Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Plant Cell Environ ; 43(7): 1766-1778, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32266975

RESUMEN

Norway spruce is a conifer storing large amounts of terpenoids in resin ducts of various tissues. Parts of the terpenoids stored in needles can be emitted together with de novo synthesized terpenoids. Since previous studies provided hints on xylem transported terpenoids as a third emission source, we tested if terpenoids are transported in xylem sap of Norway spruce. We further aimed at understanding if they might contribute to terpenoid emission from needles. We determined terpenoid content and composition in xylem sap, needles, bark, wood and roots of field grown trees, as well as terpenoid emissions from needles. We found considerable amounts of terpenoids-mainly oxygenated compounds-in xylem sap. The terpenoid concentration in xylem sap was relatively low compared with the content in other tissues, where terpenoids are stored in resin ducts. Importantly, the terpenoid composition in the xylem sap greatly differed from the composition in wood, bark or roots, suggesting that an internal transport of terpenoids takes place at the sites of xylem loading. Four terpenoids were identified in xylem sap and emissions, but not within needle tissue, suggesting that these compounds are likely derived from xylem sap. Our work gives hints that plant internal transport of terpenoids exists within conifers; studies on their functions should be a focus of future research.


Asunto(s)
Transporte Biológico , Picea/metabolismo , Terpenos/metabolismo , Xilema/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo
2.
Environ Sci Technol ; 51(11): 6120-6130, 2017 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-28513175

RESUMEN

The potential of emissions from urban vegetation combined with anthropogenic emissions to produce ozone and particulate matter has long been recognized. This potential increases with rising temperatures and may lead to severe problems with air quality in densely populated areas during heat waves. Here, we investigate how heat waves affect emissions of volatile organic compounds from urban/suburban vegetation and corresponding ground-level ozone and particulate matter. We use the Weather Research and Forecasting Model with atmospheric chemistry (WRF-Chem) with emissions of volatile organic compounds (VOCs) from vegetation simulated with MEGAN to quantify some of these feedbacks in Berlin, Germany, during the heat wave in 2006. The highest ozone concentration observed during that period was ∼200 µg/m3 (∼101 ppbV). The model simulations indicate that the contribution of biogenic VOC emissions to ozone formation is lower in June (9-11%) and August (6-9%) than in July (17-20%). On particular days within the analyzed heat wave period, this contribution increases up to 60%. The actual contribution is expected to be even higher as the model underestimates isoprene concentrations over urban forests and parks by 0.6-1.4 ppbv. Our study demonstrates that biogenic VOCs can considerably enhance air pollution during heat waves. We emphasize the dual role of vegetation for air quality and human health in cities during warm seasons, which is removal and lessening versus enhancement of air pollution. The results of our study suggest that reduction of anthropogenic sources of NOx, VOCs, and PM, for example, reduction of the motorized vehicle fleet, would have to accompany urban tree planting campaigns to make them really beneficial for urban dwellers.


Asunto(s)
Contaminación del Aire , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos , Berlin , Ciudades , Monitoreo del Ambiente , Alemania , Humanos , Ozono
3.
Anal Bioanal Chem ; 401(10): 3115-24, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21725832

RESUMEN

This study concerns the development and validation of a complete method for the analysis of two highly reactive α-dicarbonyl compounds, glyoxal (Gly) and methylglyoxal (Mgly), in atmospheric fine particulate matter (PM(2.5)). Method development included optimization of sample preparation procedures, e.g., filter extraction, concentration of extracts, derivatization and solid-phase extraction (SPE) of derivatives, as well as reversed-phase liquid chromatography coupled to electrospray ion-trap mass spectrometry (HPLC-ESI-IT/MS/MS) measurement parameters. Selectivity of detection was enhanced using tandem mass spectrometric analysis in ESI positive ion mode via two multiple reaction monitoring channels, m/z 433 → m/z 250 and m/z 419 → m/z 236 for Mgly and Gly. Retention times were 9.5 and 12.5 min for Gly- and Mgly-bis-hydrazone derivatives. Calibration ranged from 0.5 to 50 ng/mL. Inter-batch precision, expressed as relative standard deviation, was <15%. The method was shown to be unaffected by the sample matrix and to have recoveries of 100% and 60% for Gly and Mgly, respectively. Improved instrumental detection limits of 0.51 and 0.62 ng/mL for Gly and Mgly were achieved using a SPE method for the purification of 2,4-dinitrophenylhydrazine derivatization reagent solutions. This permitted the method to be used for analysis of filter samples obtained during a field study at the Taunus Observatory (mount Kleiner Feldberg, Germany). PM(2.5) concentrations ranged from 0.81 to 1.18 ng/m(3) for Gly and from 0.83 to 1.92 ng/m(3) for Mgly. PM concentrations correlated to the concentration of NO with coefficients (R(2)) of 0.67 (Gly) and 0.78 (Mgly).


Asunto(s)
Aerosoles/análisis , Cromatografía Líquida de Alta Presión/métodos , Glioxal/análisis , Piruvaldehído/análisis , Espectrometría de Masas en Tándem/métodos , Aerosoles/aislamiento & purificación , Glioxal/aislamiento & purificación , Material Particulado/análisis , Material Particulado/aislamiento & purificación , Piruvaldehído/aislamiento & purificación , Sensibilidad y Especificidad , Extracción en Fase Sólida , Espectrometría de Masa por Ionización de Electrospray/métodos
4.
Sci Total Environ ; 688: 691-700, 2019 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-31254835

RESUMEN

Air pollution is a global challenge causing millions of premature deaths annually. This is limited not only to developing, but also developed nations, with cities in particular struggling to meet air quality limit values to adequately protect human health. Total exposure to air pollution is often disproportionately affected by the relatively short amount of time spent commuting or in the proximity of traffic. In this exploratory work, we conducted measurements of particle number concentrations using a DiscMini by bicycle. Eighteen tracks with accompanying video footage were analyzed and a suite of factors classified and quantified that influence exposure to air pollution. A method was developed to account for variations in the ambient average concentrations per trip that allowed for comparison across all tracks. Large differences in ultra-localized air pollution levels were identified and quantified for factors such as street type, environmental surroundings, and vehicle type. The occurrence of one or more non-passenger car vehicles, including e.g., buses, mopeds, or trucks, result in an increase in particulate concentrations of 30% to 40% relative to the average ambient level. High traffic situations, such as traffic jams or cars waiting at traffic lights, result in increased particulate concentrations (+47% and +35%, respectively). Cycling in residential neighborhoods decreased particulate number concentrations by 17% relative to the ambient average level, and by 22% when cycling through green spaces or parks. Such information is valuable for citizens who may want to reduce their air pollution exposure when moving through a city, but also for policy makers and urban planners who make or influence infrastructure decisions, to be able to reduce exposure and better protect human health, while progress is made to reduce air pollution levels overall.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Monitoreo del Ambiente , Material Particulado/análisis , Ciudades , Humanos , Emisiones de Vehículos/análisis
5.
Philos Trans A Math Phys Eng Sci ; 366(1885): 4613-26, 2008 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-18826917

RESUMEN

Previous studies have concluded that boreal forests warm the climate because the cooling from storage of carbon in vegetation and soils is cancelled out by the warming due to the absorption of the Sun's heat by the dark forest canopy. However, these studies ignored the impacts of forests on atmospheric aerosol. We use a global atmospheric model to show that, through emission of organic vapours and the resulting condensational growth of newly formed particles, boreal forests double regional cloud condensation nuclei concentrations (from approx. 100 to approx. 200 cm(-3)). Using a simple radiative model, we estimate that the resulting change in cloud albedo causes a radiative forcing of between -1.8 and -6.7 W m(-2) of forest. This forcing may be sufficiently large to result in boreal forests having an overall cooling impact on climate. We propose that the combination of climate forcings related to boreal forests may result in an important global homeostasis. In cold climatic conditions, the snow-vegetation albedo effect dominates and boreal forests warm the climate, whereas in warmer climates they may emit sufficiently large amounts of organic vapour modifying cloud albedo and acting to cool climate.


Asunto(s)
Taiga , Árboles , Aerosoles , Carbono , Clima , Cambio Climático
6.
J Phys Chem A ; 111(17): 3394-401, 2007 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-17419595

RESUMEN

We have postulated a mechanism for the reaction of sulfuric acid with stabilized Criegee intermediates (sCIs). We have computed Gibbs free energies for the reaction of sulfuric acid with two biogenic sCIs and three smaller model species. We have also calculated Gibbs free energies for two competing sink reactions. Due to the large size of the biogenic sCIs, the computations have been performed at the relatively modest B3LYP/6-31G(d,p) and B3LYP/6-311+G(2d,p) levels. However, single-point RI-CC2/def2-QZVPP calculations for the (CH3)(2)COO model species are in good agreement with the B3LYP results. The reaction is found to be strongly exothermic for all studied species. Activation barrier calculations on the (CH3)(2)COO model species further indicate that the reaction with sulfuric acid may proceed significantly faster than the sink reaction with water. If the same applies to the biogenic sCIs, the proposed reactions could account for some part of the organically assisted new particle formation events observed in the atmosphere.


Asunto(s)
Ácidos Sulfúricos/química , Simulación por Computador , Electrones , Compuestos Heterocíclicos/química , Modelos Moleculares , Estructura Molecular , Fosfatidilcolinas , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA