Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 111(2): 799-804, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24381157

RESUMEN

Drug resistance emerges in an ecological context where fitness costs restrict the diversity of escape pathways. These pathways are targets for drug discovery, and here we demonstrate that we can identify small-molecule inhibitors that differentially target resistant parasites. Combining wild-type and mutant-type inhibitors may prevent the emergence of competitively viable resistance. We tested this hypothesis with a clinically derived chloroquine-resistant (CQ(r)) malaria parasite and with parasites derived by in vitro selection with Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors. We screened a chemical library against CQ(s) and CQ(r) lines and discovered a drug-like compound (IDI-3783) that was potent only in the CQ(r) line. Surprisingly, in vitro selection of Plasmodium falciparum resistant to IDI-3783 restored CQ sensitivity, thereby indicating that CQ might once again be useful as a malaria therapy. In parallel experiments, we selected P. falciparum lines resistant to structurally unrelated PfDHODH inhibitors (Genz-666136 and DSM74). Both selections yielded resistant lines with the same point mutation in PfDHODH:E182D. We discovered a compound (IDI-6273) more potent against E182D than wild-type parasites. Selection of the E182D mutant with IDI-6273 yielded a reversion to the wild-type protein sequence and phenotype although the nucleotide sequence was different. Importantly, selection with a combination of Genz-669178, a wild-type PfDHODH inhibitor, and IDI-6273, a mutant-selective PfDHODH inhibitor, did not yield resistant parasites. These two examples demonstrate that the compromise between resistance and evolutionary fitness can be exploited to design therapies that prevent the emergence and spread of resistant organisms.


Asunto(s)
Cloroquina/farmacología , Descubrimiento de Drogas/métodos , Resistencia a Medicamentos/genética , Aptitud Genética/genética , Malaria/tratamiento farmacológico , Plasmodium falciparum/genética , Análisis de Varianza , Secuencia de Bases , Dihidroorotato Deshidrogenasa , Evaluación Preclínica de Medicamentos , Genoma/genética , Datos de Secuencia Molecular , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Mutación Puntual/genética , Pirimidinas , Análisis de Secuencia de ADN , Bibliotecas de Moléculas Pequeñas , Triazoles
2.
J Biol Chem ; 285(43): 33054-33064, 2010 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-20702404

RESUMEN

Plasmodium falciparum, the causative agent of the most deadly form of human malaria, is unable to salvage pyrimidines and must rely on de novo biosynthesis for survival. Dihydroorotate dehydrogenase (DHODH) catalyzes the rate-limiting step in the pyrimidine biosynthetic pathway and represents a potential target for anti-malarial therapy. A high throughput screen and subsequent medicinal chemistry program identified a series of N-alkyl-5-(1H-benzimidazol-1-yl)thiophene-2-carboxamides with low nanomolar in vitro potency against DHODH from P. falciparum, P. vivax, and P. berghei. The compounds were selective for the parasite enzymes over human DHODH, and x-ray structural data on the analog Genz-667348, demonstrated that species selectivity could be attributed to amino acid differences in the inhibitor-binding site. Compounds from this series demonstrated in vitro potency against the 3D7 and Dd2 strains of P. falciparum, good tolerability and oral exposure in the mouse, and ED(50) values in the 4-day murine P. berghei efficacy model of 13-21 mg/kg/day with oral twice-daily dosing. In particular, treatment with Genz-667348 at 100 mg/kg/day resulted in sterile cure. Two recent analogs of Genz-667348 are currently undergoing pilot toxicity testing to determine suitability as clinical development candidates.


Asunto(s)
Antimaláricos/farmacología , Inhibidores Enzimáticos/farmacología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/enzimología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Plasmodium falciparum/enzimología , Proteínas Protozoarias/antagonistas & inhibidores , Animales , Línea Celular , Dihidroorotato Deshidrogenasa , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Humanos , Imidazoles/farmacología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Plasmodium berghei/enzimología , Plasmodium vivax/enzimología , Ratas
3.
PLoS Negl Trop Dis ; 8(1): e2628, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24416464

RESUMEN

Cofactor-independent phosphoglycerate mutase (iPGAM) is essential for the growth of C. elegans but is absent from humans, suggesting its potential as a drug target in parasitic nematodes such as Brugia malayi, a cause of lymphatic filariasis (LF). iPGAM's active site is small and hydrophilic, implying that it may not be druggable, but another binding site might permit allosteric inhibition. As a comprehensive assessment of iPGAM's druggability, high-throughput screening (HTS) was conducted at two different locations: ∼220,000 compounds were tested against the C. elegans iPGAM by Genzyme Corporation, and ∼160,000 compounds were screened against the B. malayi iPGAM at the National Center for Drug Screening in Shanghai. iPGAM's catalytic activity was coupled to downstream glycolytic enzymes, resulting in NADH consumption, as monitored by a decline in visible-light absorbance at 340 nm. This assay performed well in both screens (Z'-factor >0.50) and identified two novel inhibitors that may be useful as chemical probes. However, these compounds have very modest potency against the B. malayi iPGAM (IC50 >10 µM) and represent isolated singleton hits rather than members of a common scaffold. Thus, despite the other appealing properties of the nematode iPGAMs, their low druggability makes them challenging to pursue as drug targets. This study illustrates a "druggability paradox" of target-based drug discovery: proteins are generally unsuitable for resource-intensive HTS unless they are considered druggable, yet druggability is often difficult to predict in the absence of HTS data.


Asunto(s)
Brugia Malayi/enzimología , Inhibidores Enzimáticos/aislamiento & purificación , Filaricidas/aislamiento & purificación , Fosfoglicerato Mutasa/antagonistas & inhibidores , Animales , Inhibidores Enzimáticos/farmacología , Filaricidas/farmacología , Ensayos Analíticos de Alto Rendimiento , Concentración 50 Inhibidora
4.
ACS Med Chem Lett ; 2(9): 708-13, 2011 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-24900364

RESUMEN

Inhibition of dihydroorotate dehydrogenase (DHODH) for P. falciparum potentially represents a new treatment option for malaria, since DHODH catalyzes the rate-limiting step in the pyrimidine biosynthetic pathway and P. falciparum is unable to salvage pyrimidines and must rely on de novo biosynthesis for survival. We report herein the synthesis and structure-activity relationship of a series of 5-(2-methylbenzimidazol-1-yl)-N-alkylthiophene-2-carboxamides that are potent inhibitors against PfDHODH but do not inhibit the human enzyme. On the basis of efficacy observed in three mouse models of malaria, acceptable safety pharmacology risk assessment and safety toxicology profile in rodents, lack of potential drug-drug interactions, acceptable ADME/pharmacokinetic profile, and projected human dose, 5-(4-cyano-2-methyl-1H-benzo[d]imidazol-1-yl)-N-cyclopropylthiophene-2-carboxamide 2q was identified as a potential drug development candidate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA