Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Genet ; 24(10): 665-686, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37173518

RESUMEN

Progress in deciphering the genetic architecture of human sensorineural hearing impairment (SNHI) or loss, and multidisciplinary studies of mouse models, have led to the elucidation of the molecular mechanisms underlying auditory system function, primarily in the cochlea, the mammalian hearing organ. These studies have provided unparalleled insights into the pathophysiological processes involved in SNHI, paving the way for the development of inner-ear gene therapy based on gene replacement, gene augmentation or gene editing. The application of these approaches in preclinical studies over the past decade has highlighted key translational opportunities and challenges for achieving effective, safe and sustained inner-ear gene therapy to prevent or cure monogenic forms of SNHI and associated balance disorders.


Asunto(s)
Sordera , Pérdida Auditiva Sensorineural , Ratones , Animales , Humanos , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/terapia , Audición/genética , Terapia Genética , Edición Génica , Sordera/genética , Sordera/terapia , Mamíferos/genética
2.
Proc Natl Acad Sci U S A ; 120(26): e2221744120, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37339214

RESUMEN

Functional molecular characterization of the cochlea has mainly been driven by the deciphering of the genetic architecture of sensorineural deafness. As a result, the search for curative treatments, which are sorely lacking in the hearing field, has become a potentially achievable objective, particularly via cochlear gene and cell therapies. To this end, a complete inventory of cochlear cell types, with an in-depth characterization of their gene expression profiles right up to their final differentiation, is indispensable. We therefore generated a single-cell transcriptomic atlas of the mouse cochlea based on an analysis of more than 120,000 cells on postnatal day 8 (P8), during the prehearing period, P12, corresponding to hearing onset, and P20, when cochlear maturation is almost complete. By combining whole-cell and nuclear transcript analyses with extensive in situ RNA hybridization assays, we characterized the transcriptomic signatures covering nearly all cochlear cell types and developed cell type-specific markers. Three cell types were discovered; two of them contribute to the modiolus which houses the primary auditory neurons and blood vessels, and the third one consists in cells lining the scala vestibuli. The results also shed light on the molecular basis of the tonotopic gradient of the biophysical characteristics of the basilar membrane that critically underlies cochlear passive sound frequency analysis. Finally, overlooked expression of deafness genes in several cochlear cell types was also unveiled. This atlas paves the way for the deciphering of the gene regulatory networks controlling cochlear cell differentiation and maturation, essential for the development of effective targeted treatments.


Asunto(s)
Sordera , Transcriptoma , Animales , Ratones , Cóclea/fisiología , Membrana Basilar , Audición/fisiología , Sordera/metabolismo
3.
BMC Infect Dis ; 24(1): 616, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907187

RESUMEN

BACKGROUND: Toll-Like receptors (TLRs) play an important role in the immune response during hepatitis B virus (HBV) infection. In this study, we evaluated the association between two SNP variants (TLR3 rs3775290 and TLR4 rs4986790) and susceptibility to chronic HBV infection in Mauritania. SUBJECTS AND METHODS: A total of 188 subjects were recruited for this study: 102 chronically infected patients and 86 individuals with spontaneously resolved HBV infection who were considered controls. Targeted PCR products were sequenced using Sanger sequencing. RESULTS: We found that TLR3 rs3775290 was significantly more frequent in patients with chronic HBV than in the control population (p = 0.03). However, no association was found between the TLR4 rs3775290 polymorphism and chronic infection. CONCLUSION: Our results suggest that the TLR3 rs3775290 polymorphism may be a risk factor for susceptibility to chronic HBV infection in the Mauritanian population.


Asunto(s)
Predisposición Genética a la Enfermedad , Hepatitis B Crónica , Polimorfismo de Nucleótido Simple , Receptor Toll-Like 3 , Humanos , Receptor Toll-Like 3/genética , Masculino , Femenino , Estudios de Casos y Controles , Adulto , Hepatitis B Crónica/genética , Hepatitis B Crónica/virología , Persona de Mediana Edad , Mauritania , Adulto Joven , Virus de la Hepatitis B/genética
4.
Mol Biol Rep ; 50(12): 10663-10669, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37924449

RESUMEN

OBJECTIVES: The most prevalent sensory disease in humans is deafness. A variety of genes have been linked to hearing loss, which can either be isolated (non-syndromic) or associated with lesions in other organs (syndromic). It has been discovered that WHRN variants are responsible for non-syndromic hearing loss and Usher syndrome type II. METHODS AND RESULTS: Exome sequencing in a consanguineous Moroccan patient with severe hearing loss identified a single homozygous mutation c.619G > T; p.Ala207Ser in WHRN, encoding a cytoskeletal scaffold protein that binds membrane protein complexes to the cytoskeleton in ocular photoreceptors and ear hair cell stereocilia. Bioinformatics methods and molecular dynamic modeling were able to predict the pathogenic implications of this variation. CONCLUSION: We used whole exome sequencing to find a homozygous WHRN gene variant in a Moroccan family. Numerous bioinformatics methods predict that this modification might result in a change in the WHRN protein's structure.


Asunto(s)
Síndromes de Usher , Humanos , Citoesqueleto , Secuenciación del Exoma , Modelos Moleculares , Mutación/genética , Linaje , Síndromes de Usher/genética
5.
Proc Natl Acad Sci U S A ; 117(49): 31278-31289, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33229591

RESUMEN

Presbycusis, or age-related hearing loss (ARHL), is a major public health issue. About half the phenotypic variance has been attributed to genetic factors. Here, we assessed the contribution to presbycusis of ultrarare pathogenic variants, considered indicative of Mendelian forms. We focused on severe presbycusis without environmental or comorbidity risk factors and studied multiplex family age-related hearing loss (mARHL) and simplex/sporadic age-related hearing loss (sARHL) cases and controls with normal hearing by whole-exome sequencing. Ultrarare variants (allele frequency [AF] < 0.0001) of 35 genes responsible for autosomal dominant early-onset forms of deafness, predicted to be pathogenic, were detected in 25.7% of mARHL and 22.7% of sARHL cases vs. 7.5% of controls (P = 0.001); half were previously unknown (AF < 0.000002). MYO6, MYO7A, PTPRQ, and TECTA variants were present in 8.9% of ARHL cases but less than 1% of controls. Evidence for a causal role of variants in presbycusis was provided by pathogenicity prediction programs, documented haploinsufficiency, three-dimensional structure/function analyses, cell biology experiments, and reported early effects. We also established Tmc1N321I/+ mice, carrying the TMC1:p.(Asn327Ile) variant detected in an mARHL case, as a mouse model for a monogenic form of presbycusis. Deafness gene variants can thus result in a continuum of auditory phenotypes. Our findings demonstrate that the genetics of presbycusis is shaped by not only well-studied polygenic risk factors of small effect size revealed by common variants but also, ultrarare variants likely resulting in monogenic forms, thereby paving the way for treatment with emerging inner ear gene therapy.


Asunto(s)
Sordera/genética , Genes Dominantes , Mutación/genética , Presbiacusia/genética , Factores de Edad , Edad de Inicio , Animales , Estudios de Casos y Controles , Estudios de Cohortes , Heterocigoto , Humanos , Proteínas de la Membrana/genética , Ratones , MicroARNs/genética , Mitocondrias/genética , Secuenciación del Exoma
6.
Biochem Genet ; 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37777971

RESUMEN

One of the most prevalent sensorineural disorders, autosomal recessive non-syndromic hearing loss (ARNSHL) which can affect all age groups, from the newborn (congenital) to the elderly (presbycusis). Important etiologic, phenotypic, and genotypic factors can cause deafness. So far, the high genetic variability that explains deafness makes molecular diagnosis challenging. In Morocco, the GJB2 gene is the primary cause of non-syndromic hereditary deafness, while the existence of a variant in the LRTOMT gene is the second cause of this condition. After excluding these two frequently occurring GJB2 and LRTOMT variants, whole-exome sequencing was carried out in two Moroccan consanguineous families with hearing loss. As a result, two novel variants in the TMPRSS3 (c.1078G>A, p. Ala 360Thr) and FOXI1 (c.6C>G, p. Ser 2Arg) genes have been discovered in deaf patients and the pathogenic effect has been anticipated by several bioinformatics and molecular modeling systems. For the first time, these variants are identified in the Moroccan population, showing the population heterogeneity and demonstrating the value of the WES in hearing loss diagnosis.

7.
Eur Arch Otorhinolaryngol ; 280(9): 4057-4063, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36928321

RESUMEN

PURPOSE: Although recessive mutations in GJB2 are the common genetic etiology of sensorineural hearing impairment (SNHI), variants in LRTOMT gene were also identified, mostly in Middle East and North African populations. METHODS: Using Sanger sequencing we screened the exon 7 of LRTOMT in a cohort of 128 unrelated Mauritanian children with congenital deafness. RESULTS: Only one biallelic missense mutation, predicted as pathogenic (c.179 T > C;p.Leu60Pro) was found at homozygous state in four families. This variant, not reported before, showed a deleterious effect by SIFT (score: 0.01) and a disease-causing effect by Mutation Taster (prob: 1). Exploration of the encoded protein 3D structure revealed a disruption from an organized α helix (in the normal protein structure) into a random conformation. Early fitting of a cochlear implant seemed to improve the audition ability of the mutation carrier. CONCLUSION: Further screening using a panel of deafness genes may expose other variants underlying hearing impairment in our population.


Asunto(s)
Sordera , Pérdida Auditiva Sensorineural , Niño , Humanos , Conexina 26/genética , Conexinas/genética , Sordera/genética , Sordera/diagnóstico , Pérdida Auditiva Sensorineural/diagnóstico , Mauritania , Mutación
8.
BMC Cancer ; 22(1): 802, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35858847

RESUMEN

BACKGROUND AND STUDY AIM: Carrying a pathogenic BRCA1/2 variant increases greatly young women's risk of developing breast cancer (BC). This study aimed to provide the first genetic data on BC in Mauritania. METHODS: Using NGS based screening; we searched for BRCA1/2 variants in DNA samples from 137 patients diagnosed for hereditary BC. RESULTS: We identified 16 pathogenic or likely pathogenic (PV) variants carried by 38 patients. Two predominant BRCA1 PV variants were found: c.815_824dup and c.4986 + 6 T > C in 13 and 7 patients, respectively. Interestingly, three novels BRCA1/2 predicted pathogenic variants have also been detected. Notably, no specific distribution of BRCA1/2 variants was observed regarding triple negative breast cancer (TNBC) or patient gender status. CONCLUSIONS: In this first genetic profiling of BC in Mauritania, we identified a substantial number of BRCA1/2 pathogenic variants. This finding could be important in the future diagnosis and prevention policy of hereditary BC in Mauritania.


Asunto(s)
Proteína BRCA2/genética , Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Proteína BRCA1/genética , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , Detección Precoz del Cáncer , Femenino , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Humanos , Mauritania/epidemiología
9.
Mol Biol Rep ; 49(5): 3949-3954, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35301649

RESUMEN

BACKGROUND: Deafness is the most prevalent human sensorineural defect. It may occur as a result of an external auditory canal involvement, or a deficiency in the sound conduction mechanism, or an impairment of the cochlea, the cochlear nerve or central auditory perception. The genetic causes are the most common, as approximately 70% of hearing disorders are of hereditary origin, divided into two groups, syndromic (associated with other symptoms) and no syndromic (isolated deafness). METHODS: A whole exome sequencing was performed to identify the genetic cause of hearing loss in six Moroccan families and Sanger sequencing was used to validate mutations in these genes. THE RESULTS: The results of four out of the six families revealed four genetic variants in the genes GJB2, COL4A3, ATP6V1B1 and EDNRB responsible for non-syndromic and syndromic hearing loss. Multiple Bioinformatics programs and molecular modelling predicted the pathogenic effect of these mutations. CONCLUSIONS: We identified in Moroccan deaf patients four homozygous mutations. These results show the importance of whole exome sequencing to identify pathogenic mutations in heterogeneous disorders with multiple genes responsible.


Asunto(s)
Autoantígenos , Colágeno Tipo IV , Conexina 26 , Pérdida Auditiva Sensorineural , Pérdida Auditiva , Receptor de Endotelina B , ATPasas de Translocación de Protón Vacuolares , Autoantígenos/genética , Colágeno Tipo IV/genética , Conexina 26/genética , Conexinas/genética , Sordera/genética , Heterogeneidad Genética , Audición , Pérdida Auditiva/genética , Pérdida Auditiva Sensorineural/genética , Humanos , Marruecos , Mutación , Linaje , Receptor de Endotelina B/genética , ATPasas de Translocación de Protón Vacuolares/genética
10.
BMC Bioinformatics ; 22(1): 190, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33853521

RESUMEN

BACKGROUND: Harmonin Homogy Domains (HHD) are recently identified orphan domains of about 70 residues folded in a compact five alpha-helix bundle that proved to be versatile in terms of function, allowing for direct binding to a partner as well as regulating the affinity and specificity of adjacent domains for their own targets. Adding their small size and rather simple fold, HHDs appear as convenient modules to regulate protein-protein interactions in various biological contexts. Surprisingly, only nine HHDs have been detected in six proteins, mainly expressed in sensory neurons. RESULTS: Here, we built a profile Hidden Markov Model to screen the entire UniProtKB for new HHD-containing proteins. Every hit was manually annotated, using a clustering approach, confirming that only a few proteins contain HHDs. We report the phylogenetic coverage of each protein and build a phylogenetic tree to trace the evolution of HHDs. We suggest that a HHD ancestor is shared with Paired Amphipathic Helices (PAH) domains, a four-helix bundle partially sharing fold and functional properties. We characterized amino-acid sequences of the various HHDs using pairwise BLASTP scoring coupled with community clustering and manually assessed sequence features among each individual family. These sequence features were analyzed using reported structures as well as homology models to highlight structural motifs underlying HHDs fold. We show that functional divergence is carried out by subtle differences in sequences that automatized approaches failed to detect. CONCLUSIONS: We provide the first HHD databases, including sequences and conservation, phylogenic trees and a list of HHD variants found in the auditory system, which are available for the community. This case study highlights surprising phylogenetic properties found in orphan domains and will assist further studies of HHDs. We unveil the implication of HHDs in their various binding interfaces using conservation across families and a new protein-protein surface predictor. Finally, we discussed the functional consequences of three identified pathogenic HHD variants involved in Hoyeraal-Hreidarsson syndrome and of three newly reported pathogenic variants identified in patients suffering from Usher Syndrome.


Asunto(s)
Disqueratosis Congénita , Proteínas de la Membrana , Secuencia de Aminoácidos , Retardo del Crecimiento Fetal , Humanos , Proteínas de la Membrana/genética , Filogenia
11.
Hum Hered ; 85(1): 35-39, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33486474

RESUMEN

INTRODUCTION: Auditory neuropathy is a hearing disorder where outer hair cell function within the cochlea is normal, but inner hair cell and/or the auditory nerve function is disrupted. It is a heterogeneous disorder, which can have either congenital or acquired causes. METHODS: We found a disease-segregating mutation in the X-linked AIFM1 gene through whole-exome sequencing, encoding the apoptosis-inducing factor mitochondrion-associated 1. RESULTS: The impact of the c.1045A>G; p.(Ser349Gly) mutation on the AIFM1 protein was predicted using different bioinformatics tools. The pedigree analysis in the examined family was consistent with X-linked dominant inheritance. DISCUSSION/CONCLUSION: To our knowledge, this is the first study that identifies a mutation in the AIFM1 gene in Moroccan patients suffering from X-linked auditory neuropathy.


Asunto(s)
Factor Inductor de la Apoptosis/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Pérdida Auditiva Central/genética , Adolescente , Adulto , Biología Computacional , Femenino , Humanos , Masculino , Marruecos , Linaje , Secuenciación del Exoma
12.
Int J Mol Sci ; 22(19)2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34638692

RESUMEN

In contrast to USH2A, variants in ADGRV1 are a minor cause of Usher syndrome type 2, and the associated phenotype is less known. The purpose of the study was to characterize the retinal phenotype of 18 ADGRV1 patients (9 male, 9 female; median age 52 years) and compare it with that of 204 USH2A patients (111 male, 93 female; median age 43 years) in terms of nyctalopia onset, best corrected visual acuity (BCVA), fundus autofluorescence (FAF), and optical coherence tomography (OCT) features. There was no statistical difference in the median age at onset (30 and 18 years; Mann-Whitney U test, p = 0.13); the mean age when 50% of the patients reached legal blindness (≥1.0 log MAR) based on visual acuity (64 years for both groups; log-rank, p = 0.3); the risk of developing advanced retinal degeneration (patch or atrophy) with age (multiple logistic regression, p = 0.8); or the frequency of cystoid macular edema (31% vs. 26%, Fisher's exact test, p = 0.4). ADGRV1 and USH2A retinopathy were indistinguishable in all major functional and structural characteristics, suggesting that the loss of function of the corresponding proteins produces similar effects in the retina. The results are important for counseling ADGRV1 patients, who represent the minor patient subgroup.


Asunto(s)
Proteínas de la Matriz Extracelular/genética , Mutación con Pérdida de Función , Receptores Acoplados a Proteínas G/genética , Retinitis Pigmentosa/genética , Síndromes de Usher/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Retinitis Pigmentosa/diagnóstico por imagen , Retinitis Pigmentosa/epidemiología , Tomografía de Coherencia Óptica , Síndromes de Usher/diagnóstico por imagen , Síndromes de Usher/epidemiología
13.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34360642

RESUMEN

The purpose of this work was to identify the gene defect underlying a relatively mild rod-cone dystrophy (RCD), lacking disease-causing variants in known genes implicated in inherited retinal disorders (IRD), and provide transcriptomic and immunolocalization data to highlight the best candidate. The DNA of the female patient originating from a consanguineous family revealed no large duplication or deletion, but several large homozygous regions. In one of these, a homozygous frameshift variant, c.244_246delins17 p.(Trp82Valfs*4); predicted to lead to a nonfunctional protein, was identified in CCDC51. CCDC51 encodes the mitochondrial coiled-coil domain containing 51 protein, also called MITOK. MITOK ablation causes mitochondrial dysfunction. Here we show for the first time that CCDC51/MITOK localizes in the retina and more specifically in the inner segments of the photoreceptors, well known to contain mitochondria. Mitochondrial proteins have previously been implicated in IRD, although usually in association with syndromic disease, unlike our present case. Together, our findings add another ultra-rare mutation implicated in non-syndromic IRD, whose pathogenic mechanism in the retina needs to be further elucidated.


Asunto(s)
Distrofias de Conos y Bastones/patología , Genes Recesivos , Proteínas Mitocondriales/genética , Mutación , Canales de Potasio/genética , Adulto , Distrofias de Conos y Bastones/etiología , Distrofias de Conos y Bastones/metabolismo , Femenino , Humanos , Masculino , Linaje , Fenotipo
14.
Am J Hum Genet ; 101(4): 630-637, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28965846

RESUMEN

Hearing loss and visual impairment in childhood have mostly genetic origins, some of them being related to sensorial neuronal defects. Here, we report on eight subjects from four independent families affected by auditory neuropathy and optic atrophy. Whole-exome sequencing revealed biallelic mutations in FDXR in affected subjects of each family. FDXR encodes the mitochondrial ferredoxin reductase, the sole human ferredoxin reductase implicated in the biosynthesis of iron-sulfur clusters (ISCs) and in heme formation. ISC proteins are involved in enzymatic catalysis, gene expression, and DNA replication and repair. We observed deregulated iron homeostasis in FDXR mutant fibroblasts and indirect evidence of mitochondrial iron overload. Functional complementation in a yeast strain in which ARH1, the human FDXR ortholog, was deleted established the pathogenicity of these mutations. These data highlight the wide clinical heterogeneity of mitochondrial disorders related to ISC synthesis.


Asunto(s)
Ferredoxina-NADP Reductasa/genética , Pérdida Auditiva Central/genética , Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , Enfermedades Mitocondriales/genética , Mutación , Atrofia Óptica/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Preescolar , Femenino , Ferredoxina-NADP Reductasa/química , Ferredoxina-NADP Reductasa/metabolismo , Prueba de Complementación Genética , Pérdida Auditiva Central/enzimología , Pérdida Auditiva Central/patología , Humanos , Proteínas Hierro-Azufre/genética , Masculino , Mitocondrias/enzimología , Mitocondrias/genética , Mitocondrias/patología , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/patología , Atrofia Óptica/enzimología , Atrofia Óptica/patología , Linaje , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Adulto Joven
15.
Retina ; 40(8): 1603-1615, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31479088

RESUMEN

PURPOSE: To document the rod-cone dystrophy phenotype of patients with Usher syndrome type 1 (USH1) harboring MYO7A mutations. METHODS: Retrospective cohort study of 53 patients (42 families) with biallelic MYO7A mutations who underwent comprehensive examination, including functional visual tests and multimodal retinal imaging. Genetic analysis was performed either using a multiplex amplicon panel or through direct sequencing. Data were analyzed with IBM SPSS Statistics software v. 21.0. RESULTS: Fifty different genetic variations including 4 novel were identified. Most patients showed a typical rod-cone dystrophy phenotype, with best-corrected visual acuity and central visual field deteriorating linearly with age. At age 29, binocular visual field demonstrated an average preservation of 50 central degrees, constricting by 50% within 5 years. Structural changes based on spectral domain optical coherence tomography, short wavelength autofluorescence, and near-infrared autofluorescence measurements did not however correlate with age. Our study revealed a higher percentage of epiretinal membranes and cystoid macular edema in patients with MYO7A mutations compared with rod-cone dystrophy patients with other mutations. Subgroup analyses did not reveal substantial genotype-phenotype correlations. CONCLUSION: To the best of our knowledge, this is the largest French cohort of patients with MYO7A mutations reported to date. Functional visual characteristics of this subset of patients followed a linear decline as in other typical rod-cone dystrophy, but structural changes were variable indicating the need for a case-by-case evaluation for prognostic prediction and choice of potential therapies.


Asunto(s)
Distrofias de Conos y Bastones/genética , Mutación , Miosina VIIa/genética , Síndromes de Usher/genética , Adolescente , Adulto , Niño , Preescolar , Distrofias de Conos y Bastones/diagnóstico , Distrofias de Conos y Bastones/fisiopatología , Análisis Mutacional de ADN , Electrorretinografía , Femenino , Francia , Estudios de Asociación Genética , Humanos , Lactante , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Reacción en Cadena de la Polimerasa , Estudios Retrospectivos , Tomografía de Coherencia Óptica , Síndromes de Usher/diagnóstico , Síndromes de Usher/fisiopatología , Agudeza Visual/fisiología , Pruebas del Campo Visual , Campos Visuales/fisiología , Adulto Joven
16.
Hum Hered ; 84(3): 109-116, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31801140

RESUMEN

Mutations in the mesenchymal epithelial transition factor (MET) gene are frequently associated with multiple human cancers but can also lead to human non-syndromic autosomal recessive deafness (DFNB97). In the present study, we identified a novel homozygous missense mutation in the METgene causing a non-syndromic hearing impairment DFNB97 form. Whole-exome sequencing was performed to determine the genetic causes of hearing loss in a Moroccan consanguineous family with an affected daughter. The structural analysis of native and mutant in the SEMA domain of the MET receptor was investigated using a molecular dynamics simulation (MDS) approach. We identified a novel pathogenic homozygous c.948A>G (p.Ile316Met) mutation in the MET gene in one deaf Moroccan young girl carrying a total bilateral non-syndromic hearing impairment. The results of the MDS approach show that an Ile316Met mutation in the SEMA domain leads to protein flexibility loss. This may produce a major impact on the structural conformation of the MET receptor, which also affects the function and binding site of the receptor. This is the first time that a mutation in the MET gene is described in a Moroccan family. Moreover, this study reports the second family in the world associating deafness and mutation in the MET gene.


Asunto(s)
Pérdida Auditiva Sensorineural/genética , Proteínas Proto-Oncogénicas c-met/genética , Niño , Consanguinidad , Femenino , Humanos , Simulación de Dinámica Molecular , Mutación Missense , Linaje , Secuenciación Completa del Genoma
17.
Am J Hum Genet ; 98(6): 1266-1270, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27259055

RESUMEN

By genetic linkage analysis in a large consanguineous Iranian family with eleven individuals affected by severe to profound congenital deafness, we were able to define a 2.8 Mb critical interval (at chromosome 1p21.2-1p21.1) for an autosomal-recessive nonsyndromic deafness locus (DFNB). Whole-exome sequencing allowed us to identify a CDC14A biallelic nonsense mutation, c.1126C>T (p.Arg376(∗)), which was present in the eight clinically affected individuals still alive. Subsequent screening of 115 unrelated individuals affected by severe or profound congenital deafness of unknown genetic cause led us to identify another CDC14A biallelic nonsense mutation, c.1015C>T (p.Arg339(∗)), in an individual originating from Mauritania. CDC14A encodes a protein tyrosine phosphatase. Immunofluorescence analysis of the protein distribution in the mouse inner ear showed a strong labeling of the hair cells' kinocilia. By using a morpholino strategy to knockdown cdc14a in zebrafish larvae, we found that the length of the kinocilia was reduced in inner-ear hair cells. Therefore, deafness caused by loss-of-function mutations in CDC14A probably arises from a morphogenetic defect of the auditory sensory cells' hair bundles, whose differentiation critically depends on the proper growth of their kinocilium.


Asunto(s)
Cilios/patología , Células Ciliadas Auditivas/patología , Pérdida Auditiva Sensorineural/etiología , Mutación/genética , Monoéster Fosfórico Hidrolasas/genética , Índice de Severidad de la Enfermedad , Adulto , Anciano , Animales , Cilios/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Células Ciliadas Auditivas/enzimología , Pérdida Auditiva Sensorineural/patología , Humanos , Larva/genética , Larva/crecimiento & desarrollo , Masculino , Ratones , Persona de Mediana Edad , Linaje , Proteínas Tirosina Fosfatasas , Adulto Joven , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
18.
Mol Vis ; 25: 373-381, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31367175

RESUMEN

Purpose: Intraocular pressure leading to glaucoma is a major cause of childhood blindness in developing countries. In this study, we sought to identify gene variants potentially associated with primary congenital glaucoma (PCG) in the Mauritanian population. Methods: Using next-generation sequencing (NGS), a panel of PCG candidate genes was screened in a search for DNA mutations in four families with multiple occurrences of PCG. Results: Targeted exome sequencing analysis revealed predicted pathogenic mutations in four genes: CYP1B1 (c.217_218delTC, p.Ser73Valfs*150), MYOC (878C>A, p.T293K), NTF4 (c.601T>G, p.Cys201Gly), and WDR36 (c.2078A>G, p.Asn693Ser), each carried by a different family. Conclusions: Genetic variation associated with PCG in this study reflects the ethnic heterogeneity of the Mauritanian population. However, a larger cohort is needed to identify additional families carrying these mutations and confirm their biologic role.


Asunto(s)
Estudios de Asociación Genética , Glaucoma/congénito , Glaucoma/genética , Mutación/genética , Secuencia de Aminoácidos , Secuencia de Bases , Niño , Análisis Mutacional de ADN , Familia , Femenino , Pruebas Genéticas , Humanos , Masculino , Mauricio , Linaje , Péptidos/química
19.
Clin Genet ; 95(1): 177-181, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30298622

RESUMEN

Reunion Island is a French oversea department in the Indian Ocean with 1.6/1000, an estimated prevalence of deafness that is almost double as compared to the mainland France. Twelve children having isolated bilateral prelingual profound deafness along with motor delay attributed to vestibular areflexia were enrolled. Their mean walking age was 19 months. Electroretinography and temporal bone CT-scans were normal in all cases. A novel homozygous frameshift lipoma HMGIC fusion partner-like 5 (LHFPL5) variant c.185delT p.(Phe62Serfs*23) was identified using whole-exome sequencing. It was found in seven families. Four patients from two different families from both Reunion Island and mainland France, were compound heterozygous: c.185delT p.(Phe62Serfs*23) and c.472C > T p.(Arg158Trp). The phenotype observed in our patients completely mimics the hurry-scurry (hscy) murine Tmhs knock-out model. The recurrent occurrence of same LHFPL5 variant in Reunion Island is attributed to common ancestor couple born in 1693.


Asunto(s)
Vestibulopatía Bilateral/genética , Sordera/genética , Proteínas de la Membrana/genética , Trastornos Motores/genética , Animales , Vestibulopatía Bilateral/diagnóstico por imagen , Vestibulopatía Bilateral/fisiopatología , Sordera/diagnóstico por imagen , Sordera/fisiopatología , Electrorretinografía , Femenino , Mutación del Sistema de Lectura/genética , Homocigoto , Humanos , Lactante , Masculino , Ratones , Trastornos Motores/diagnóstico por imagen , Trastornos Motores/fisiopatología , Linaje , Tomografía Computarizada por Rayos X , Secuenciación del Exoma
20.
Doc Ophthalmol ; 139(2): 151-160, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31267413

RESUMEN

PURPOSE: Usher syndrome (USH) is a multisensory deficiency involving vision, hearing and the vestibular system. The purpose of this study is to report on the functional data (i.e. electroretinography, visual fields, visual acuity) of patients with retinitis pigmentosa (RP) due to Usher syndrome that were collected in a multicentre European study (TREATRUSH). METHODS: A total of 268 genetically confirmed USH patients underwent electrophysiological examinations in the context of multimodal ophthalmological examination in the study (75 USH1, 189 USH2 and four USH3). Full-field electroretinography (ERG) was performed according to ISCEV standards, visual field determination was carried out with either the Octopus or Goldmann perimeters and visual acuity was examined with either ETDRS or Snellen charts. The data were compared between USH subtypes (USH1/USH2/USH3) and correlated with age. RESULTS: Visual acuity decreases significantly with age for both USH1 and USH2 (p < 0.001), without a difference between the two cohorts. When corrected for age, the preserved kinetic visual field was significantly larger in USH2 than in USH1 (p = 0.04). Furthermore, the preserved kinetic visual field area showed a significant decrease with age (based on an exponential fit) in both USH1 and USH2 (p < 0.001). In USH1 patients, however, the visual field was already vastly reduced at an early age. The ERG results were abnormal in all patients. Detectable data for scotopic ERG were obtained from nine patients, and data of photopic ERG were obtained from 24 patients, without a difference between USH1 and USH2 subtypes. CONCLUSIONS: There are differences in the phenotypes of RP in USH subtypes, most visible in the progression of visual fields between USH1 and USH2. The perimetric reduction occurs earlier in USH1 than in USH2. In both subtypes, visual acuity decreases significantly with age and the ERG is not detectable already at early ages.


Asunto(s)
Electrorretinografía , Retinitis Pigmentosa/fisiopatología , Síndromes de Usher/fisiopatología , Agudeza Visual/fisiología , Campos Visuales/fisiología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Retina/fisiopatología , Retinitis Pigmentosa/etnología , Síndromes de Usher/etnología , Pruebas del Campo Visual , Población Blanca , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA