Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Chemistry ; 30(23): e202303784, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38289975

RESUMEN

PSII-inspired quantasomes have emerged as promising artificial photosystems evolving oxygen from water due to their integrated multi-chromophore asset, hierarchical architecture, and efficient light-harvesting capabilities. In this study, we adopt a combined covalent and supramolecular strategy by implementing a poly-styrene backbone that reinforces proximity and pairing between adjacent perylenebisimide (PBI) quantasome units. The covalent fixation of the quantasome network results in a significant enhancement of the photoelectrocatalytic performance on engineered IO-ITO photoanodes, with up to 290 % photocurrent increase (J up to 100 µA cm-2, λ >450 nm, applied bias <1.23 V vs RHE, F.E.O2 >80 %) compared to the non-polymerized analog. Moreover, the direct PBI-quantasome polymerization on the photoanode surface was performed by light irradiation of the radical initiator 2,2'-Azobis(2-methylpropionamidine), improving the photoelectrode robustness under high solar irradiance (>8 suns) and limiting the photocurrent loss (<20 %) at 1.52 V vs RHE compared to the non-polymerized system.

2.
Chemistry ; 30(16): e202400127, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38446047

RESUMEN

This Editorial introduces a Special Collection of papers dedicated to Maurizio Prato, featuring prominent examples of his team's efforts to integrate complex frontier research with pioneering achievements in the field of carbon nanostructures and molecular nanoscience.

3.
Chemistry ; 30(23): e202401061, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38595065

RESUMEN

Invited for the cover of this issue are the groups of Marcella Bonchio at the University of Padova and Jérôme Canivet at the CNRS-University of Lyon. The image depicts the hierarchical self-organization of bio-inspired quantasomes, crosslinked within a polystyrene network to enchain their lateral and orthogonal proximity for long-lasting oxygen evolution using green photons. Read the full text of the article at 10.1002/chem.202303784.

4.
J Am Chem Soc ; 144(31): 14021-14025, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35881505

RESUMEN

As the natural-born photoelectrolyzer for oxygen delivery, photosystem II (PSII) is hardly replicated with man-made constructs. However, building on the "quantasome" hypothesis ( Science 1964, 144, 1009-1011), PSII mimicry can be pared down to essentials by shaping a photocatalytic ensemble (from the Greek term "soma" = body) where visible-light quanta trigger water oxidation. PSII-inspired quantasomes (QS) readily self-assemble into hierarchical photosynthetic nanostacks, made of bis-cationic perylenebisimides (PBI2+) as chromophores and deca-anionic tetraruthenate polyoxometalates (Ru4POM) as water oxidation catalysts ( Nat. Chem. 2019, 11, 146-153). A combined supramolecular and click-chemistry strategy is used herein to interlock the PBI-QS with tetraethylene glycol (TEG) cross-linkers, yielding QS-TEGlock with increased water solvation, controlled growth, and up to a 340% enhancement of the oxygenic photocurrent compared to the first generation QS, as probed on 3D-inverse opal indium tin oxide electrodes at 8.5 sun irradiance (λ > 450 nm, 1.28 V vs RHE applied bias, TOFmax = 0.096 ± 0.005 s-1, FEO2 > 95%). Action spectra, catalyst mass-activity, light-management, photoelectrochemical impedance spectroscopy (PEIS) together with Raman mapping of TEG-templated hydration shells point to a key role of the cross-linked PBI/Ru4POM nanoarrays, where the interplay of hydrophilic/hydrophobic domains is reminiscent of PSII-rich natural thylakoids.


Asunto(s)
Oxígeno , Fotosíntesis , Humanos , Imidas , Luz , Oxidación-Reducción , Oxígeno/química , Perileno/análogos & derivados , Complejo de Proteína del Fotosistema II/química , Agua/química
5.
Chemphyschem ; 22(12): 1208-1218, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-33851772

RESUMEN

The cobalt substituted polyoxotungstate [Co6 (H2 O)2 (α-B-PW9 O34 )2 (PW6 O26 )]17- (Co6) displays fast electron transfer (ET) kinetics to photogenerated RuIII (bpy)33+ , 4 to 5 orders of magnitude faster than the corresponding ET observed for cobalt oxide nanoparticles. Mechanistic evidence has been acquired indicating that: (i) the one-electron oxidation of Co6 involves Co(II) aquo or Co(II) hydroxo groups (abbreviated as Co6(II)-OH2 and Co6(II)-OH, respectively, whose speciation in aqueous solution is associated to a pKa of 7.6), and generates a Co(III)-OH moiety (Co6(III)-OH), as proven by transient absorption spectroscopy; (ii) at pH>pKa , the Co6(II)-OH→RuIII (bpy)33+ ET occurs via bimolecular kinetics, with a rate constant k close to the diffusion limit and dependent on the ionic strength of the medium, consistent with reaction between charged species; (iii) at pH

Asunto(s)
Complejos de Coordinación/química , Electrones , Compuestos Organometálicos/química , Polímeros/química , Protones , Compuestos de Tungsteno/química , Cobalto/química , Complejos de Coordinación/síntesis química , Cinética , Luz , Compuestos Organometálicos/efectos de la radiación , Oxidantes/química , Oxidantes/efectos de la radiación , Oxidación-Reducción , Polímeros/síntesis química , Rutenio/química , Rutenio/efectos de la radiación , Compuestos de Tungsteno/síntesis química , Agua/química
6.
Pharmacol Res ; 163: 105332, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271294

RESUMEN

Aldosterone, the main mineralocorticoid hormone, plays a fundamental role in maintaining blood pressure (BP)and volume under hypovolemic conditions. However, in numerous diseases, where it is produced in excess, it plays a detrimental role and contributes to cardiovascular events and ultimately to death in a multitude of patients. The seminal observation that the fungicide-derivative fadrozole blunted steroidogenesis has led to develop several agents to inhibit aldosterone synthase (AS, CYP11B2), the mitochondrial NADH-dependent enzyme that is necessary for aldosterone biosynthesis. Aldosterone synthase inhibitors (ASI) have, thereafter, been conceived and investigated in phase I and phase II studies. We herein reviewed the ASIs available so far considering their chemical structure, the related aldosterone synthase binding and pharmacodynamic properties. We also examined the promising results obtained with ASIs that have already been tested in phase II human studies.


Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Citocromo P-450 CYP11B2/antagonistas & inhibidores , Inhibidores Enzimáticos del Citocromo P-450/uso terapéutico , Animales , Enfermedades Cardiovasculares/metabolismo , Simulación por Computador , Citocromo P-450 CYP11B2/química , Citocromo P-450 CYP11B2/metabolismo , Inhibidores Enzimáticos del Citocromo P-450/clasificación , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Humanos , Unión Proteica
7.
J Org Chem ; 85(6): 4463-4474, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32081000

RESUMEN

Herein is reported the asymmetric allylic benzylation of Morita-Baylis-Hillman (MBH) carbonates with 2-methylbenzophenone (MBP) derivatives as nonstabilized photogenerated C-nucleophiles. The dual activation of both reaction partners, chiral Lewis-base activation of the electrophile and light activation of the nucleophile, enables the stereoselective installation of benzyl groups at the allylic position to forge tertiary and quaternary carbon centers.

8.
Angew Chem Int Ed Engl ; 59(3): 1302-1312, 2020 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-31660691

RESUMEN

Twelve naphthochromenone photocatalysts (PCs) were synthesized on gram scale. They absorb across the UV/Vis range and feature an extremely wide redox window (up to 3.22 eV) that is accessible using simple visible light irradiation sources (CFL or LED). Their excited-state redox potentials, PC*/PC.- (up to 1.65 V) and PC.+ /PC* (up to -1.77 V vs. SCE), are such that these novel PCs can engage in both oxidative and reductive quenching mechanisms with strong thermodynamic requirements. The potential of these bimodal PCs was benchmarked in synthetically relevant photocatalytic processes with extreme thermodynamic requirements. Their ability to efficiently catalyze mechanistically opposite oxidative/reductive photoreactions is a unique feature of these organic photocatalysts, thus representing a decisive advance towards generality, sustainability, and cost efficiency in photocatalysis.

9.
Inorg Chem ; 58(24): 16537-16545, 2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31774669

RESUMEN

Light-driven water oxidation is achieved with the Ru(bpy)32+/S2O82- cycle employing the highly active Ir-blue water oxidation catalyst, namely, an IrIV,IV2(pyalc)2 µ-oxo-dimer [pyalc = 2-(2'-pyridyl)-2-propanoate]. Ir-blue is readily formed by stepwise oxidation of the monomeric Ir(III) precursor 1 by the photogenerated Ru(bpy)33+, with a quantum yield ϕ of up to 0.10. Transient absorption spectroscopy and kinetic evidence point to a stepwise mechanism, where the primary event occurs via a fast photoinduced electron transfer from 1 to Ru(bpy)33+, leading to the Ir(IV) monomer I1 (k1 ∼ 108 M-1 s-1). The competent Ir-blue catalyst is then obtained from I1 upon photooxidative loss of the Cp* ligand and dimerization. The Ir-blue catalyst is active in the Ru(bpy)32+/S2O82- light-driven water oxidation cycle, where it undergoes two fast photoinduced electron transfers to Ru(bpy)33+ [with kIr-blue = (3.00 ± 0.02) × 108 M-1 s-1 for the primary event, outperforming iridium oxide nanoparticles by ca. 2 orders of magnitude], leading to a IrV,V2 steady-state intermediate involved in O-O bond formation. The quantum yield for oxygen evolution depends on the photon flux, showing a saturation regime and reaching an impressive value of ϕ(O2) = 0.32 ± 0.01 (corresponding to a quantum efficiency of 64 ± 2%) at low irradiation intensity. This result highlights the key requirement of orchestrating the rate of the photochemical events with dark catalytic turnover.

10.
Anal Chem ; 90(12): 7659-7665, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29766712

RESUMEN

Functional, flexible, and integrated lab-on-chips, based on elastic membranes, are capable of fine response to external stimuli, so to pave the way for many applications as multiplexed sensors for a wide range of chemical, physical and biomedical processes. Here, we report on the use of elastic thin membranes (TMs), integrated with a reaction chamber, to fabricate a membrane-based pressure sensor (MePS) for reaction monitoring. In particular, the TM becomes the key-element in the design of a highly sensitive MePS capable to monitor gaseous species production in dynamic and temporally fast processes with high resolution and reproducibility. Indeed, we demonstrate the use of a functional MePS integrating a 2 µm thick polydimethylsiloxane TM by monitoring the dioxygen evolution resulting from catalytic hydrogen peroxide dismutation. The operation of the membrane, explained using a diffusion-dominated model, is demonstrated on two similar catalytic systems with catalase-like activity, assembled into polyelectrolyte multilayers capsules. The MePS, tested in a range between 2 and 50 Pa, allows detecting a dioxygen variation of the µmol L-1 s-1 order. Due to their structural features, flexibility of integration, and biocompatibility, the MePSs are amenable of future development within advanced lab-on-chips.

11.
Beilstein J Org Chem ; 14: 2418-2424, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30344766

RESUMEN

Herein we report an effective synthetic method for the direct assembly of highly functionalized tetracyclic pharmacophoric cores. Coumarins and chromones undergo diastereoselective [4 + 2] cycloaddition reactions with light-generated photoenol intermediates. The reactions occur by aid of a microfluidic photoreactor (MFP) in high yield (up to >98%) and virtually complete diastereocontrol (>20:1 dr). The method is easily scaled-up to a parallel setup, furnishing 948 mg of product over a 14 h reaction time. Finally, a series of manipulations of the tetracyclic scaffold obtained gave access to valuable precursors of biologically active molecules.

12.
Proc Natl Acad Sci U S A ; 110(13): 4917-22, 2013 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-23479603

RESUMEN

Solar-to-fuel energy conversion relies on the invention of efficient catalysts enabling water oxidation through low-energy pathways. Our aerobic life is based on this strategy, mastered by the natural Photosystem II enzyme, using a tetranuclear Mn-oxo complex as oxygen evolving center. Within artificial devices, water can be oxidized efficiently on tailored metal-oxide surfaces such as RuO2. The quest for catalyst optimization in vitro is plagued by the elusive description of the active sites on bulk oxides. Although molecular mimics of the natural catalyst have been proposed, they generally suffer from oxidative degradation under multiturnover regime. Here we investigate a nano-sized Ru4-polyoxometalate standing as an efficient artificial catalyst featuring a totally inorganic molecular structure with enhanced stability. Experimental and computational evidence reported herein indicates that this is a unique molecular species mimicking oxygenic RuO2 surfaces. Ru4-polyoxometalate bridges the gap between homogeneous and heterogeneous water oxidation catalysis, leading to a breakthrough system. Density functional theory calculations show that the catalytic efficiency stems from the optimal distribution of the free energy cost to form reaction intermediates, in analogy with metal-oxide catalysts, thus providing a unifying picture for the two realms of water oxidation catalysis. These correlations among the mechanism of reaction, thermodynamic efficiency, and local structure of the active sites provide the key guidelines for the rational design of superior molecular catalysts and composite materials designed with a bottom-up approach and atomic control.

13.
Faraday Discuss ; 185: 121-41, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26400662

RESUMEN

The increasing global energy demand has stimulated great recent efforts in investigating new solutions for artificial photosynthesis, a potential source of clean and renewable solar fuel. In particular, according to the generally accepted modular approach aimed at optimising separately the different compartments of the entire process, many studies have focused on the development of catalytic systems for water oxidation to oxygen. While in recent years there have been many reports on new catalytic systems, the mechanism and the active intermediates operating the catalysis have been less investigated. Well-defined, molecular catalysts, constituted by transition metals stabilised by a suitable ligand pool, could help in solving this aspect. However, in some cases molecular species have been shown to evolve to active metal oxides that constitute the other side of this catalysis dichotomy. In this paper, we address the evolution of tetracobalt(III) cubanes, stabilised by a pyridine/acetate ligand pool, to active species that perform water oxidation to oxygen. Primary evolution of the cubane in aqueous solution is likely initiated by removal of an acetate bridge, opening the coordination sphere of the cobalt centres. This cobalt derivative, where the pristine ligands still impact on the reactivity, shows enhanced electron transfer rates to Ru(bpy)3(3+) (hole scavenging) within a photocatalytic cycle with Ru(bpy)3(2+) as the photosensitiser and S2O8(2-) as the electron sink. A more accentuated evolution occurs under continuous irradiation, where Electron Paramagnetic Resonance (EPR) spectroscopy reveals the formation of Co(ii) intermediates, likely contributing to the catalytic process that evolves oxygen. All together, these results confirm the relevant effect of molecular species, in particular in fostering the rate of the electron transfer processes involved in light activated cycles, pivotal in the design of a photoactive device.

14.
Top Curr Chem ; 348: 139-80, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24052370

RESUMEN

The use of carbon nanomaterials as supports for molecular and nanostructured catalysts is becoming a more and more popular strategy to improve heterogeneous catalysis. Their outstanding electronic and optical properties together with high surface area and thermal and mechanical stabilities make them ideal elements to provide catalysts with additional or improved characteristics. The role of the carbon nanostructures in the different types of catalysis is more intricate and often involves active and strong interactions between the support and the catalytic active species, creating a synergistic effect that in many cases leads to performance enhancement and an expanded range of possible applications. In particular, photocatalysis and electrocatalysis seem to benefit from the features of these types of carbon support, although applicability can be extended to more classic transformations of organic substrates.

15.
Chemistry ; 20(35): 10932-43, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-25113582

RESUMEN

Molecular polyoxometalates with one embedded ruthenium center, with general formula [Ru(II/III)(DMSO)XW11O39](n-) (X = P, Si; n = 4-6), are readily synthesized in gram scale under microwave irradiation by a flash hydrothermal protocol. These nanodimensional and polyanionic complexes enable aerobic oxygenation in water. Catalytic oxygen transfer to dimethylsulfoxide (DMSO) yielding the corresponding sulfone (DMSO2 ) has been investigated with a combined kinetic, spectroscopic and computational approach addressing: (i ) the Ru(III) catalyst resting state; (ii ) the bimolecular event dictating its transformation in the rate-determining step; (iii ) its aerobic evolution to a high-valent ruthenium oxene species; (iv ) the terminal fate to diamagnetic dimers. This pathway is reminiscent of natural heme systems and of bioinspired artificial porphyrins. The in silico characterization of a key bis-Ru(IV)-µ-peroxo-POM dimeric intermediate has been accessed by density functional theory. This observation indicates a new landmark for tracing POM-based manifolds for multiredox oxygen reduction/activation, where metal-centered oxygenated species play a pivotal role.

16.
Chemistry ; 20(35): 10910-4, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-24920540

RESUMEN

Multicompartment, spherical microcontainers were engineered through a layer-by-layer polyelectrolyte deposition around a fluorescent core while integrating a ruthenium polyoxometalate (Ru4POM), as molecular motor, vis-à-vis its oxygenic, propeller effect, fuelled upon H2O2 decomposition. The resulting chemomechanical system, with average speeds of up to 25 µm s(-1), is amenable for integration into a microfluidic set-up for mixing and displacement of liquids, whereby the propulsion force and the resulting velocity regime can be modulated upon H2O2-controlled addition.

17.
Phys Chem Chem Phys ; 16(24): 12000-7, 2014 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-24664104

RESUMEN

Artificial photosynthesis aims at efficient water splitting into hydrogen and oxygen, by exploiting solar light. As a priority requirement, this process entails the integration of suitable multi-electron catalysts with light absorbing units, where charge separation is generated in order to drive the catalytic routines. The final goal could be the transposition of such an asset into a photoelectrocatalytic cell, where the two half-reactions, proton reduction to hydrogen and water oxidation to oxygen, take place at two appropriately engineered photoelectrodes. We herein report a covalent approach to anchor a Co(II) water oxidation catalyst to a Ru(II) polypyridine photosensitizer unit; photophysical characterisation and the catalytic activity of such a dyad in a light activated cycle are reported, and implications for the development of regenerative systems are discussed.


Asunto(s)
Cobalto/química , Luz , Rutenio/química , Agua/química , Catálisis , Electroquímica , Oxidación-Reducción , Fármacos Fotosensibilizantes/química
18.
Chem Soc Rev ; 42(6): 2262-80, 2013 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-23011384

RESUMEN

Among molecular water oxidation catalysts (WOCs), those featuring a reactive set of four multi-redox transition metals can leverage an extraordinary interplay of electronic and structural properties. These are of particular interest, owing to their close structural, and possibly functional, relationship to the oxygen evolving complex of natural photosynthesis. In this review, special attention is given to two classes of tetrametallic molecular WOCs: (i) M(4)O(4) cubane-type structures stabilized by simple organic ligands, and (ii) systems in which a tetranuclear metal core is stabilized by coordination of two polyoxometalate (POM) ligands. Recent work in this rapidly evolving field is reviewed, with particular emphasis on photocatalytic aspects. Special attention is given to studies addressing the mechanistic complexity of these systems, sometimes overlooked in the rush for oxygen evolving performance. The complementary role of molecular WOCs and their relationship with bulk oxides and heterogeneous catalysis are discussed.

19.
Angew Chem Int Ed Engl ; 53(42): 11182-5, 2014 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-25066304

RESUMEN

The functional core of oxygenic photosynthesis is in charge of catalytic water oxidation by a multi-redox Mn(III)/Mn(IV) manifold that evolves through five electronic states (S(i), where i=0-4). The synthetic model system of this catalytic cycle and of its S0→S4 intermediates is the expected turning point for artificial photosynthesis. The tetramanganese-substituted tungstosilicate [Mn(III)3Mn(IV)O3(CH3COO)3(A-α-SiW9O34)](6-)(Mn4POM) offers an unprecedented mimicry of the natural system in its reduced S0 state; it features a hybrid organic-inorganic coordination sphere and is anchored on a polyoxotungstate. Evidence for its photosynthetic properties when combined with [Ru(bpy)3](2+) and S2O8(2-) is obtained by nanosecond laser flash photolysis; its S0→S1 transition within milliseconds and multiple-hole-accumulating properties were studied. Photocatalytic oxygen evolution is achieved in a buffered medium (pH 5) with a quantum efficiency of 1.7%.


Asunto(s)
Compuestos de Manganeso/química , Manganeso/química , Oxígeno/química , Compuestos de Tungsteno/química , Agua/química , Catálisis , Modelos Moleculares , Oxidación-Reducción , Óxidos/química , Fotólisis , Fotosíntesis , Complejo de Proteína del Fotosistema II/química
20.
ACS Appl Mater Interfaces ; 16(21): 27209-27223, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38747220

RESUMEN

In view of developing photoelectrosynthetic cells which are able to store solar energy in chemical bonds, water splitting is usually the reaction of choice when targeting hydrogen production. However, alternative approaches can be considered, aimed at substituting the anodic reaction of water oxidation with more commercially capitalizable oxidations. Among them, the production of bromine from bromide ions was investigated long back in the 1980s by Texas Instruments. Herein we present optimized perylene-diimide (PDI)-sensitized antimony-doped tin oxide (ATO) photoanodes enabling the photoinduced HBr splitting with >4 mA/cm2 photocurrent densities under 0.1 W/cm2 AM1.5G illumination and 91 ± 3% faradaic efficiencies for bromine production. These remarkable results, among the best currently reported for the photoelectrochemical Br- oxidation by dye sensitized photoanodes, are strongly related to the occupancy extent of ATO's intragap (IG) states, generated upon Sb-doping, as demonstrated by comparing their performances with PDI-sensitized analogues on both undoped SnO2- and TiO2-passivated ATO scaffolds by means of (spectro)electrochemistry and electrochemical impedance spectroscopy. The architecture of the ATO-PDI photoanodic assembly was further modified via the introduction of a molecular iridium-based water oxidation catalyst, thus proving the versatility of the proposed hybrid interfaces as photoanodic platforms for photoinduced oxidations in PEC devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA