Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
PLoS Pathog ; 19(8): e1011263, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37578981

RESUMEN

Pathogenic Xanthomonas bacteria cause disease on more than 400 plant species. These Gram-negative bacteria utilize the type III secretion system to inject type III effector proteins (T3Es) directly into the plant cell cytosol where they can manipulate plant pathways to promote virulence. The host range of a given Xanthomonas species is limited, and T3E repertoires are specialized during interactions with specific plant species. Some effectors, however, are retained across most strains, such as Xanthomonas Outer Protein L (XopL). As an 'ancestral' effector, XopL contributes to the virulence of multiple xanthomonads, infecting diverse plant species. XopL homologs harbor a combination of a leucine-rich-repeat (LRR) domain and an XL-box which has E3 ligase activity. Despite similar domain structure there is evidence to suggest that XopL function has diverged, exemplified by the finding that XopLs expressed in plants often display bacterial species-dependent differences in their sub-cellular localization and plant cell death reactions. We found that XopL from X. euvesicatoria (XopLXe) directly associates with plant microtubules (MTs) and causes strong cell death in agroinfection assays in N. benthamiana. Localization of XopLXe homologs from three additional Xanthomonas species, of diverse infection strategy and plant host, revealed that the distantly related X. campestris pv. campestris harbors a XopL (XopLXcc) that fails to localize to MTs and to cause plant cell death. Comparative sequence analyses of MT-binding XopLs and XopLXcc identified a proline-rich-region (PRR)/α-helical region important for MT localization. Functional analyses of XopLXe truncations and amino acid exchanges within the PRR suggest that MT-localized XopL activity is required for plant cell death reactions. This study exemplifies how the study of a T3E within the context of a genus rather than a single species can shed light on how effector localization is linked to biochemical activity.


Asunto(s)
Xanthomonas campestris , Xanthomonas , Xanthomonas/genética , Xanthomonas/metabolismo , Proteínas Bacterianas/metabolismo , Células Vegetales/metabolismo , Plantas/metabolismo , Muerte Celular , Microtúbulos/metabolismo , Enfermedades de las Plantas/microbiología , Xanthomonas campestris/genética , Xanthomonas campestris/metabolismo
2.
Plant J ; 106(4): 1008-1023, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33629456

RESUMEN

Nucleotide-binding domain-leucine-rich repeat-type immune receptors (NLRs) protect plants against pathogenic microbes through intracellular detection of effector proteins. However, this comes at a cost, as NLRs can also induce detrimental autoimmunity in genetic interactions with foreign alleles. This may occur when independently evolved genomes are combined in inter- or intraspecific crosses, or when foreign alleles are introduced by mutagenesis or transgenesis. Most autoimmunity-inducing NLRs are encoded within highly variable NLR gene clusters with no known immune functions, which were termed autoimmune risk loci. Whether risk NLRs differ from sensor NLRs operating in natural pathogen resistance and how risk NLRs are activated in autoimmunity is unknown. Here, we analyzed the DANGEROUS MIX2 risk locus, a major autoimmunity hotspot in Arabidopsis thaliana. By gene editing and heterologous expression, we show that a single gene, DM2h, is necessary and sufficient for autoimmune induction in three independent cases of autoimmunity in accession Landsberg erecta. We focus on autoimmunity provoked by an EDS1-yellow fluorescent protein (YFP)NLS fusion protein to characterize DM2h functionally and determine features of EDS1-YFPNLS activating the immune receptor. Our data suggest that risk NLRs function in a manner reminiscent of sensor NLRs, while autoimmunity-inducing properties of EDS1-YFPNLS in this context are unrelated to the protein's functions as an immune regulator. We propose that autoimmunity, at least in some cases, may be caused by spurious, stochastic interactions of foreign alleles with coincidentally matching risk NLRs.


Asunto(s)
Arabidopsis/genética , Inmunidad Innata/genética , Proteínas NLR/metabolismo , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Arabidopsis/inmunología , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Autoinmunidad/genética , Fusión Génica , Genes Reporteros , Sitios Genéticos , Proteínas NLR/genética , Nicotiana/genética , Nicotiana/inmunología
3.
Plant J ; 106(1): 8-22, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33577114

RESUMEN

Genome editing by RNA-guided nucleases, such as SpCas9, has been used in numerous different plant species. However, to what extent multiple independent loci can be targeted simultaneously by multiplexing has not been well documented. Here, we developed a toolkit, based on a highly intron-optimized zCas9i gene, which allows assembly of nuclease constructs expressing up to 32 single guide RNAs (sgRNAs). We used this toolkit to explore the limits of multiplexing in two major model species, and report on the isolation of transgene-free octuple (8×) Nicotiana benthamiana and duodecuple (12×) Arabidopsis thaliana mutant lines in a single generation (T1 and T2 , respectively). We developed novel counter-selection markers for N. benthamiana, most importantly Sl-FAST2, comparable to the well-established Arabidopsis seed fluorescence marker, and FCY-UPP, based on the production of toxic 5-fluorouracil in the presence of a precursor. Targeting eight genes with an array of nine different sgRNAs and relying on FCY-UPP for selection of non-transgenic T1 , we identified N. benthamiana mutant lines with astonishingly high efficiencies: All analyzed plants carried mutations in all genes (approximately 112/116 target sites edited). Furthermore, we targeted 12 genes by an array of 24 sgRNAs in A. thaliana. Efficiency was significantly lower in A. thaliana, and our results indicate Cas9 availability is the limiting factor in such higher-order multiplexing applications. We identified a duodecuple mutant line by a combination of phenotypic screening and amplicon sequencing. The resources and results presented provide new perspectives for how multiplexing can be used to generate complex genotypes or to functionally interrogate groups of candidate genes.


Asunto(s)
Arabidopsis/genética , Nicotiana/genética , Plantas Modificadas Genéticamente/genética , Sistemas CRISPR-Cas/genética , Edición Génica , Genoma de Planta/genética , Mutación/genética
4.
Plant J ; 93(5): 856-870, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29285819

RESUMEN

Xanthomonas campestris pv. vesicatoria type III-secreted effectors were screened for candidates influencing plant cell processes relevant to the formation and maintenance of stromules in Nicotiana benthamiana lower leaf epidermis. Transient expression of XopL, a unique type of E3 ubiquitin ligase, led to a nearly complete elimination of stromules and the relocation of plastids to the nucleus. Further characterization of XopL revealed that the E3 ligase activity is essential for the two plastid phenotypes. In contrast to the XopL wild type, a mutant XopL lacking E3 ligase activity specifically localized to microtubules. Interestingly, mutant XopL-labeled filaments frequently aligned with stromules, suggesting an important, yet unexplored, microtubule-stromule relationship. High time-resolution movies confirmed that microtubules provide a scaffold for stromule movement and contribute to stromule shape. Taken together, this study has defined two populations of stromules: microtubule-dependent stromules, which were found to move slower and persist longer, and microtubule-independent stromules, which move faster and are transient. Our results provide the basis for a new model of stromule dynamics including interactions with both actin and microtubules.


Asunto(s)
Proteínas Bacterianas/metabolismo , Microtúbulos/metabolismo , Nicotiana/citología , Plastidios/metabolismo , Xanthomonas campestris/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas Bacterianas/genética , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Dinitrobencenos/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Mutación , Células Vegetales , Plantas Modificadas Genéticamente , Sulfanilamidas/farmacología , Tiazolidinas/farmacología , Nicotiana/efectos de los fármacos , Nicotiana/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Xanthomonas campestris/patogenicidad
5.
Plant J ; 91(3): 430-442, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28423458

RESUMEN

Many Gram-negative plant pathogenic bacteria express effector proteins of the XopQ/HopQ1 family which are translocated into plant cells via the type III secretion system during infection. In Nicotiana benthamiana, recognition of XopQ/HopQ1 proteins induces an effector-triggered immunity (ETI) reaction which is not associated with strong cell death but renders plants immune against Pseudomonas syringae and Xanthomonas campestris pv. vesicatoria strains. Additionally, XopQ suppresses cell death in N. benthamiana when transiently co-expressed with cell death inducers. Here, we show that representative XopQ/HopQ1 proteins are recognized similarly, likely by a single resistance protein of the TIR-NB-LRR class. Extensive analysis of XopQ derivatives indicates the recognition of structural features. We performed Agrobacterium-mediated protein expression experiments in wild-type and EDS1-deficient (eds1) N. benthamiana leaves, not recognizing XopQ/HopQ1. XopQ recognition limits multiplication of Agrobacterium and attenuates levels of transiently expressed proteins. Remarkably, XopQ fails to suppress cell death reactions induced by different effectors in eds1 plants. We conclude that XopQ-mediated cell death suppression in N. benthamiana is due to the attenuation of Agrobacterium-mediated protein expression rather than the cause of the genuine XopQ virulence activity. Thus, our study expands our understanding of XopQ recognition and function, and also challenges the commonly used co-expression assays for elucidation of in planta effector activities, at least under conditions of ETI induction.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Nicotiana/inmunología , Nicotiana/microbiología , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/inmunología , Pseudomonas syringae/patogenicidad , Virulencia/genética , Virulencia/fisiología , Xanthomonas/inmunología , Xanthomonas/patogenicidad
6.
BMC Genomics ; 18(1): 625, 2017 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-28814272

RESUMEN

BACKGROUND: Bacteria of the genus Xanthomonas are economically important plant pathogens. Pathogenicity of Xanthomonas spp. depends on the type III-secretion system and additional virulence determinants. The number of sequenced Xanthomonas genomes increases rapidly, however, accurate annotation of these genomes is difficult, because it relies on gene prediction programs. In this study, we used a mass-spectrometry (MS)-based approach to identify the proteome of Xanthomonas euvesicatoria (Xe) strain 85-10 also known as X. campestris pv. vesicatoria, a well-studied member of plant-pathogenic Xanthomonadaceae. RESULTS: Using different culture conditions, MS-datasets were searched against a six-frame-translated genome database of Xe. In total, we identified 2588 proteins covering 55% of the Xe genome, including 764 hitherto hypothetical proteins. Our proteogenomic approach identified 30 new protein-coding genes and allowed correction of the N-termini of 50 protein-coding genes. For five novel and two N-terminally corrected genes the corresponding proteins were confirmed by immunoblot. Furthermore, our data indicate that two putative type VI-secretion systems encoded in Xe play no role in bacterial virulence which was experimentally confirmed. CONCLUSIONS: The discovery and re-annotation of numerous genes in the genome of Xe shows that also a well-annotated genome can be improved. Additionally, our proteogenomic analyses validates "hypothetical" proteins and will improve annotation of Xanthomonadaceae genomes, providing a solid basis for further studies.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Plantas/microbiología , Xanthomonas/genética , Xanthomonas/patogenicidad , Proteómica , Virulencia/genética
7.
Nucleic Acids Res ; 42(11): 7160-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24792160

RESUMEN

AvrBs3, the founding member of the Xanthomonas transcription-activator-like effectors (TALEs), is translocated into the plant cell where it localizes to the nucleus and acts as transcription factor. The DNA-binding domain of AvrBs3 consists of 17.5 nearly-identical 34 amino acid-repeats. Each repeat specifies binding to one base in the target DNA via amino acid residues 12 and 13 termed repeat variable diresidue (RVD). Natural target sequences of TALEs are generally preceded by a thymine (T0), which is coordinated by a tryptophan residue (W232) in a degenerated repeat upstream of the canonical repeats. To investigate the necessity of T0 and the conserved tryptophan for AvrBs3-mediated gene activation we tested TALE mutant derivatives on target sequences preceded by all possible four bases. In addition, we performed domain swaps with TalC from a rice pathogenic Xanthomonas because TalC lacks the tryptophan residue, and the TalC target sequence is preceded by cytosine. We show that T0 works best and that T0 specificity depends on the repeat number and overall RVD-composition. T0 and W232 appear to be particularly important if the RVD of the first repeat is HD ('rep1 effect'). Our findings provide novel insights into the mechanism of T0 recognition by TALE proteins and are important for TALE-based biotechnological applications.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Unión al ADN/química , Factores de Transcripción/química , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , ADN/química , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mutación , Unión Proteica , Secuencias Repetitivas de Aminoácido , Timina/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triptófano/genética
8.
PLoS Pathog ; 9(9): e1003626, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24068933

RESUMEN

Small noncoding RNAs (sRNAs) are ubiquitous posttranscriptional regulators of gene expression. Using the model plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv), we investigated the highly expressed and conserved sRNA sX13 in detail. Deletion of sX13 impinged on Xcv virulence and the expression of genes encoding components and substrates of the Hrp type III secretion (T3S) system. qRT-PCR analyses revealed that sX13 promotes mRNA accumulation of HrpX, a key regulator of the T3S system, whereas the mRNA level of the master regulator HrpG was unaffected. Complementation studies suggest that sX13 acts upstream of HrpG. Microarray analyses identified 63 sX13-regulated genes, which are involved in signal transduction, motility, transcriptional and posttranscriptional regulation and virulence. Structure analyses of in vitro transcribed sX13 revealed a structure with three stable stems and three apical C-rich loops. A computational search for putative regulatory motifs revealed that sX13-repressed mRNAs predominantly harbor G-rich motifs in proximity of translation start sites. Mutation of sX13 loops differentially affected Xcv virulence and the mRNA abundance of putative targets. Using a GFP-based reporter system, we demonstrated that sX13-mediated repression of protein synthesis requires both the C-rich motifs in sX13 and G-rich motifs in potential target mRNAs. Although the RNA-binding protein Hfq was dispensable for sX13 activity, the hfq mRNA and Hfq::GFP abundance were negatively regulated by sX13. In addition, we found that G-rich motifs in sX13-repressed mRNAs can serve as translational enhancers and are located at the ribosome-binding site in 5% of all protein-coding Xcv genes. Our study revealed that sX13 represents a novel class of virulence regulators and provides insights into sRNA-mediated modulation of adaptive processes in the plant pathogen Xanthomonas.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/metabolismo , Factores de Virulencia/metabolismo , Xanthomonas/metabolismo , Adaptación Fisiológica , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Capsicum/microbiología , Quimiotaxis , Mutación , Conformación de Ácido Nucleico , Motivos de Nucleótidos , Análisis de Secuencia por Matrices de Oligonucleótidos , Hojas de la Planta/microbiología , Biosíntesis de Proteínas , Estabilidad del ARN , ARN Bacteriano/química , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/química , Transducción de Señal , Virulencia , Factores de Virulencia/química , Factores de Virulencia/genética , Xanthomonas/crecimiento & desarrollo , Xanthomonas/patogenicidad
9.
PLoS Pathog ; 9(1): e1003121, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23359647

RESUMEN

Type III effectors are virulence factors of Gram-negative bacterial pathogens delivered directly into host cells by the type III secretion nanomachine where they manipulate host cell processes such as the innate immunity and gene expression. Here, we show that the novel type III effector XopL from the model plant pathogen Xanthomonas campestris pv. vesicatoria exhibits E3 ubiquitin ligase activity in vitro and in planta, induces plant cell death and subverts plant immunity. E3 ligase activity is associated with the C-terminal region of XopL, which specifically interacts with plant E2 ubiquitin conjugating enzymes and mediates formation of predominantly K11-linked polyubiquitin chains. The crystal structure of the XopL C-terminal domain revealed a single domain with a novel fold, termed XL-box, not present in any previously characterized E3 ligase. Mutation of amino acids in the central cavity of the XL-box disrupts E3 ligase activity and prevents XopL-induced plant cell death. The lack of cysteine residues in the XL-box suggests the absence of thioester-linked ubiquitin-E3 ligase intermediates and a non-catalytic mechanism for XopL-mediated ubiquitination. The crystal structure of the N-terminal region of XopL confirmed the presence of a leucine-rich repeat (LRR) domain, which may serve as a protein-protein interaction module for ubiquitination target recognition. While the E3 ligase activity is required to provoke plant cell death, suppression of PAMP responses solely depends on the N-terminal LRR domain. Taken together, the unique structural fold of the E3 ubiquitin ligase domain within the Xanthomonas XopL is unprecedented and highlights the variation in bacterial pathogen effectors mimicking this eukaryote-specific activity.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno/inmunología , Enfermedades de las Plantas/inmunología , Ubiquitina-Proteína Ligasas/metabolismo , Factores de Virulencia/metabolismo , Xanthomonas campestris/patogenicidad , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Aminoácidos/genética , Aminoácidos/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas Bacterianas/química , Muerte Celular , Cristalización , Datos de Secuencia Molecular , Mutación , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Señales de Clasificación de Proteína , Estructura Terciaria de Proteína , Ubiquitina-Proteína Ligasas/química , Virulencia , Factores de Virulencia/química , Xanthomonas campestris/fisiología
10.
New Phytol ; 204(4): 823-32, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25539004

RESUMEN

Transcription activator-like effectors (TALEs) from plant pathogenic Xanthomonas spp. and the related RipTALs from Ralstonia solanacearum are DNA-binding proteins with a modular DNA-binding domain. This domain is both predictable and programmable, which simplifies elucidation of TALE function in planta and facilitates generation of DNA-binding modules with desired specificity for biotechnological approaches. Recently identified TALE host target genes that either promote or stop bacterial disease provide new insights into how expression of TALE genes affects the plant­pathogen interaction. Since its elucidation the TALE code has been continuously refined and now provides a mature tool that, in combination with transcriptome profiling, allows rapid isolation of novel TALE target genes. The TALE code is also the basis for synthetic promoter-traps that mediate recognition of TALE or RipTAL proteins in engineered plants. In this review, we will summarize recent findings in plant-focused TALE research. In addition, we will provide an outline of the newly established gene isolation approach for TALE or RipTAL host target genes with an emphasis on potential pitfalls.


Asunto(s)
Resistencia a la Enfermedad/genética , Proteínas Fúngicas/metabolismo , Ingeniería Genética/métodos , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Proteínas de Plantas/metabolismo , Clonación Molecular , Epigénesis Genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Ralstonia solanacearum/genética , Ralstonia solanacearum/metabolismo , Ralstonia solanacearum/patogenicidad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Xanthomonas/metabolismo , Xanthomonas/patogenicidad
11.
PLoS Comput Biol ; 9(3): e1002962, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23526890

RESUMEN

Transcription activator-like (TAL) effectors are injected into host plant cells by Xanthomonas bacteria to function as transcriptional activators for the benefit of the pathogen. The DNA binding domain of TAL effectors is composed of conserved amino acid repeat structures containing repeat-variable diresidues (RVDs) that determine DNA binding specificity. In this paper, we present TALgetter, a new approach for predicting TAL effector target sites based on a statistical model. In contrast to previous approaches, the parameters of TALgetter are estimated from training data computationally. We demonstrate that TALgetter successfully predicts known TAL effector target sites and often yields a greater number of predictions that are consistent with up-regulation in gene expression microarrays than an existing approach, Target Finder of the TALE-NT suite. We study the binding specificities estimated by TALgetter and approve that different RVDs are differently important for transcriptional activation. In subsequent studies, the predictions of TALgetter indicate a previously unreported positional preference of TAL effector target sites relative to the transcription start site. In addition, several TAL effectors are predicted to bind to the TATA-box, which might constitute one general mode of transcriptional activation by TAL effectors. Scrutinizing the predicted target sites of TALgetter, we propose several novel TAL effector virulence targets in rice and sweet orange. TAL-mediated induction of the candidates is supported by gene expression microarrays. Validity of these targets is also supported by functional analogy to known TAL effector targets, by an over-representation of TAL effector targets with similar function, or by a biological function related to pathogen infection. Hence, these predicted TAL effector virulence targets are promising candidates for studying the virulence function of TAL effectors. TALgetter is implemented as part of the open-source Java library Jstacs, and is freely available as a web-application and a command line program.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Unión al ADN/química , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biología Computacional/métodos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Unión Proteica , Reproducibilidad de los Resultados , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Xanthomonas/genética , Xanthomonas/patogenicidad
12.
RNA Biol ; 11(5): 457-63, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24667380

RESUMEN

The genus Xanthomonas comprises a large group of plant-pathogenic bacteria. The infection and bacterial multiplication in the plant tissue depends on the type III secretion system and other virulence determinants. Recent studies revealed that bacterial virulence is also controlled at the post-transcriptional level by small non-coding RNAs (sRNAs). In this review, we highlight our current knowledge about sRNAs and RNA-binding proteins in Xanthomonas species.


Asunto(s)
ARN Pequeño no Traducido/genética , Xanthomonas/genética , Regulación Bacteriana de la Expresión Génica , Proteína de Factor 1 del Huésped/metabolismo , Filogenia , Enfermedades de las Plantas/microbiología , Plantas/microbiología , ARN Bacteriano/química , ARN Bacteriano/clasificación , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/clasificación , ARN Pequeño no Traducido/metabolismo , Proteínas de Unión al ARN/metabolismo , Virulencia/genética , Xanthomonas/metabolismo , Xanthomonas/patogenicidad
13.
Nucleic Acids Res ; 40(5): 2020-31, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22080557

RESUMEN

The Gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) is an important model to elucidate the mechanisms involved in the interaction with the host. To gain insight into the transcriptome of the Xcv strain 85-10, we took a differential RNA sequencing (dRNA-seq) approach. Using a novel method to automatically generate comprehensive transcription start site (TSS) maps we report 1421 putative TSSs in the Xcv genome. Genes in Xcv exhibit a poorly conserved -10 promoter element and no consensus Shine-Dalgarno sequence. Moreover, 14% of all mRNAs are leaderless and 13% of them have unusually long 5'-UTRs. Northern blot analyses confirmed 16 intergenic small RNAs and seven cis-encoded antisense RNAs in Xcv. Expression of eight intergenic transcripts was controlled by HrpG and HrpX, key regulators of the Xcv type III secretion system. More detailed characterization identified sX12 as a small RNA that controls virulence of Xcv by affecting the interaction of the pathogen and its host plants. The transcriptional landscape of Xcv is unexpectedly complex, featuring abundant antisense transcripts, alternative TSSs and clade-specific small RNAs.


Asunto(s)
ARN Pequeño no Traducido/metabolismo , Factores de Virulencia/genética , Xanthomonas campestris/genética , Regiones no Traducidas 5' , Proteínas Bacterianas/genética , Genoma Bacteriano , Modelos Estadísticos , Anotación de Secuencia Molecular , Filogenia , Procesamiento Postranscripcional del ARN , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/genética , Análisis de Secuencia de ARN , Sitio de Iniciación de la Transcripción , Transcriptoma , Factores de Virulencia/metabolismo , Xanthomonas campestris/patogenicidad
14.
New Phytol ; 195(4): 894-911, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22738163

RESUMEN

The pathogenicity of the Gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) is dependent on type III effectors (T3Es) that are injected into plant cells by a type III secretion system and interfere with cellular processes to the benefit of the pathogen. In this study, we analyzed eight T3Es from Xcv strain 85-10, six of which were newly identified effectors. Genetic studies and protoplast expression assays revealed that XopB and XopS contribute to disease symptoms and bacterial growth, and suppress pathogen-associated molecular pattern (PAMP)-triggered plant defense gene expression. In addition, XopB inhibits cell death reactions induced by different T3Es, thus suppressing defense responses related to both PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). XopB localizes to the Golgi apparatus and cytoplasm of the plant cell and interferes with eukaryotic vesicle trafficking. Interestingly, a XopB point mutant derivative was defective in the suppression of ETI-related responses, but still interfered with vesicle trafficking and was only slightly affected with regard to the suppression of defense gene induction. This suggests that XopB-mediated suppression of PTI and ETI is dependent on different mechanisms that can be functionally separated.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/genética , Inmunidad de la Planta , Xanthomonas campestris/metabolismo , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas Bacterianas/genética , Muerte Celular , Regulación Bacteriana de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes Bacterianos/genética , Estudios de Asociación Genética , Aparato de Golgi/metabolismo , Células Vegetales/microbiología , Inmunidad de la Planta/genética , Proteínas de Plantas/metabolismo , Transporte de Proteínas/genética , Solanaceae/citología , Solanaceae/microbiología , Virulencia/genética , Xanthomonas campestris/genética , Xanthomonas campestris/patogenicidad
15.
Plant J ; 59(6): 859-71, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19473322

RESUMEN

The Gram-negative phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) employs a type III secretion system to translocate effector proteins into plant cells where they modulate host signaling pathways to the pathogen's benefit. The effector protein AvrBs3 acts as a eukaryotic transcription factor and induces the expression of plant genes termed UPA (up-regulated by AvrBs3). Here, we describe 11 new UPA genes from bell pepper that are induced by AvrBs3 early after infection with Xcv. Sequence comparisons revealed the presence of a conserved AvrBs3-responsive element, the UPA box, in all UPA gene promoters analyzed. Analyses of UPA box mutant derivatives confirmed its importance for gene induction by AvrBs3. We show that DNA binding and gene activation were strictly correlated. DNase I footprint studies demonstrated that the UPA box corresponds to the center of the AvrBs3-protected DNA region. Type III delivery of AvrBs3 and mutant derivatives showed that some UPA genes are induced by the AvrBs3 deletion derivative AvrBs3Deltarep16, which lacks four repeats. We show that AvrBs3Deltarep16 recognizes a mutated UPA box with two nucleotide exchanges in positions that are not essential for binding and activation by AvrBs3.


Asunto(s)
Proteínas Bacterianas/metabolismo , Capsicum/genética , Proteínas de Unión al ADN/metabolismo , Xanthomonas campestris/patogenicidad , Secuencia de Bases , Capsicum/microbiología , Análisis Mutacional de ADN , ADN Complementario/genética , ADN de Plantas/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Interacciones Huésped-Patógeno , Datos de Secuencia Molecular , Familia de Multigenes , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Regiones Promotoras Genéticas , Unión Proteica , Elementos de Respuesta , Efectores Tipo Activadores de la Transcripción , Xanthomonas campestris/metabolismo
16.
Microbiology (Reading) ; 156(Pt 7): 1963-1974, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20378646

RESUMEN

Type III secretion (T3S) systems play key roles in the assembly of flagella and the translocation of bacterial effector proteins into eukaryotic host cells. Eleven proteins which are conserved among gram-negative plant and animal pathogenic bacteria have been proposed to build up the basal structure of the T3S system, which spans both inner and outer bacterial membranes. We studied six conserved proteins, termed Hrc, predicted to reside in the inner membrane of the plant pathogen Xanthomonas campestris pv. vesicatoria. The membrane topology of HrcD, HrcR, HrcS, HrcT, HrcU and HrcV was studied by translational fusions to a dual alkaline phosphatase-beta-galactosidase reporter protein. Two proteins, HrcU and HrcV, were found to have the same membrane topology as the Yersinia homologues YscU and YscV. For HrcR, the membrane topology differed from the model for the homologue from Yersinia, YscR. For our data on three other protein families, exemplified by HrcD, HrcS and HrcT, we derived the first topology models. Our results provide what is believed to be the first complete model of the inner membrane topology of any bacterial T3S system and will aid in elucidating the architecture of T3S systems by ultrastructural analysis.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Xanthomonas vesicatoria/metabolismo , Proteínas Bacterianas/genética , Membrana Celular/genética , Enfermedades de las Plantas/microbiología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Xanthomonas vesicatoria/química , Xanthomonas vesicatoria/genética
17.
PLoS Pathog ; 4(6): e1000094, 2008 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-18584024

RESUMEN

The Gram-negative bacterial plant pathogen Xanthomonas campestris pv. vesicatoria employs a type III secretion (T3S) system to inject bacterial effector proteins into the host cell cytoplasm. One essential pathogenicity factor is HrpB2, which is secreted by the T3S system. We show that secretion of HrpB2 is suppressed by HpaC, which was previously identified as a T3S control protein. Since HpaC promotes secretion of translocon and effector proteins but inhibits secretion of HrpB2, HpaC presumably acts as a T3S substrate specificity switch protein. Protein-protein interaction studies revealed that HpaC interacts with HrpB2 and the C-terminal domain of HrcU, a conserved inner membrane component of the T3S system. However, no interaction was observed between HpaC and the full-length HrcU protein. Analysis of HpaC deletion derivatives revealed that the binding site for the C-terminal domain of HrcU is essential for HpaC function. This suggests that HpaC binding to the HrcU C terminus is key for the control of T3S. The C terminus of HrcU also provides a binding site for HrpB2; however, no interaction was observed with other T3S substrates including pilus, translocon and effector proteins. This is in contrast to HrcU homologs from animal pathogenic bacteria suggesting evolution of distinct mechanisms in plant and animal pathogenic bacteria for T3S substrate recognition.


Asunto(s)
Proteínas Bacterianas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Xanthomonas campestris/patogenicidad , Regulación Bacteriana de la Expresión Génica , Immunoblotting , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Especificidad por Sustrato , Xanthomonas campestris/metabolismo
18.
New Phytol ; 187(4): 1058-1074, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20609114

RESUMEN

*Pathogenicity of the Gram-negative plant pathogen Xanthomonas campestris pv. vesicatoria (Xcv) depends on a type III secretion system that translocates a cocktail of > 25 type III effector proteins into the plant cell. *In this study, we identified the effector AvrBsT as a suppressor of specific plant defense. AvrBsT belongs to the YopJ/AvrRxv protein family, members of which are predicted to act as proteases and/or acetyltransferases. *AvrBsT suppresses the hypersensitive response (HR) that is elicited by the effector protein AvrBs1 from Xcv in resistant pepper plants. HR suppression occurs inside the plant cell and depends on a conserved predicted catalytic residue of AvrBsT. Yeast two-hybrid based analyses identified plant interaction partners of AvrBs1 and AvrBsT, including a putative regulator of sugar metabolism, SNF1-related kinase 1 (SnRK1), as interactor of AvrBsT. Intriguingly, gene silencing experiments revealed that SnRK1 is required for the induction of the AvrBs1-specific HR. *We therefore speculate that SnRK1 is involved in the AvrBsT-mediated suppression of the AvrBs1-specific HR.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/fisiología , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Solanaceae/microbiología , Xanthomonas campestris/patogenicidad , Silenciador del Gen , Genes de Plantas , Interacciones Huésped-Patógeno/fisiología , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinasas/genética , Solanaceae/metabolismo , Xanthomonas campestris/metabolismo
19.
New Phytol ; 187(4): 983-1002, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20524995

RESUMEN

*Type II secretion (T2S) systems of many plant-pathogenic bacteria often secrete cell wall-degrading enzymes into the plant apoplast. *Here, we show that the Xps-T2S system from the plant pathogen Xanthomonas campestris pv vesicatoria (Xcv) promotes disease and contributes to the translocation of effector proteins that are delivered into the plant cell by the type III secretion (T3S) system. *The Xcs-T2S system instead lacks an obvious virulence function. However, individual xcs genes can partially complement mutants in homologous xps genes, indicating that they encode functional components of T2S systems. Enzyme activity assays showed that the Xps system contributes to secretion of proteases and xylanases. We identified the virulence-associated xylanase XynC as a substrate of the Xps system. However, homologs of known T2S substrates from other Xanthomonas spp. are not secreted by the T2S systems from Xcv. Thus, T2S systems from Xanthomonas spp. appear to differ significantly in their substrate specificities. *Transcript analyses revealed that expression of xps genes in Xcv is activated by HrpG and HrpX, key regulators of the T3S system. By contrast, expression of xynC and extracellular protease and xylanase activities are repressed by HrpG and HrpX, suggesting that components and substrates of the Xps system are differentially regulated.


Asunto(s)
Proteínas Bacterianas/genética , Capsicum/microbiología , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/microbiología , Xanthomonas campestris/patogenicidad , Proteínas Bacterianas/metabolismo , Endo-1,4-beta Xilanasas/metabolismo , Péptido Hidrolasas/metabolismo , Especificidad por Sustrato , Factores de Transcripción/metabolismo , Xanthomonas campestris/genética , Xanthomonas campestris/metabolismo
20.
RNA Biol ; 7(2): 120-4, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20220307

RESUMEN

The genome of Xanthomonas campestris pv. vesicatoria encodes a constitutively expressed small RNA, which we designate PtaRNA1, "Plasmid transferred anti-sense RNA". It exhibits all hallmarks of a novel RNA antitoxin that proliferates by frequent horizontal transfer. It shows an erratic phylogenetic distribution with occurrences on chromosomes in a few individual strains distributed across both beta- and gamma-proteobacteria. Moreover, a homologous gene located on plasmid pMATVIM-7 of Pseudomonas aeruginosa is found. All ptaRNA1 homologs are located anti-sense to a putative toxin, which in turn is never encountered without the small RNA. The secondary structure of PtaRNA1, furthermore, is very similar to that of the FinP anti-sense RNA found on F-like plasmids in Escherichia coli.


Asunto(s)
Plásmidos/genética , ARN sin Sentido/genética , ARN no Traducido/genética , Xanthomonas campestris/genética , Secuencia de Aminoácidos , Secuencia de Bases , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos/genética , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Filogenia , ARN sin Sentido/química , ARN Ribosómico 5S/química , ARN Ribosómico 5S/genética , ARN no Traducido/química , Alineación de Secuencia , Xanthomonas campestris/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA