Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Neurobiol Dis ; 191: 106403, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38182074

RESUMEN

Loss-of-function mutations in the GNAL gene are responsible for DYT-GNAL dystonia. However, how GNAL mutations contribute to synaptic dysfunction is still unclear. The GNAL gene encodes the Gαolf protein, an isoform of stimulatory Gαs enriched in the striatum, with a key role in the regulation of cAMP signaling. Here, we used a combined biochemical and electrophysiological approach to study GPCR-mediated AC-cAMP cascade in the striatum of the heterozygous GNAL (GNAL+/-) rat model. We first analyzed adenosine type 2 (A2AR), and dopamine type 1 (D1R) receptors, which are directly coupled to Gαolf, and observed that the total levels of A2AR were increased, whereas D1R level was unaltered in GNAL+/- rats. In addition, the striatal isoform of adenylyl cyclase (AC5) was reduced, despite unaltered basal cAMP levels. Notably, the protein expression level of dopamine type 2 receptor (D2R), that inhibits the AC5-cAMP signaling pathway, was also reduced, similar to what observed in different DYT-TOR1A dystonia models. Accordingly, in the GNAL+/- rat striatum we found altered levels of the D2R regulatory proteins, RGS9-2, spinophilin, Gß5 and ß-arrestin2, suggesting a downregulation of D2R signaling cascade. Additionally, by analyzing the responses of striatal cholinergic interneurons to D2R activation, we found that the receptor-mediated inhibitory effect is significantly attenuated in GNAL+/- interneurons. Altogether, our findings demonstrate a profound alteration in the A2AR/D2R-AC-cAMP cascade in the striatum of the rat DYT-GNAL dystonia model, and provide a plausible explanation for our previous findings on the loss of dopamine D2R-dependent corticostriatal long-term depression.


Asunto(s)
Distonía , Trastornos Distónicos , Ratas , Animales , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Dopamina/metabolismo , AMP Cíclico/metabolismo , Distonía/genética , Transducción de Señal/fisiología , Cuerpo Estriado/metabolismo , Receptores Dopaminérgicos/metabolismo , Isoformas de Proteínas/metabolismo
2.
Brain ; 145(11): 3968-3984, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-35015830

RESUMEN

DYT6 dystonia is caused by mutations in the transcription factor THAP1. THAP1 knock-out or knock-in mouse models revealed complex gene expression changes, which are potentially responsible for the pathogenesis of DYT6 dystonia. However, how THAP1 mutations lead to these gene expression alterations and whether the gene expression changes are also reflected in the brain of THAP1 patients are still unclear. In this study we used epigenetic and transcriptomic approaches combined with multiple model systems [THAP1 patients' frontal cortex, THAP1 patients' induced pluripotent stem cell (iPSC)-derived midbrain dopaminergic neurons, THAP1 heterozygous knock-out rat model, and THAP1 heterozygous knock-out SH-SY5Y cell lines] to uncover a novel function of THAP1 and the potential pathogenesis of DYT6 dystonia. We observed that THAP1 targeted only a minority of differentially expressed genes caused by its mutation. THAP1 mutations lead to dysregulation of genes mainly through regulation of SP1 family members, SP1 and SP4, in a cell type dependent manner. Comparing global differentially expressed genes detected in THAP1 patients' iPSC-derived midbrain dopaminergic neurons and THAP1 heterozygous knock-out rat striatum, we observed many common dysregulated genes and 61 of them were involved in dystonic syndrome-related pathways, like synaptic transmission, nervous system development, and locomotor behaviour. Further behavioural and electrophysiological studies confirmed the involvement of these pathways in THAP1 knock-out rats. Taken together, our study characterized the function of THAP1 and contributes to the understanding of the pathogenesis of primary dystonia in humans and rats. As SP1 family members were dysregulated in some neurodegenerative diseases, our data may link THAP1 dystonia to multiple neurological diseases and may thus provide common treatment targets.


Asunto(s)
Distonía , Trastornos Distónicos , Neuroblastoma , Humanos , Ratones , Animales , Ratas , Distonía/genética , Proteínas Nucleares/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Trastornos Distónicos/genética , Mutación/genética , Factor de Transcripción Sp1/genética
3.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37108382

RESUMEN

Strong evidence suggests a correlation between degeneration and mitochondrial deficiency. Typical cases of degeneration can be observed in physiological phenomena (i.e., ageing) as well as in neurological neurodegenerative diseases and cancer. All these pathologies have the dyshomeostasis of mitochondrial bioenergy as a common denominator. Neurodegenerative diseases show bioenergetic imbalances in their pathogenesis or progression. Huntington's chorea and Parkinson's disease are both neurodegenerative diseases, but while Huntington's disease is genetic and progressive with early manifestation and severe penetrance, Parkinson's disease is a pathology with multifactorial aspects. Indeed, there are different types of Parkinson/Parkinsonism. Many forms are early-onset diseases linked to gene mutations, while others could be idiopathic, appear in young adults, or be post-injury senescence conditions. Although Huntington's is defined as a hyperkinetic disorder, Parkinson's is a hypokinetic disorder. However, they both share a lot of similarities, such as neuronal excitability, the loss of striatal function, psychiatric comorbidity, etc. In this review, we will describe the start and development of both diseases in relation to mitochondrial dysfunction. These dysfunctions act on energy metabolism and reduce the vitality of neurons in many different brain areas.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Huntington/metabolismo , Encéfalo/metabolismo , Mitocondrias/metabolismo
4.
Neurobiol Dis ; 173: 105851, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36007757

RESUMEN

Parkinson's disease (PD) is a multifactorial disorder involving a complex interplay between a variety of genetic and environmental factors. In this scenario, mitochondrial impairment and oxidative stress are widely accepted as crucial neuropathogenic mechanisms, as also evidenced by the identification of PD-associated genes that are directly involved in mitochondrial function. The concept of mitochondrial dysfunction is closely linked to that of synaptic dysfunction. Indeed, compelling evidence supports the role of mitochondria in synaptic transmission and plasticity, although many aspects have not yet been fully elucidated. Here, we will provide a brief overview of the most relevant evidence obtained in different neurotoxin-based and genetic rodent models of PD, focusing on mitochondrial impairment and synaptopathy, an early central event preceding overt nigrostriatal neurodegeneration. The identification of early deficits occurring in PD pathogenesis is crucial in view of the development of potential disease-modifying therapeutic strategies.


Asunto(s)
Enfermedad de Parkinson , Animales , Neuronas Dopaminérgicas/patología , Neurotoxinas , Estrés Oxidativo , Enfermedad de Parkinson/patología , Roedores
5.
Neurobiol Dis ; 162: 105564, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34838666

RESUMEN

This review provides an overview of the synaptic dysfunction of neuronal circuits and the ensuing behavioral alterations caused by mutations in autism spectrum disorder (ASD)-linked genes directly or indirectly affecting the postsynaptic neuronal compartment. There are plenty of ASD risk genes, that may be broadly grouped into those involved in gene expression regulation (epigenetic regulation and transcription) and genes regulating synaptic activity (neural communication and neurotransmission). Notably, the effects mediated by ASD-associated genes can vary extensively depending on the developmental time and/or subcellular site of expression. Therefore, in order to gain a better understanding of the mechanisms of disruptions in postsynaptic function, an effort to better model ASD in experimental animals is required to improve standardization and increase reproducibility within and among studies. Such an effort holds promise to provide deeper insight into the development of these disorders and to improve the translational value of preclinical studies.


Asunto(s)
Trastorno del Espectro Autista , Animales , Trastorno del Espectro Autista/genética , Epigénesis Genética , Neuronas , Reproducibilidad de los Resultados , Transmisión Sináptica/genética
6.
Mov Disord ; 37(5): 949-961, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35420219

RESUMEN

BACKGROUND: The neuronal protein alpha-synuclein (α-Syn) is crucially involved in Parkinson's disease pathophysiology. Intriguingly, torsinA (TA), the protein causative of DYT1 dystonia, has been found to accumulate in Lewy bodies and to interact with α-Syn. Both proteins act as molecular chaperones and control synaptic machinery. Despite such evidence, the role of α-Syn in dystonia has never been investigated. OBJECTIVE: We explored whether α-Syn and N-ethylmaleimide sensitive fusion attachment protein receptor proteins (SNAREs), that are known to be modulated by α-Syn, may be involved in DYT1 dystonia synaptic dysfunction. METHODS: We used electrophysiological and biochemical techniques to study synaptic alterations in the dorsal striatum of the Tor1a+ /Δgag mouse model of DYT1 dystonia. RESULTS: In the Tor1a+/Δgag DYT1 mutant mice, we found a significant reduction of α-Syn levels in whole striata, mainly involving glutamatergic corticostriatal terminals. Strikingly, the striatal levels of the vesicular SNARE VAMP-2, a direct α-Syn interactor, and of the transmembrane SNARE synaptosome-associated protein 23 (SNAP-23), that promotes glutamate synaptic vesicles release, were markedly decreased in mutant mice. Moreover, we detected an impairment of miniature glutamatergic postsynaptic currents (mEPSCs) recorded from striatal spiny neurons, in parallel with a decreased asynchronous release obtained by measuring quantal EPSCs (qEPSCs), which highlight a robust alteration in release probability. Finally, we also observed a significant reduction of TA striatal expression in α-Syn null mice. CONCLUSIONS: Our data demonstrate an unprecedented relationship between TA and α-Syn, and reveal that α-Syn and SNAREs alterations characterize the synaptic dysfunction underlying DYT1 dystonia. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.


Asunto(s)
Distonía Muscular Deformante , Distonía , Trastornos Distónicos , alfa-Sinucleína/metabolismo , Animales , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Distonía Muscular Deformante/metabolismo , Humanos , Ratones , Ratones Transgénicos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , alfa-Sinucleína/genética
7.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35409220

RESUMEN

Disturbances in the glutamatergic system have been increasingly documented in several neuropsychiatric disorders, including autism spectrum disorder (ASD). Glutamate-centered theories of ASD are based on evidence from patient samples and postmortem studies, as well as from studies documenting abnormalities in glutamatergic gene expression and metabolic pathways, including changes in the gut microbiota glutamate metabolism in patients with ASD. In addition, preclinical studies on animal models have demonstrated glutamatergic neurotransmission deficits and altered expression of glutamate synaptic proteins. At present, there are no approved glutamatergic drugs for ASD, but several ongoing clinical trials are currently focusing on evaluating in autistic patients glutamatergic pharmaceuticals already approved for other conditions. In this review, we provide an overview of the literature concerning the role of glutamatergic neurotransmission in the pathophysiology of ASD and as a potential target for novel treatments.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Microbioma Gastrointestinal , Animales , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Microbioma Gastrointestinal/genética , Ácido Glutámico/metabolismo , Humanos , Transmisión Sináptica
8.
Mov Disord ; 36(12): 2768-2779, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34173686

RESUMEN

BACKGROUND: Acetylcholine-mediated transmission plays a central role in the impairment of corticostriatal synaptic activity and plasticity in multiple DYT1 mouse models. However, the nature of such alteration remains unclear. OBJECTIVE: The aim of the present work was to characterize the mechanistic basis of cholinergic dysfunction in DYT1 dystonia to identify potential targets for pharmacological intervention. METHODS: We utilized electrophysiology recordings, immunohistochemistry, enzymatic activity assays, and Western blotting techniques to analyze in detail the cholinergic machinery in the dorsal striatum of the Tor1a+/- mouse model of DYT1 dystonia. RESULTS: We found a significant increase in the vesicular acetylcholine transporter (VAChT) protein level, the protein responsible for loading acetylcholine (ACh) from the cytosol into synaptic vesicles, which indicates an altered cholinergic tone. Accordingly, in Tor1a+/- mice we measured a robust elevation in basal ACh content coupled to a compensatory enhancement of acetylcholinesterase (AChE) enzymatic activity. Moreover, pharmacological activation of dopamine D2 receptors, which is expected to reduce ACh levels, caused an abnormal elevation in its content, as compared to controls. Patch-clamp recordings revealed a reduced effect of AChE inhibitors on cholinergic interneuron excitability, whereas muscarinic autoreceptor function was preserved. Finally, we tested the hypothesis that blockade of VAChT could restore corticostriatal long-term synaptic plasticity deficits. Vesamicol, a selective VAChT inhibitor, rescued a normal expression of synaptic plasticity. CONCLUSIONS: Overall, our findings indicate that VAChT is a key player in the alterations of striatal plasticity and a novel target to normalize cholinergic dysfunction observed in DYT1 dystonia. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Distonía , Acetilcolinesterasa/metabolismo , Animales , Colinérgicos/metabolismo , Cuerpo Estriado/metabolismo , Distonía Muscular Deformante , Ratones , Chaperonas Moleculares/metabolismo , Plasticidad Neuronal , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
9.
Neurobiol Dis ; 134: 104634, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31678405

RESUMEN

Dystonia is a neurological movement disorder characterized by sustained or intermittent involuntary muscle contractions. Loss-of-function mutations in the GNAL gene have been identified to be the cause of "isolated" dystonia DYT25. The GNAL gene encodes for the guanine nucleotide-binding protein G(olf) subunit alpha (Gαolf), which is mainly expressed in the olfactory bulb and the striatum and functions as a modulator during neurotransmission coupling with D1R and A2AR. Previously, heterozygous Gαolf -deficient mice (Gnal+/-) have been generated and showed a mild phenotype at basal condition. In contrast, homozygous deletion of Gnal in mice (Gnal-/-) resulted in a significantly reduced survival rate. In this study, using the CRISPR-Cas9 system we generated and characterized heterozygous Gnal knockout rats (Gnal+/-) with a 13 base pair deletion in the first exon of the rat Gnal splicing variant 2, a major isoform in both human and rat striatum. Gnal+/- rats showed early-onset phenotypes associated with impaired dopamine transmission, including reduction in locomotor activity, deficits in rotarod performance and an abnormal motor skill learning ability. At cellular and molecular level, we found down-regulated Arc expression, increased cell surface distribution of AMPA receptors, and the loss of D2R-dependent corticostriatal long-term depression (LTD) in Gnal+/- rats. Based on the evidence that D2R activity is normally inhibited by adenosine A2ARs, co-localized on the same population of striatal neurons, we show that blockade of A2ARs restores physiological LTD. This animal model may be a valuable tool for investigating Gαolf function and finding a suitable treatment for dystonia associated with deficient dopamine transmission.


Asunto(s)
Adenosina/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Distonía , Depresión Sináptica a Largo Plazo/fisiología , Animales , Distonía/metabolismo , Distonía/fisiopatología , Subunidades alfa de la Proteína de Unión al GTP/genética , Técnicas de Inactivación de Genes , Masculino , Ratas , Ratas Sprague-Dawley , Receptor de Adenosina A2A/metabolismo , Transducción de Señal/fisiología
10.
Neurobiol Dis ; 130: 104526, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31279827

RESUMEN

Dystonia is a movement disorder characterized by involuntary muscle contractions, twisting movements, and abnormal postures that may affect one or multiple body regions. Dystonia is the third most common movement disorder after Parkinson's disease and essential tremor. Despite its relative frequency, small molecule therapeutics for dystonia are limited. Development of new therapeutics is further hampered by the heterogeneity of both clinical symptoms and etiologies in dystonia. Recent advances in both animal and cell-based models have helped clarify divergent etiologies in dystonia and have facilitated the identification of new therapeutic targets. Advances in medicinal chemistry have also made available novel compounds for testing in biochemical, physiological, and behavioral models of dystonia. Here, we briefly review motor circuit anatomy and the anatomical and functional abnormalities in dystonia. We then discuss recently identified therapeutic targets in dystonia based on recent preclinical animal studies and clinical trials investigating novel therapeutics.


Asunto(s)
Ganglios Basales/fisiopatología , Cerebelo/fisiopatología , Distonía/tratamiento farmacológico , Trastornos Distónicos/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Distonía/fisiopatología , Trastornos Distónicos/fisiopatología , Humanos
11.
Int J Mol Sci ; 20(14)2019 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-31336695

RESUMEN

Caspases are a family of conserved cysteine proteases that play key roles in multiple cellular processes, including programmed cell death and inflammation. Recent evidence shows that caspases are also involved in crucial non-apoptotic functions, such as dendrite development, axon pruning, and synaptic plasticity mechanisms underlying learning and memory processes. The activated form of caspase-3, which is known to trigger widespread damage and degeneration, can also modulate synaptic function in the adult brain. Thus, in the present study, we tested the hypothesis that caspase-3 modulates synaptic plasticity at corticostriatal synapses in the phosphatase and tensin homolog (PTEN) induced kinase 1 (PINK1) mouse model of Parkinson's disease (PD). Loss of PINK1 has been previously associated with an impairment of corticostriatal long-term depression (LTD), rescued by amphetamine-induced dopamine release. Here, we show that caspase-3 activity, measured after LTD induction, is significantly decreased in the PINK1 knockout model compared with wild-type mice. Accordingly, pretreatment of striatal slices with the caspase-3 activator α-(Trichloromethyl)-4-pyridineethanol (PETCM) rescues a physiological LTD in PINK1 knockout mice. Furthermore, the inhibition of caspase-3 prevents the amphetamine-induced rescue of LTD in the same model. Our data support a hormesis-based double role of caspase-3; when massively activated, it induces apoptosis, while at lower level of activation, it modulates physiological phenomena, like the expression of corticostriatal LTD. Exploring the non-apoptotic activation of caspase-3 may contribute to clarify the mechanisms involved in synaptic failure in PD, as well as in view of new potential pharmacological targets.


Asunto(s)
Caspasa 3/metabolismo , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/metabolismo , Proteínas Quinasas/genética , Animales , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Activación Enzimática , Genotipo , Ácido Glutámico/metabolismo , Depresión Sináptica a Largo Plazo , Ratones , Ratones Noqueados , Plasticidad Neuronal/efectos de los fármacos , Proteínas Quinasas/metabolismo
12.
J Neurosci ; 37(8): 2112-2124, 2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28115486

RESUMEN

We report that changes of phosphodiesterase-10A (PDE10A) can map widespread functional imbalance of basal ganglia circuits in a mouse model of DYT1 dystonia overexpressing mutant torsinA. PDE10A is a key enzyme in the catabolism of second messenger cAMP and cGMP, whose synthesis is stimulated by D1 receptors and inhibited by D2 receptors preferentially expressed in striatoentopeducuncular/substantia nigra or striatopallidal pathways, respectively. PDE10A was studied in control mice (NT) and in mice carrying human wild-type torsinA (hWT) or mutant torsinA (hMT). Quantitative analysis of PDE10A expression was assessed in different brain areas by rabbit anti-PDE10A antibody immunohistochemistry and Western blotting. PDE10A-dependent cAMP hydrolyzing activity and PDE10A mRNA were also assessed. Striatopallidal neurons were identified by rabbit anti-enkephalin antibody.In NT mice, PDE10A is equally expressed in medium spiny striatal neurons and in their projections to entopeduncular nucleus/substantia nigra and to external globus pallidus. In hMT mice, PDE10A content selectively increases in enkephalin-positive striatal neuronal bodies; moreover, PDE10A expression and activity in hMT mice, compared with NT mice, significantly increase in globus pallidus but decrease in entopeduncular nucleus/substantia nigra. Similar changes of PDE10A occur in hWT mice, but such changes are not always significant. However, PDE10A mRNA expression appears comparable among NT, hWT, and hMT mice.In DYT1 transgenic mice, the inverse changes of PDE10A in striatoentopeduncular and striatopallidal projections might result over time in an imbalance between direct and indirect pathways for properly focusing movement. The decrease of PDE10A in the striatoentopeduncular/nigral projections might lead to increased intensity and duration of D1-stimulated cAMP/cGMP signaling; conversely, the increase of PDE10A in the striatopallidal projections might lead to increased intensity and duration of D2-inhibited cAMP/cGMP signaling.SIGNIFICANCE STATEMENT In DYT1 transgenic mouse model of dystonia, PDE10A, a key enzyme in cAMP and cGMP catabolism, is downregulated in striatal projections to entopeduncular nucleus/substantia nigra, preferentially expressing D1 receptors that stimulate cAMP/cGMP synthesis. Conversely, in DYT1 mice, PDE10A is upregulated in striatal projections to globus pallidus, preferentially expressing D2 receptors that inhibit cAMP/cGMP synthesis. The inverse changes to PDE10A in striatoentopeduncular/substantia nigra and striatopallidal pathways might tightly interact downstream to dopamine receptors, likely resulting over time to increased intensity and duration respectively of D1-stimulated and D2-inhibited cAMP/cGMP signals. Therefore, PDE10A changes in the DYT1 model of dystonia can upset the functional balance of basal ganglia circuits, affecting direct and indirect pathways simultaneously.


Asunto(s)
Cuerpo Estriado/metabolismo , Distonía , Regulación Enzimológica de la Expresión Génica/genética , Chaperonas Moleculares/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Sustancia Negra/metabolismo , Animales , AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Distonía/genética , Distonía/metabolismo , Distonía/patología , Encefalinas/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Red Nerviosa/metabolismo , Red Nerviosa/patología , Vías Nerviosas/metabolismo , Neuronas/metabolismo , Papaverina/farmacología , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/genética , ARN Mensajero/metabolismo
14.
Eur J Neurosci ; 47(6): 701-708, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28921757

RESUMEN

Autism spectrum disorders (ASDs) comprise a heterogeneous group of disorders with a complex genetic etiology. Current theories on the pathogenesis of ASDs suggest that they might arise from an aberrant synaptic transmission affecting specific brain circuits and synapses. The striatum, which is part of the basal ganglia circuit, is one of the brain regions involved in ASDs. Mouse models of ASDs have provided evidence for an imbalance between excitatory and inhibitory neurotransmission. Here, we investigated the expression of long-term synaptic plasticity at corticostriatal glutamatergic synapses in the dorsal striatum of the R451C-NL3 phenotypic mouse model of autism. This mouse model carries the human R451C mutation in the neuroligin 3 (NL3) gene that has been associated with highly penetrant autism in a Swedish family. The R451C-NL3 mouse has been shown to exhibit autistic-like behaviors and alterations of synaptic transmission in different brain areas. However, excitatory glutamatergic transmission and its long-term plasticity have not been investigated in the dorsal striatum so far. Our results indicate that the expression of long-term synaptic depression (LTD) at corticostriatal glutamatergic synapses in the dorsal striatum is impaired by the R451C-NL3 mutation. A partial rescue of LTD was obtained by exogenous activation of cannabinoid CB1 receptors or enhancement of the endocannabinoid tone, suggesting that an altered cannabinoid drive might underlie the deficit of synaptic plasticity in the dorsal striatum of R451C-NL3 mice.


Asunto(s)
Trastorno del Espectro Autista , Moléculas de Adhesión Celular Neuronal/genética , Endocannabinoides/metabolismo , Potenciales Postsinápticos Excitadores , Neuronas GABAérgicas/fisiología , Ácido Glutámico/metabolismo , Depresión Sináptica a Largo Plazo , Proteínas de la Membrana/genética , Neostriado , Proteínas del Tejido Nervioso/genética , Receptor Cannabinoide CB1/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/fisiopatología , Modelos Animales de Enfermedad , Electroencefalografía , Potenciales Postsinápticos Excitadores/fisiología , Antagonistas del GABA/farmacología , Neuronas GABAérgicas/metabolismo , Depresión Sináptica a Largo Plazo/fisiología , Masculino , Ratones , Ratones Transgénicos , Neostriado/metabolismo , Neostriado/fisiopatología , Técnicas de Placa-Clamp , Picrotoxina/farmacología
15.
Mov Disord ; 33(2): 310-320, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29150865

RESUMEN

BACKGROUND: Mu opioid receptor activation modulates acetylcholine release in the dorsal striatum, an area deeply involved in motor function, habit formation, and reinforcement learning as well as in the pathophysiology of different movement disorders, such as dystonia. Although the role of opioids in drug reward and addiction is well established, their involvement in motor dysfunction remains largely unexplored. METHODS: We used a multidisciplinary approach to investigate the responses to mu activation in 2 mouse models of DYT1 dystonia (Tor1a+/Δgag mice, Tor1a+/- torsinA null mice, and their respective wild-types). We performed electrophysiological recordings to characterize the pharmacological effects of receptor activation in cholinergic interneurons as well as the underlying ionic currents. In addition, an analysis of the receptor expression was performed both at the protein and mRNA level. RESULTS: In mutant mice, selective mu receptor activation caused a stronger G-protein-dependent, dose-dependent inhibition of firing activity in cholinergic interneurons when compared with controls. In Tor1a+/- mice, our electrophysiological analysis showed an abnormal involvement of calcium-activated potassium channels. Moreover, in both models we found increased levels of mu receptor protein. In addition, both total mRNA and the mu opioid receptor splice variant 1S (MOR-1S) splice variant of the mu receptor gene transcript, specifically enriched in striatum, were selectively upregulated. CONCLUSION: Mice with the DYT1 dystonia mutation exhibit an enhanced response to mu receptor activation, dependent on selective receptor gene upregulation. Our data suggest a novel role for striatal opioid signaling in motor control, and more important, identify mu opioid receptors as potential targets for pharmacological intervention in dystonia. © 2017 International Parkinson and Movement Disorder Society.


Asunto(s)
Acetilcolina/metabolismo , Cuerpo Estriado/metabolismo , Distonía/genética , Regulación de la Expresión Génica/genética , Chaperonas Moleculares/genética , Receptores Opioides mu/metabolismo , Potenciales de Acción/fisiología , Adenosina Trifosfato/farmacología , Analgésicos Opioides/farmacología , Animales , Calcio/metabolismo , Colina O-Acetiltransferasa/metabolismo , Neuronas Colinérgicas/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Distonía/patología , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Técnicas de Placa-Clamp , Receptores Opioides mu/genética , Somatostatina/análogos & derivados , Somatostatina/farmacología
16.
Neurobiol Dis ; 78: 146-61, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25818655

RESUMEN

Ras homolog enriched in striatum (Rhes) is highly expressed in striatal medium spiny neurons (MSNs) of rodents. In the present study, we characterized the expression of Rhes mRNA across species, as well as its functional role in other striatal neuron subtypes. Double in situ hybridization analysis showed that Rhes transcript is selectively localized in striatal cholinergic interneurons (ChIs), but not in GABAergic parvalbumin- or in neuropeptide Y-positive cell populations. Rhes is closely linked to dopamine-dependent signaling. Therefore, we recorded ChIs activity in basal condition and following dopamine receptor activation. Surprisingly, instead of an expected dopamine D2 receptor (D2R)-mediated inhibition, we observed an aberrant excitatory response in ChIs from Rhes knockout mice. Conversely, the effect of D1R agonist on ChIs was less robust in Rhes mutants than in controls. Although Rhes deletion in mutants occurs throughout the striatum, we demonstrate that the D2R response is altered specifically in ChIs, since it was recorded in pharmacological isolation, and prevented either by intrapipette BAPTA or by GDP-ß-S. Moreover, we show that blockade of Cav2.2 calcium channels prevented the abnormal D2R response. Finally, we found that the abnormal D2R activation in ChIs was rescued by selective PI3K inhibition thus suggesting that Rhes functionally modulates PI3K/Akt signaling pathway in these neurons. Our findings reveal that, besides its expression in MSNs, Rhes is localized also in striatal ChIs and, most importantly, lack of this G-protein, significantly alters D2R modulation of striatal cholinergic excitability.


Asunto(s)
Cuerpo Estriado/fisiología , Proteínas de Unión al GTP/fisiología , Receptores de Dopamina D2/fisiología , Transmisión Sináptica , Potenciales de Acción , Adolescente , Adulto , Animales , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/fisiología , Cuerpo Estriado/metabolismo , Femenino , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Humanos , Interneuronas/metabolismo , Interneuronas/fisiología , Masculino , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal , Especificidad de la Especie
17.
Proc Natl Acad Sci U S A ; 109(46): 18985-90, 2012 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-23112192

RESUMEN

Cortical spreading depression (CSD) is a key pathogenetic step in migraine with aura. Dysfunctions of voltage-dependent and receptor-operated channels have been implicated in the generation of CSD and in the pathophysiology of migraine. Although a known correlation exists between migraine and release of the calcitonin gene-related peptide (CGRP), the possibility that CGRP is involved in CSD has not been examined in detail. We analyzed the pharmacological mechanisms underlying CSD and investigated the possibility that endogenous CGRP contributes to this phenomenon. CSD was analyzed in rat neocortical slices by imaging of the intrinsic optical signal. CSD was measured as the percentage of the maximal surface of a cortical slice covered by the propagation of intrinsic optical signal changes during an induction episode. Reproducible CSD episodes were induced through repetitive elevations of extracellular potassium concentration. AMPA glutamate receptor antagonism did not inhibit CSD, whereas NMDA receptor antagonism did inhibit CSD. Blockade of voltage-dependent sodium channels by TTX also reduced CSD. CSD was also decreased by the antiepileptic drug topiramate, but not by carbamazepine. Interestingly, endogenous CGRP was released in the cortical tissue in a calcium-dependent manner during CSD, and three different CGRP receptor antagonists had a dose-dependent inhibitory effect on CSD, suggesting a critical role of CGRP in this phenomenon. Our findings show that both glutamate NMDA receptors and voltage-dependent sodium channels play roles in CSD. They also demonstrate that CGRP antagonism reduces CSD, supporting the possible use of drugs targeting central CGRP receptors as antimigraine agents.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/farmacocinética , Corteza Cerebral/metabolismo , Depresión de Propagación Cortical/efectos de los fármacos , Animales , Anticonvulsivantes/farmacología , Péptido Relacionado con Gen de Calcitonina/farmacología , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina , Carbamazepina/farmacología , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Relación Dosis-Respuesta a Droga , Fructosa/análogos & derivados , Fructosa/farmacología , Masculino , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/metabolismo , Trastornos Migrañosos/patología , Trastornos Migrañosos/fisiopatología , Ratas , Ratas Wistar , Receptores AMPA/antagonistas & inhibidores , Receptores AMPA/metabolismo , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Topiramato , Canales de Sodio Activados por Voltaje
18.
Mov Disord ; 29(13): 1655-65, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25195914

RESUMEN

Broad-spectrum muscarinic receptor antagonists have represented the first available treatment for different movement disorders such as dystonia. However, the specificity of these drugs and their mechanism of action is not entirely clear. We performed a systematic analysis of the effects of anticholinergic drugs on short- and long-term plasticity recorded from striatal medium spiny neurons from DYT1 dystonia knock-in (Tor1a(+/Δgag) ) mice heterozygous for ΔE-torsinA and their controls (Tor1a(+/+) mice). Antagonists were chosen that had previously been proposed to be selective for muscarinic receptor subtypes and included pirenzepine, trihexyphenydil, biperiden, orphenadrine, and a novel selective M1 antagonist, VU0255035. Tor1a(+/Δgag) mice exhibited a significant impairment of corticostriatal synaptic plasticity. Anticholinergics had no significant effects on intrinsic membrane properties and on short-term plasticity of striatal neurons. However, they exhibited a differential ability to restore the corticostriatal plasticity deficits. A complete rescue of both long-term depression (LTD) and synaptic depotentiation (SD) was obtained by applying the M1 -preferring antagonists pirenzepine and trihexyphenidyl as well as VU0255035. Conversely, the nonselective antagonist orphenadrine produced only a partial rescue of synaptic plasticity, whereas biperiden and ethopropazine failed to restore plasticity. The selectivity for M1 receptors was further demonstrated by their ability to counteract the M1 -dependent potentiation of N-methyl-d-aspartate (NMDA) current recorded from striatal neurons. Our study demonstrates that selective M1 muscarinic receptor antagonism offsets synaptic plasticity deficits in the striatum of mice with the DYT1 dystonia mutation, providing a potential mechanistic rationale for the development of improved antimuscarinic therapies for this movement disorder.


Asunto(s)
Antagonistas Colinérgicos/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Chaperonas Moleculares/genética , Sinapsis/efectos de los fármacos , Animales , Biofisica , Cuerpo Estriado/citología , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Técnicas In Vitro , Ratones , Ratones Transgénicos , Mutación/genética , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Sinapsis/genética , Tálamo/citología
19.
Mov Disord ; 29(1): 41-53, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24167038

RESUMEN

Homozygous or compound heterozygous mutations in the phosphatase and tensin homolog-induced putative kinase 1 (PINK1) gene are causative of autosomal recessive, early onset Parkinson's disease. Single heterozygous mutations have been detected repeatedly both in a subset of patients and in unaffected individuals, and the significance of these mutations has long been debated. Several neurophysiological studies from non-manifesting PINK1 heterozygotes have demonstrated the existence of neural plasticity abnormalities, indicating the presence of specific endophenotypic traits in the heterozygous state. We performed a functional analysis of corticostriatal synaptic plasticity in heterozygous PINK1 knockout (PINK1(+/-) ) mice using a multidisciplinary approach and observed that, despite normal motor behavior, repetitive activation of cortical inputs to striatal neurons failed to induce long-term potentiation (LTP), whereas long-term depression was normal. Although nigral dopaminergic neurons exhibited normal morphological and electrophysiological properties with normal responses to dopamine receptor activation, a significantly lower dopamine release was measured in the striatum of PINK1(+/-) mice compared with control mice, suggesting that a decrease in stimulus-evoked dopamine overflow acts as a major determinant for the LTP deficit. Accordingly, pharmacological agents capable of increasing the availability of dopamine in the synaptic cleft restored normal LTP in heterozygous mice. Moreover, monoamine oxidase B inhibitors rescued physiological LTP and normal dopamine release. Our results provide novel evidence for striatal plasticity abnormalities, even in the heterozygous disease state. These alterations might be considered an endophenotype to this monogenic form of Parkinson's disease and a valid tool with which to characterize early disease stage and design possible disease-modifying therapies.


Asunto(s)
Dopamina/metabolismo , Actividad Motora/genética , Plasticidad Neuronal/genética , Proteínas Quinasas/genética , Sinapsis/genética , Animales , Corteza Cerebral/metabolismo , Cuerpo Estriado/metabolismo , Ratones , Ratones Noqueados , Proteínas Quinasas/metabolismo , Receptores Dopaminérgicos/metabolismo , Prueba de Desempeño de Rotación con Aceleración Constante , Sustancia Negra/metabolismo
20.
J Neurosci ; 32(35): 11991-2004, 2012 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-22933784

RESUMEN

Projections from thalamic intralaminar nuclei convey sensory signals to striatal cholinergic interneurons. These neurons respond with a pause in their pacemaking activity, enabling synaptic integration with cortical inputs to medium spiny neurons (MSNs), thus playing a crucial role in motor function. In mice with the DYT1 dystonia mutation, stimulation of thalamostriatal axons, mimicking a response to salient events, evoked a shortened pause and triggered an abnormal spiking activity in interneurons. This altered pattern caused a significant rearrangement of the temporal sequence of synaptic activity mediated by M(1) and M(2) muscarinic receptors in MSNs, consisting of an increase in postsynaptic currents and a decrease of presynaptic inhibition, respectively. Consistent with a major role of acetylcholine, either lowering cholinergic tone or antagonizing postsynaptic M(1) muscarinic receptors normalized synaptic activity. Our data demonstrate an abnormal time window for synaptic integration between thalamostriatal and corticostriatal inputs, which might alter the action selection process, thereby predisposing DYT1 gene mutation carriers to develop dystonic movements.


Asunto(s)
Neuronas Colinérgicas/patología , Cuerpo Estriado/fisiología , Distonía/genética , Chaperonas Moleculares/genética , Sinapsis/patología , Tálamo/fisiología , Potenciales de Acción/fisiología , Animales , Distonía/fisiopatología , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Mutación/genética , Vías Nerviosas/patología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA