Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Ecotoxicol Environ Saf ; 272: 116031, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38309236

RESUMEN

Nanosized titanium dioxide (nTiO2) is widely used in products, warranting its discharge from various sources into surface water bodies. However, nTiO2 co-occurs in surface waters with other contaminants, such as metals. Studies with nTiO2 and metals have indicated that the presence of natural organic matter (NOM) can mitigate their toxicity to aquatic organisms. In addition, "aging" of nTiO2 can affect toxicity. However, it is a research challenge, particularly when addressing sublethal responses from dietary exposure over multiple generations. We, therefore exposed the alga Desmodesmus subspicatus to nTiO2 (at concentrations of 0.0, 0.6 and 3.0 mg nTiO2/L) in nutrient medium aged for 0 or 3 days with copper (Cu) at concentrations of 0 and 116 µg Cu/L and with NOM at concentrations equivalent to 0 and 8 mg total organic carbon (TOC) per litre. Subsequently, the exposed alga was fed to Daphnia magna for 23 days over two generations and survival, reproduction and body length were assessed as endpoints of toxicity. In parallel, Cu accumulation and depuration from D. magna were measured. The results indicate that the reproduction of D. magna was the most sensitive parameter in this study, being reduced by 30% (at both parental (F0) and filial (F1) generations) and 50% (at F0 but not F1) due to the dietary Cu exposure in combination with nTiO2 for 0 and 3 days aging, respectively. There was no relationship between the effects observed on reproduction and Cu body burden in D. magna. Moreover, D. magna from the F1 generation showed an adaptive response to Cu in the treatment with 3.0 mg nTiO2/L aged for 3 days, potentially due to epigenetic inheritance. Unexpectedly, the presence of NOM hardly changed the observed effects, pointing towards the function of algal exopolymeric substances or intracellular organic matter, rendering the NOM irrelevant. Ultimately, the results indicate that the transferability of the impacts observed during the F0 to the responses in the F1 generation is challenging due to opposite effect directions. Additional mechanistic studies are needed to unravel this inconsistency in the responses between generations and to support the development of reliable effect models.


Asunto(s)
Nanopartículas , Titanio , Contaminantes Químicos del Agua , Animales , Cobre , Daphnia , Daphnia magna , Exposición Dietética , Nanopartículas/toxicidad , Reproducción , Contaminantes Químicos del Agua/toxicidad
2.
Ecotoxicol Environ Saf ; 250: 114503, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36610297

RESUMEN

Emerging aquatic insects serve as one link between aquatic and adjacent riparian food webs via the flux of energy and nutrients. These insects provide high-quality subsidy to terrestrial predators. Thus, any disturbance of emergence processes may cascade to higher trophic levels and lead to effects across ecosystem boundaries. One stressor with potential impact on non-target aquatic insects, especially on non-biting midges (Diptera: Chironomidae), is the widely used mosquito control agent Bacillus thuringiensis var. israelensis (Bti). In a field experiment, we investigated emerging insect communities from Bti-treated (three applications, maximum field rate) and control floodplain pond mesocosms (FPMs) over 3.5 months for changes in their composition, diversity as well as the emergence dynamics and the individual weight of emerged aquatic insects over time. Bti treatments altered community compositions over the entire study duration - an effect mainly attributed to an earlier (∼10 days) and reduced (∼26%) peak in the emergence of Chironomidae, the dominant family (88% of collected individuals). The most reasonable explanation for this significant alteration is less resource competition caused by a decrease in chironomid larval density due to lethal effects of Bti. This is supported by the higher individual weight of Chironomidae emerging from treated FPMs (∼21%) during Bti application (April - May). A temporal shift in the emergence dynamics can cause changes in the availability of prey in linked terrestrial ecosystems. Consequently, terrestrial predators may be affected by a lack of appropriate prey leading to bottom-up and top-down effects in terrestrial food webs. This study indicates the importance of a responsible and elaborated use of Bti and additionally, highlights the need to include a temporal perspective in evaluations of stressors in aquatic-terrestrial meta-ecosystems.


Asunto(s)
Bacillus thuringiensis , Chironomidae , Humanos , Animales , Ecosistema , Cadena Alimentaria , Insectos
3.
J Environ Manage ; 345: 118746, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37597368

RESUMEN

Surface waters are under increasing pressure due to human activities, such as nutrient emissions from wastewater treatment plants (WWTPs). Using the retention of nitrogen (N) released from WWTPs as a proxy, we assessed the contribution of biofilms grown on inorganic and organic substrates to the self-cleaning capacity of second-order streams within the biosphere reserve Vosges du Nord/Palatinate forest (France/Germany). The uptake of N from anthropogenic sources, which is enriched with the heavy isotope 15N, into biofilms was assessed up- and downstream of WWTPs after five weeks of substrate deployment. Biofilms at downstream sites showed a significant positive linear relationship between δ15N and the relative contribution of wastewater to the streams' discharge. Furthermore, δ15N substantially increased in areas affected by WWTP effluent (∼8.5‰ and ∼7‰ for inorganic and organic substrate-associated biofilms, respectively) and afterwards declined with increasing distance to the WWTP effluent, approaching levels of upstream sections. The present study highlights that biofilms contribute to nutrient retention and likely the self-cleaning capacity of streams. This function seems, however, to be limited by the fact that biofilms are restricted in their capacity to process excessive N loads with large differences between individual reaches (e.g., δ15N: -3.25 to 12.81‰), influenced by surrounding conditions (e.g., land use) and modulated through climatic factors and thus impacted by climate change. Consequently, the impact of WWTPs located close to the source of a stream are dampened by the biofilms' capacity to retain N only to a minor share and suggest substantial N loads being transported downstream.


Asunto(s)
Bosques , Aguas Residuales , Humanos , Nitrógeno/análisis , Biopelículas , Francia , Monitoreo del Ambiente
4.
Sci Total Environ ; 954: 176324, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39299313

RESUMEN

Metal pollution is a global environmental issue with adverse biological effects on wildlife. Long-term studies that span declines in metal emissions due to regulation, resulting in varying levels of environmental contamination, are therefore well-suited to investigate effects of toxic metals, while also facilitating robust analysis by incorporating fluctuating environmental conditions and food availability. Here, we examined a resident population of tawny owls in Norway between 1986 and 2019. Tail feathers from females were collected annually, resulting in over 1000 feathers. Each feather served as an archive of local environmental conditions during molt, including the presence of metals, and their dietary ecology, proxied by stable isotopes of nitrogen (δ15N) and carbon (δ13C), as well as corticosterone levels (CORTf), the primary avian glucocorticoid and a measure of physiological stress. We analyzed feathers to examine how exposure to toxic metal(loid)s (Al, As, Cd, Hg, and Pb) and variability in dietary proxies modulate CORTf. Using structural equation modelling, we found that increased Al concentrations and δ15N values, linked directly to increased CORTf. In opposite, we found that increased Hg concentrations and δ13C related to decreased CORTf concentrations. δ15N was indirectly linked to CORTf through Al and Hg, while δ13C was indirectly linked to CORTf through Hg. This supports our hypothesis that metal exposure and dietary ecology may individually or jointly influence physiological stress. Notably, our results suggest that dietary ecology has the potential to mediate the impact of metals on CORTf, highlighting the importance of considering multiple variables, direct and indirect effects, when assessing stress in wildlife. In conclusion, feathers represent an excellent non-destructive biomonitoring strategy in avian wildlife, providing valuable insights not easily accessible using other methods. Further research is warranted to fully comprehend implications of alterations in CORTf on the tawny owl's health and fitness.

5.
Environ Sci Pollut Res Int ; 31(33): 45485-45494, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38967849

RESUMEN

Chironomid (Diptera: Chironomidae) larvae play a key role in aquatic food webs as prey for predators like amphibian and dragonfly larvae. This trophic link may be disrupted by anthropogenic stressors such as Bacillus thuringiensis var. israelensis (Bti), a biocide widely used in mosquito control. In a companion study, we recorded a 41% reduction of non-target larval chironomids abundance in outdoor floodplain pond mesocosms (FPMs) treated with Bti. Therefore, we examined the diet of two top predators in the FPMs, larvae of the palmate newt (Salamandridae: Lissotriton helveticus) and dragonfly (Aeshnidae: predominantly Anax imperator), using bulk stable isotope analyses of carbon and nitrogen. Additionally, we determined neutral lipid fatty acids in newt larvae to assess diet-related effects on their physiological condition. We did not find any effects of Bti on the diet proportions of newt larvae and no significant effects on the fatty acid content. We observed a trend in Aeshnidae larvae from Bti-FPMs consuming a higher proportion of large prey (Aeshnidae, newt, damselfly larvae; ~42%), and similar parts of smaller prey (chironomid, mayfly, Libellulidae, and zooplankton), compared to controls. Our findings may suggest bottom-up effects of Bti on aquatic predators but should be further evaluated, for instance, by using compound-specific stable isotope analyses of fatty acids or metabarcoding approaches.


Asunto(s)
Cadena Alimentaria , Larva , Control de Mosquitos , Estanques , Animales , Estanques/química , Control de Mosquitos/métodos , Conducta Predatoria , Chironomidae , Odonata , Bacillus thuringiensis , Salamandridae
6.
Aquat Toxicol ; 259: 106542, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37084478

RESUMEN

Stable isotope analysis (SIA) is an elementary technique in food web ecology, but its insights become increasingly ambiguous in complex systems. One approach to elevate the utility of SIA in such systems is the use of heavy isotope tracers (i.e., labeling). However, the fundamental assumption that the addition of such tracers does not affect in situ conditions has been challenged. This study tests if labeling is suitable for autotrophy-based and detritus-based aquatic food webs. For the former, the survival and reproduction of Daphnia magna fed with phytoplankton cultured at different levels of 15N addition were assessed. For the latter, the microbial decomposition of leaf litter was assessed at the same tracer levels. While no significant differences were observed, effect patterns were comparable to a previous study, supporting the isotopic redundancy hypothesis that postulates discrete quantum mechanical states at which the reaction speeds of metabolic processes are altered. Although physiology (reproduction) and activity (microbial decomposition) might not be altered to an ecologically significant level, labeling with heavy stable isotopes could potentially affect isotopic fractionation in biochemical processes and bias conclusions drawn from resulting SI ratios.


Asunto(s)
Cadena Alimentaria , Contaminantes Químicos del Agua , Isótopos de Carbono/análisis , Isótopos de Carbono/química , Isótopos de Carbono/metabolismo , Marcaje Isotópico , Contaminantes Químicos del Agua/toxicidad
7.
Environ Toxicol Chem ; 42(9): 1937-1945, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36263953

RESUMEN

Although stable isotope analysis (SIA) is widely used to address ecological research questions, its application in an ecotoxicological context has been limited. Recent studies have proposed an effect of chemical stressors on an organism's isotope signature, questioning the use of SIA in food webs impacted by toxicants. Against this background, the present study investigates 1) whether trophic enrichment factors (TEFs; i.e., the offset in stable isotope signatures of a consumer to its diet) are altered by the neonicotinoid thiacloprid, and 2) whether tracking toxicant effects on an organism's diet composition (i.e., indirect effect) with SIA fits direct observations of consumption. To address the former, the amphipod Gammarus fossarum (Koch) was exposed to three levels (0, 0.75, and 5 µg L-1 ) of thiacloprid and fed with either black alder leaves or Baetis rhodani (Pictet) larvae over 6 weeks (n = 35). The thiacloprid-induced changes in TEFs that we found were statistically significant but small compared with other factors (e.g., resource quality, consumer, and physiological condition) and thus likely of minor importance. To address the latter issue, gammarids were exposed to two levels of thiacloprid (0 and 0.75 µg L-1 ) and fed with either black alder leaves, live B. rhodani larvae, or both over 2 weeks (n = 10). Dietary proportions as suggested by SIA were indeed in agreement with those derived from direct observation of consumption. The present study consequently suggests that SIA is as a robust tool to detect indirect toxicant effects especially if TEFs are assessed in parallel. Environ Toxicol Chem 2023;42:1937-1945. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Isótopos , Tiazinas , Neonicotinoides , Cadena Alimentaria , Sustancias Peligrosas
8.
Sci Total Environ ; 873: 162351, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36822417

RESUMEN

Emerging aquatic insects link aquatic and adjacent terrestrial food webs by subsidizing terrestrial predators with high-quality prey. One of the main constituents of aquatic subsidy, the non-biting midges (Chironomidae), showed altered emergence dynamics in response to the mosquito control agent Bacillus thuringiensis var. israelensis (Bti). As riparian spiders depend on aquatic subsidy, they may be affected by such changes in prey availability. Thus, we conducted a field study in twelve floodplain pond mesocosms (FPMs), six were treated with Bti (2.88 × 109 ITU/ha, VectoBac WDG) three times, to investigate if the Bti-induced shift in chironomid emergence dynamics is reflected in their nutritional value and in the diet of riparian spiders. We measured the content of proteins, lipids, glycogen, and carbohydrates in emerged Chironomidae, and determined the stable isotope ratios of female Tetragnatha extensa, a web-building spider living in the riparian vegetation of the FPMs. We analysed the proportion of aquatic prey in spiders' diet, niche size, and trophic position. While the content of nutrients and thus the prey quality was not significantly altered by Bti, effects on the spiders' diet were observed. The trophic position of T. extensa from Bti-treated FPMs was lower compared to the control while the aquatic proportion was only minimally reduced. We assume that spiders fed more on terrestrial prey but also on other aquatic organisms such as Baetidae, whose emergence was unaffected by Bti. In contrast to the partly predaceous Chironomidae, consumption of aquatic and terrestrial primary consumers potentially explains the observed lower trophic position of spiders from Bti-treated FPMs. As prey organisms vary in their quality the suggested dietary shift could transfer previously observed effects of Bti to riparian spiders conceivably affecting their populations. Our results further support that anthropogenic stressors in aquatic ecosystems may translate to terrestrial predators through aquatic subsidy.


Asunto(s)
Bacillus thuringiensis , Arañas , Animales , Femenino , Ecosistema , Arañas/metabolismo , Cadena Alimentaria , Insectos , Dieta
9.
Environ Pollut ; 336: 122377, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37586682

RESUMEN

The present study assessed for the first time the magnitude and dietary ecological source of total mercury (THg) exposure in a southern population of white-tailed eagles (Haliaeetus albicilla), an apex predator species shown valuable for environmental biomonitoring. This population depends on the Kopacki rit Nature Park - the most important breeding site. We assessed THg exposure, using nestling body feathers collected between 2014-2019 (n = 72), and potential dietary ecological sources, proxied by prey remains and stable isotope analysis. Results show THg concentrations vary significantly over the years, though not showing any time trend. Prey remains analysis shows nests with aquatic prey remains to exhibit higher THg concentrations (median: 7.57 µg g-1 dw; min - max: 6.00-13.16 µg g-1 dw) compared to those with terrestrial remains (median: 3.94 µg g-1 dw; min - max: 0.28-12.04 µg g-1 dw) or evidencing a mixed diet (median: 7.43 µg g-1 dw; min - max: 3.38-12.04 µg g-1 dw). Nests with a predominant aquatic diet show elevated lower δ13C and higher δ15N values, indicating agreement between both dietary approaches. The model selection reveals a combination of year and δ15N best explain the variability in feather THg concentrations. Complementing these predictors with a dietary descriptor based on prey remains results in a poorer model fit and lowered explanatory power, similar to sexing the nestlings. The observed body feather THg concentrations (median: 6.99 µg g-1 dw; min - max: 0.27 - 17.16 µg g-1 dw) exceeded putative biogeochemical background levels (5.00 µg g-1 dw) in 71% of the nestlings, though, did not seem to exceed a threshold at which detrimental physiological effects are expected (40 µg g-1 dw). Continued monitoring is warranted as the studied population is likely exposed to a larger cocktail of contaminants while resident-protected bird areas.

10.
Sci Total Environ ; 872: 161978, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36739014

RESUMEN

Shallow lentic aquatic ecosystems, such as ponds, are important repositories of carbon (C) and hotspots of C cycling and greenhouse gas emission. Tube-dwelling benthic invertebrates, such as chironomids, may be key players in C dynamics in these water bodies, yet their role in the C-budget at ecosystem level remains unclear. We tested whether a 41 % reduction in chironomid abundance after application of the mosquito control biocide Bacillus thuringiensis israelensis (Bti) had implications for the C-fluxes to the atmosphere, C-pools, and C-transformation (i.e. organic matter decomposition) in ponds. Data were collected over one year in the shallow, deep and riparian zones of 12 experimental floodplain pond mesocosms (FPMs), half of them treated with Bti. C-fluxes were measured as CO2 and CH4 emissions, atmospheric deposition, and emerging insects. C-pools were measured as dissolved inorganic and organic C in surface and porewater, sediment organic C, C in plant and in macroinvertebrate biomass. Despite seasonal variability, treated FPMs, for which higher CH4 emissions have been reported, showed a trend towards less dissolved organic C in porewater, while no effect was observed for all remaining components of the C-budget. We attribute the effect of Bti on the C-budget to the reduction in macroinvertebrates biomass, the increase in CH4 emissions, and the input of C from the Bti excipients. This finding suggests that changes in tube-dwelling macroinvertebrates have a weak influence on C cycling in ponds and confirms the existence of long-lasting effects of Bti on specific components of C-budgets.


Asunto(s)
Bacillus thuringiensis , Desinfectantes , Animales , Ecosistema , Control de Mosquitos , Estanques , Carbono , Metano
11.
Sci Rep ; 13(1): 22950, 2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-38135811

RESUMEN

Freshwater ecosystems subsidize riparian zones with high-quality nutrients via the emergence of aquatic insects. Spiders are dominant consumers of these insect subsidies. However, little is known about the variation of aquatic insect consumption across spiders of different hunting modes, habitat specializations, seasons, and systems. To explore this, we assembled a large stable isotope dataset (n > 1000) of aquatic versus terrestrial sources and six spider species over four points in time adjacent to a lotic and a lentic system. The spiders represent three hunting modes each consisting of a wetland specialist and a habitat generalist. We expected that specialists would feed more on aquatic prey than their generalist counterparts. Mixing models showed that spiders' diet consisted of 17-99% of aquatic sources, with no clear effect of habitat specialization. Averaged over the whole study period, web builders (WB) showed the highest proportions (78%) followed by ground hunters (GH, 42%) and vegetation hunters (VH, 31%). Consumption of aquatic prey was highest in June and August, which is most pronounced in GH and WBs, with the latter feeding almost entirely on aquatic sources during this period. Additionally, the elevated importance of high-quality lipids from aquatic origin during fall is indicated by elemental analyses pointing to an accumulation of lipids in October, which represent critical energy reserves during winter. Consequently, this study underlines the importance of aquatic prey irrespective of the habitat specialization of spiders. Furthermore, it suggests that energy flows vary substantially between spider hunting modes and seasons.


Asunto(s)
Ecosistema , Arañas , Animales , Cadena Alimentaria , Insectos , Lípidos , Estaciones del Año
12.
Sci Total Environ ; 850: 157667, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35907551

RESUMEN

To assess how climate-sensitive factors may affect the exposure to organochlorines (OCs) and perfluoroalkyl substances (PFASs), we monitored concentrations in eggs of the common goldeneye (Bucephala clangula) over two decades (1999-2019) in central Norway. The goldeneye alternates between marine and freshwater habitats and is sensitive to climate variation, especially due to alterations in ice conditions which may affect feeding conditions. We assessed how biological factors such as diet (stable isotopes δ13C and δ15N), the onset of egg laying, and physical characteristics such as winter climate (North Atlantic Oscillation: NAOw) influenced exposure. We predicted compounds to show different temporal trends depending on whether they were still in production (i.e. some PFASs) or have been banned (i.e. legacy OCs and some PFASs). Therefore, we controlled for potential temporal trends in all analyses. There were declining trends for α- and γ-hexachlorocyclohexane (HCH), oxychlordane, cis-chlordane, cis-nonachlor, p,p'-dichlorodiphenyltrichloroethane (p.p'-DDT) and less persistent polychlorinated biphenyl (PCB) congeners (e.g. PCB101). In contrast, the dominant compounds, such as p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) and persistent PCB congeners, were stable, whereas hexachlorobenzene (HCB) increased over time. Most OCs were positively related to δ15N, suggesting higher exposure in birds feeding at upper trophic levels. Chlordanes and HCB were positively associated with δ13C, indicating traces of marine input for these compounds, whereas the relationships to most PCBs were negative. Among PFASs, perfluorooctanesulfonamide (PFOSA) and perfluorohexane sulfonic acid (PFHxS) declined. Most PFASs were positively associated with δ13C, whereas there were no associations with δ15N. Egg laying date was positively associated to perfluoroheptanesulfonic acid (PFHpS), perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), suggesting that some of the PFAS load originated from the wintering locations. Although NAOw had little impact on the exposure to organohalogenated contaminants, factors sensitive to climate change, especially diet, were associated with the exposure to OHCs in goldeneyes.


Asunto(s)
Contaminantes Ambientales , Fluorocarburos , Hidrocarburos Clorados , Bifenilos Policlorados , Animales , Factores Biológicos , Aves , Clordano , DDT , Diclorodifenil Dicloroetileno , Ecosistema , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Agua Dulce , Hexaclorobenceno , Hexaclorociclohexano , Hidrocarburos Clorados/análisis , Hielo , Bifenilos Policlorados/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA