic landscapes of 850,000 nuclei from prefrontal cortexes of 92 individuals with and without AD to build a map of the brain regulome, including epigenomic profiles, transcriptional regulators, co-accessibility modules, and peak-to-gene links in a cell-type-specific manner. We develop methods for multimodal integration and detecting regulatory modules using peak-to-gene linking. We show AD risk loci are enriched in microglial enhancers and for specific TFs including SPI1, ELF2, and RUNX1. We detect 9,628 cell-type-specific ATAC-QTL loci, which we integrate alongside peak-to-gene links to prioritize AD variant regulatory circuits. We report differential accessibility of regulatory modules in late AD in glia and in early AD in neurons. Strikingly, late-stage AD brains show global epigenome dysregulation indicative of epigenome erosion and cell identity loss.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Regulación de la Expresión Génica , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Encéfalo/patología , Epigenoma , Epigenómica , Estudio de Asociación del Genoma Completo
4.
Cell ; 186(20): 4365-4385.e27, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37774677

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia worldwide, but the molecular and cellular mechanisms underlying cognitive impairment remain poorly understood. To address this, we generated a single-cell transcriptomic atlas of the aged human prefrontal cortex covering 2.3 million cells from postmortem human brain samples of 427 individuals with varying degrees of AD pathology and cognitive impairment. Our analyses identified AD-pathology-associated alterations shared between excitatory neuron subtypes, revealed a coordinated increase of the cohesin complex and DNA damage response factors in excitatory neurons and in oligodendrocytes, and uncovered genes and pathways associated with high cognitive function, dementia, and resilience to AD pathology. Furthermore, we identified selectively vulnerable somatostatin inhibitory neuron subtypes depleted in AD, discovered two distinct groups of inhibitory neurons that were more abundant in individuals with preserved high cognitive function late in life, and uncovered a link between inhibitory neurons and resilience to AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Anciano , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Encéfalo/patología , Cognición , Disfunción Cognitiva/metabolismo , Neuronas/metabolismo
5.
Nature ; 632(8026): 858-868, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39048816

RESUMEN

Alzheimer's disease is the leading cause of dementia worldwide, but the cellular pathways that underlie its pathological progression across brain regions remain poorly understood1-3. Here we report a single-cell transcriptomic atlas of six different brain regions in the aged human brain, covering 1.3 million cells from 283 post-mortem human brain samples across 48 individuals with and without Alzheimer's disease. We identify 76 cell types, including region-specific subtypes of astrocytes and excitatory neurons and an inhibitory interneuron population unique to the thalamus and distinct from canonical inhibitory subclasses. We identify vulnerable populations of excitatory and inhibitory neurons that are depleted in specific brain regions in Alzheimer's disease, and provide evidence that the Reelin signalling pathway is involved in modulating the vulnerability of these neurons. We develop a scalable method for discovering gene modules, which we use to identify cell-type-specific and region-specific modules that are altered in Alzheimer's disease and to annotate transcriptomic differences associated with diverse pathological variables. We identify an astrocyte program that is associated with cognitive resilience to Alzheimer's disease pathology, tying choline metabolism and polyamine biosynthesis in astrocytes to preserved cognitive function late in life. Together, our study develops a regional atlas of the ageing human brain and provides insights into cellular vulnerability, response and resilience to Alzheimer's disease pathology.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Perfilación de la Expresión Génica , Análisis de la Célula Individual , Anciano de 80 o más Años , Animales , Femenino , Humanos , Masculino , Ratones , Envejecimiento/metabolismo , Envejecimiento/patología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Astrocitos/clasificación , Astrocitos/citología , Astrocitos/metabolismo , Astrocitos/patología , Autopsia , Encéfalo/anatomía & histología , Encéfalo/citología , Encéfalo/metabolismo , Encéfalo/patología , Estudios de Casos y Controles , Colina/metabolismo , Cognición/fisiología , Redes Reguladoras de Genes , Interneuronas/clasificación , Interneuronas/citología , Interneuronas/metabolismo , Interneuronas/patología , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Inhibición Neural , Neuronas/clasificación , Neuronas/citología , Neuronas/metabolismo , Neuronas/patología , Poliaminas/metabolismo , Proteína Reelina , Transducción de Señal , Tálamo/citología , Tálamo/metabolismo , Tálamo/patología , Transcriptoma
6.
Nature ; 590(7845): 300-307, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33536621

RESUMEN

Annotating the molecular basis of human disease remains an unsolved challenge, as 93% of disease loci are non-coding and gene-regulatory annotations are highly incomplete1-3. Here we present EpiMap, a compendium comprising 10,000 epigenomic maps across 800 samples, which we used to define chromatin states, high-resolution enhancers, enhancer modules, upstream regulators and downstream target genes. We used this resource to annotate 30,000 genetic loci that were associated with 540 traits4, predicting trait-relevant tissues, putative causal nucleotide variants in enriched tissue enhancers and candidate tissue-specific target genes for each. We partitioned multifactorial traits into tissue-specific contributing factors with distinct functional enrichments and disease comorbidity patterns, and revealed both single-factor monotropic and multifactor pleiotropic loci. Top-scoring loci frequently had multiple predicted driver variants, converging through multiple enhancers with a common target gene, multiple genes in common tissues, or multiple genes and multiple tissues, indicating extensive pleiotropy. Our results demonstrate the importance of dense, rich, high-resolution epigenomic annotations for the investigation of complex traits.


Asunto(s)
Enfermedad/genética , Epigénesis Genética/genética , Epigenómica , Redes Reguladoras de Genes/genética , Sitios Genéticos/genética , Cromatina/genética , Elementos de Facilitación Genéticos/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Herencia Multifactorial/genética , Especificidad de Órganos/genética , Reproducibilidad de los Resultados
7.
Proc Natl Acad Sci U S A ; 120(48): e2306168120, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37983490

RESUMEN

How much do citizens value democracy? How willing are they to sacrifice their liberties and voting rights for growth, equality, or other social outcomes? We design a conjoint experiment in nationally representative surveys in Brazil, France, and the United States in which respondents choose between different societies that randomly vary in their economic outcomes (country income, income inequality, social mobility), political outcomes (democracy, public health insurance), and the level of personal income for each respondent. Our research allows us to estimate the respondents' willingness to trade off democracy for individual income (as well as other societal attributes). We find that, on average, individuals are strongly attached to democracy and a robust welfare state. They prefer to live in a country without free democratic elections only if their individual income multiplies by at least three times and in a country without public health insurance only if their individual income more than doubles. After estimating these preferences at the individual level for all respondents, we show that, although there is an authoritarian minority in all three countries, forming a nondemocratic majority (by offering more income and/or other goods to respondents) is very unlikely. Our findings imply that, contrary to a growing discussion about the crisis of democracy, liberal democratic values remain substantially robust in high and middle income democracies.


Asunto(s)
Derechos Civiles , Democracia , Humanos , Estados Unidos , Brasil , Francia , Renta , Política
8.
Nucleic Acids Res ; 51(D1): D942-D949, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36420896

RESUMEN

GENCODE produces high quality gene and transcript annotation for the human and mouse genomes. All GENCODE annotation is supported by experimental data and serves as a reference for genome biology and clinical genomics. The GENCODE consortium generates targeted experimental data, develops bioinformatic tools and carries out analyses that, along with externally produced data and methods, support the identification and annotation of transcript structures and the determination of their function. Here, we present an update on the annotation of human and mouse genes, including developments in the tools, data, analyses and major collaborations which underpin this progress. For example, we report the creation of a set of non-canonical ORFs identified in GENCODE transcripts, the LRGASP collaboration to assess the use of long transcriptomic data to build transcript models, the progress in collaborations with RefSeq and UniProt to increase convergence in the annotation of human and mouse protein-coding genes, the propagation of GENCODE across the human pan-genome and the development of new tools to support annotation of regulatory features by GENCODE. Our annotation is accessible via Ensembl, the UCSC Genome Browser and https://www.gencodegenes.org.


Asunto(s)
Biología Computacional , Genoma Humano , Humanos , Animales , Ratones , Anotación de Secuencia Molecular , Biología Computacional/métodos , Genoma Humano/genética , Transcriptoma/genética , Perfilación de la Expresión Génica , Bases de Datos Genéticas
9.
Nucleic Acids Res ; 49(D1): D916-D923, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33270111

RESUMEN

The GENCODE project annotates human and mouse genes and transcripts supported by experimental data with high accuracy, providing a foundational resource that supports genome biology and clinical genomics. GENCODE annotation processes make use of primary data and bioinformatic tools and analysis generated both within the consortium and externally to support the creation of transcript structures and the determination of their function. Here, we present improvements to our annotation infrastructure, bioinformatics tools, and analysis, and the advances they support in the annotation of the human and mouse genomes including: the completion of first pass manual annotation for the mouse reference genome; targeted improvements to the annotation of genes associated with SARS-CoV-2 infection; collaborative projects to achieve convergence across reference annotation databases for the annotation of human and mouse protein-coding genes; and the first GENCODE manually supervised automated annotation of lncRNAs. Our annotation is accessible via Ensembl, the UCSC Genome Browser and https://www.gencodegenes.org.


Asunto(s)
COVID-19/prevención & control , Biología Computacional/métodos , Bases de Datos Genéticas , Genómica/métodos , Anotación de Secuencia Molecular/métodos , SARS-CoV-2/genética , Animales , COVID-19/epidemiología , COVID-19/virología , Epidemias , Humanos , Internet , Ratones , Seudogenes/genética , ARN Largo no Codificante/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Transcripción Genética/genética
10.
bioRxiv ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38979214

RESUMEN

Loss-of-function (LoF) variants in the lipid transporter ABCA7 significantly increase the risk of Alzheimer's disease (odds ratio ∼2), yet the pathogenic mechanisms and the neural cell types affected by these variants remain largely unknown. Here, we performed single-nuclear RNA sequencing of 36 human post-mortem samples from the prefrontal cortex of 12 ABCA7 LoF carriers and 24 matched non-carrier control individuals. ABCA7 LoF was associated with gene expression changes in all major cell types. Excitatory neurons, which expressed the highest levels of ABCA7, showed transcriptional changes related to lipid metabolism, mitochondrial function, cell cycle-related pathways, and synaptic signaling. ABCA7 LoF-associated transcriptional changes in neurons were similarly perturbed in carriers of the common AD missense variant ABCA7 p.Ala1527Gly (n = 240 controls, 135 carriers), indicating that findings from our study may extend to large portions of the at-risk population. Consistent with ABCA7's function as a lipid exporter, lipidomic analysis of isogenic iPSC-derived neurons (iNs) revealed profound intracellular triglyceride accumulation in ABCA7 LoF, which was accompanied by a relative decrease in phosphatidylcholine abundance. Metabolomic and biochemical analyses of iNs further indicated that ABCA7 LoF was associated with disrupted mitochondrial bioenergetics that suggested impaired lipid breakdown by uncoupled respiration. Treatment of ABCA7 LoF iNs with CDP-choline (a rate-limiting precursor of phosphatidylcholine synthesis) reduced triglyceride accumulation and restored mitochondrial function, indicating that ABCA7 LoF-induced phosphatidylcholine dyshomeostasis may directly disrupt mitochondrial metabolism of lipids. Treatment with CDP-choline also rescued intracellular amyloid ß -42 levels in ABCA7 LoF iNs, further suggesting a link between ABCA7 LoF metabolic disruptions in neurons and AD pathology. This study provides a detailed transcriptomic atlas of ABCA7 LoF in the human brain and mechanistically links ABCA7 LoF-induced lipid perturbations to neuronal energy dyshomeostasis. In line with a growing body of evidence, our study highlights the central role of lipid metabolism in the etiology of Alzheimer's disease.

11.
Cell Rep Med ; 5(5): 101556, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38776872

RESUMEN

Cardiovascular disease plays a central role in the electrical and structural remodeling of the right atrium, predisposing to arrhythmias, heart failure, and sudden death. Here, we dissect with single-nuclei RNA sequencing (snRNA-seq) and spatial transcriptomics the gene expression changes in the human ex vivo right atrial tissue and pericardial fluid in ischemic heart disease, myocardial infarction, and ischemic and non-ischemic heart failure using asymptomatic patients with valvular disease who undergo preventive surgery as the control group. We reveal substantial differences in disease-associated gene expression in all cell types, collectively suggesting inflammatory microvascular dysfunction and changes in the right atrial tissue composition as the valvular and vascular diseases progress into heart failure. The data collectively suggest that investigation of human cardiovascular disease should expand to all functionally important parts of the heart, which may help us to identify mechanisms promoting more severe types of the disease.


Asunto(s)
Atrios Cardíacos , Microvasos , Isquemia Miocárdica , Transcriptoma , Humanos , Atrios Cardíacos/patología , Atrios Cardíacos/metabolismo , Isquemia Miocárdica/genética , Isquemia Miocárdica/patología , Isquemia Miocárdica/metabolismo , Transcriptoma/genética , Microvasos/patología , Inflamación/patología , Inflamación/genética , Masculino , Femenino , Persona de Mediana Edad , Anciano , Regulación de la Expresión Génica
12.
Nat Genet ; 55(10): 1665-1676, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37770633

RESUMEN

Genetic variants associated with complex traits are primarily noncoding, and their effects on gene-regulatory activity remain largely uncharacterized. To address this, we profile epigenomic variation of histone mark H3K27ac across 387 brain, heart, muscle and lung samples from Genotype-Tissue Expression (GTEx). We annotate 282 k active regulatory elements (AREs) with tissue-specific activity patterns. We identify 2,436 sex-biased AREs and 5,397 genetically influenced AREs associated with 130 k genetic variants (haQTLs) across tissues. We integrate genetic and epigenomic variation to provide mechanistic insights for disease-associated loci from 55 genome-wide association studies (GWAS), by revealing candidate tissues of action, driver SNPs and impacted AREs. Lastly, we build ARE-gene linking scores based on genetics (gLink scores) and demonstrate their unique ability to prioritize SNP-ARE-gene circuits. Overall, our epigenomic datasets, computational integration and mechanistic predictions provide valuable resources and important insights for understanding the molecular basis of human diseases/traits such as schizophrenia.


Asunto(s)
Epigenómica , Estudio de Asociación del Genoma Completo , Humanos , Sitios de Carácter Cuantitativo/genética , Genotipo , Redes Reguladoras de Genes , Polimorfismo de Nucleótido Simple/genética , Predisposición Genética a la Enfermedad
13.
Genome Biol ; 24(1): 79, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072822

RESUMEN

A promising alternative to comprehensively performing genomics experiments is to, instead, perform a subset of experiments and use computational methods to impute the remainder. However, identifying the best imputation methods and what measures meaningfully evaluate performance are open questions. We address these questions by comprehensively analyzing 23 methods from the ENCODE Imputation Challenge. We find that imputation evaluations are challenging and confounded by distributional shifts from differences in data collection and processing over time, the amount of available data, and redundancy among performance measures. Our analyses suggest simple steps for overcoming these issues and promising directions for more robust research.


Asunto(s)
Algoritmos , Epigenómica , Genómica/métodos
14.
Sci Adv ; 8(39): eabo4662, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36170369

RESUMEN

DNA double-strand breaks (DSBs) are linked to neurodegeneration and senescence. However, it is not clear how DSB-bearing neurons influence neuroinflammation associated with neurodegeneration. Here, we characterize DSB-bearing neurons from the CK-p25 mouse model of neurodegeneration using single-nucleus, bulk, and spatial transcriptomic techniques. DSB-bearing neurons enter a late-stage DNA damage response marked by nuclear factor κB (NFκB)-activated senescent and antiviral immune pathways. In humans, Alzheimer's disease pathology is closely associated with immune activation in excitatory neurons. Spatial transcriptomics reveal that regions of CK-p25 brain tissue dense with DSB-bearing neurons harbor signatures of inflammatory microglia, which is ameliorated by NFκB knockdown in neurons. Inhibition of NFκB in DSB-bearing neurons also reduces microglia activation in organotypic mouse brain slice culture. In conclusion, DSBs activate immune pathways in neurons, which in turn adopt a senescence-associated secretory phenotype to elicit microglia activation. These findings highlight a previously unidentified role for neurons in the mechanism of disease-associated neuroinflammation.


Asunto(s)
Roturas del ADN de Doble Cadena , Microglía , Animales , Antivirales/metabolismo , ADN/metabolismo , Humanos , Ratones , Microglía/metabolismo , FN-kappa B/metabolismo , Neuronas/metabolismo
15.
Cell Syst ; 11(6): 625-639.e13, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33278344

RESUMEN

Determining genes that orchestrate cell differentiation in development and disease remains a fundamental goal of cell biology. This study establishes a genome-wide metric based on the gene-repressive trimethylation of histone H3 at lysine 27 (H3K27me3) across hundreds of diverse cell types to identify genetic regulators of cell differentiation. We introduce a computational method, TRIAGE, which uses discordance between gene-repressive tendency and expression to identify genetic drivers of cell identity. We apply TRIAGE to millions of genome-wide single-cell transcriptomes, diverse omics platforms, and eukaryotic cells and tissue types. Using a wide range of data, we validate the performance of TRIAGE in identifying cell-type-specific regulatory factors across diverse species including human, mouse, boar, bird, fish, and tunicate. Using CRISPR gene editing, we use TRIAGE to experimentally validate RNF220 as a regulator of Ciona cardiopharyngeal development and SIX3 as required for differentiation of endoderm in human pluripotent stem cells. A record of this paper's transparent peer review process is included in the Supplemental Information.


Asunto(s)
Epigenómica/métodos , Diferenciación Celular , Humanos
16.
Nat Microbiol ; 3(11): 1295-1303, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30250246

RESUMEN

Microbial communities are often highly diverse in their composition, both at a coarse-grained taxonomic level, such as genus, and at a highly resolved level, such as strains, within species. This variability can be driven by either extrinsic factors such as temperature and or by intrinsic ones, for example demographic fluctuations or ecological interactions. The relative contributions of these factors and the taxonomic level at which they influence community composition remain poorly understood, in part because of the difficulty in identifying true community replicates assembled under the same environmental parameters. Here, we address this problem using an activated granular sludge reactor in which millimetre-scale biofilm granules represent true community replicates. Differences in composition are then expected to be driven primarily by biotic factors. Using 142 shotgun metagenomes of single biofilm granules we found that, at the commonly used genus-level resolution, community replicates varied much more in their composition than would be expected from neutral assembly processes. This variation did not translate into any clear partitioning into discrete community types, that is, distinct compositional states, such as enterotypes in the human gut. However, a strong partition into community types did emerge at the strain level for the dominant organism: genotypes of Candidatus Accumulibacter that coexisted in the metacommunity (the reactor) excluded each other within community replicates (granules). Individual granule communities maintained a significant lineage structure, whereby the strain phylogeny of Accumulibacter correlated with the overall composition of the community, indicating a high potential for co-diversification among species and communities. Our results suggest that due to the high functional redundancy and competition between close relatives, alternative community types are most probably observed at the level of recently differentiated genotypes but not at higher orders of genetic resolution.


Asunto(s)
Biopelículas , Variación Genética , Microbiota/genética , Genoma Bacteriano/genética , Genotipo , Metagenoma/genética , Filogenia , Aguas del Alcantarillado/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA