Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Med J Malaysia ; 78(2): 218-224, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36988534

RESUMEN

INTRODUCTION: Personal protective equipment (PPE) is crucial in reducing the risk of hospital-acquired COVID-19 as health care workers (HCW)s are highly exposed to the virus during the management of patients with COVID-19. This study assesses the knowledge, attitude and behaviour of the HCWs towards the use of PPE during the COVID-19 pandemic in Malaysia. MATERIALS AND METHODS: This is a nationwide, online-based cross-sectional study utilising a self-administered questionnaire that was distributed to tertiary hospital HCWs in Malaysia, conducted between June and August 2020. RESULTS: Forty-eight physicians, 66 nurses and 79 medical assistants participated in this study. 73.6% correctly recognised PPE components while 40.4% revealed correct hand hygiene practices and approximately 20% had misconceptions about the proper usage of PPE. Although 78.8% disclosed high compliance, 37.3% perceived that PPE protocol interferes with patient care. HCWs have suboptimal knowledge levels of hand hygiene. Age and poor behaviour were the independent predictors of good compliance with PPE. CONCLUSION: This study highlights the necessity to analyse discrepancies in PPE practice among HCWs and its contributing elements. Recognised barriers should be addressed to narrow the gap between knowledge, attitude and behaviour to improve compliance. The study findings would assist in developing an improved disease transmission control and prevention training protocols for HCWs as a preparation for possible infectious outbreaks in the future.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Estudios Transversales , Autoinforme , Pandemias/prevención & control , Conocimientos, Actitudes y Práctica en Salud , Malasia/epidemiología , Equipo de Protección Personal , Personal de Salud
2.
J Am Chem Soc ; 144(24): 10844-10853, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35671335

RESUMEN

The complexity of heterogeneous metal catalysts makes it challenging to gain insights into their catalytic mechanisms. Thus, there exists a huge gap between heterogeneous catalysis and organometallic catalysis. With the success in the preparation of highly robust atomically precise metal nanocluster catalysts (i.e., [Au16(NHC-1)5(PA)3Br2]3+ and [Au17(NHC-1)4(PA)4Br4]+, where NHC-1 is a bidentate NHC ligand, and PA is phenylacetylide) with surface organometallic motifs anchored on the metallic core, we demonstrate in this work how the metallic core works synergistically with the surface organometallic motifs to enhance the catalysis. More importantly, the discovery allows the development of highly stable and recyclable heterogeneous metal catalysts to achieve efficient hydroamination of alkynes with an extremely low catalyst dosage (0.002 mol %), helping bridge the gap between heterogeneous and homogeneous metal catalysis. The surface modification of metal nanocatalysts with organometallic motifs provides a new design principle of metal catalysts with enhanced catalysis.

3.
J Obstet Gynaecol Res ; 48(3): 694-702, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35068018

RESUMEN

AIM: To explore digital insertion in dorsal recumbent position of 16F, 22F, or 28F catheter bores on insertion failure, duration, and pain in unripe cervix labor induction. METHODS: A randomized trial was performed in a University hospital in Malaysia. Term women scheduled for labor induction, Bishop score ≤ 5, singleton, cephalic presentation, intact membrane, and reassuring pre-induction fetal heart rate tracing were recruited. Women with known gross fetal anomaly, allergy to latex and inability to consent or language difficulty were excluded. Participants were randomized to 16F, 22F, or 28F Foley catheter. Primary outcome was insertion failure and main secondary outcomes were insertion duration and pain (assessed by a Visual Numerical Rating Scale [VNRS] 0-10, higher score more pain). Analysis is done by analysis of variance (ANOVA), Kruskal-Wallis, and chi square test across the three arms and by t test and Mann-Whitney U test for pair wise comparisons. RESULTS: One hundred twenty-seven participants' data were analyzed. The insertion failure 7/43(16%) versus 4/42(10%) versus 5/42(12%), p = 0.64, insertion duration median [IQR] 2.8 [1.8-4.8] versus 2.8 [1.7-3.7] versus 2.8 [1.7-4.3] min, p = 0.68 and insertion pain VNRS mean {SD} 4.2 {2.5} versus 3.4 {2.3} versus 3.6 {2.2}, p = 0.26, insertion to delivery interval 26.0 {9.7} versus 25.6 {9.1} versus 22.8 {7.4} h, p = 0.45, and spontaneous vaginal delivery 20/43 (45%) versus 23/42(55%) versus 25/42(60%), p = 0.48 for 16F versus 22F versus 28F arms, respectively. Pairwise comparisons were not different. CONCLUSION: Foley catheter 16F versus 22F versus 28F resulted in similar digital insertion performance in the dorsal recumbent position for unripe cervix labor induction. CLINICAL TRIAL REGISTRATION: https://doi.org/10.1186/ISRCTN21224268.


Asunto(s)
Maduración Cervical , Oxitócicos , Catéteres , Cuello del Útero , Femenino , Humanos , Trabajo de Parto Inducido/métodos , Embarazo , Cateterismo Urinario/métodos
4.
J Am Chem Soc ; 143(27): 10214-10220, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34181853

RESUMEN

Many metal clusters are intrinsically chiral but are often synthesized as a racemic mixture. By taking chiral Ag14(SPh(CF3)2)12(PPh3)4(DMF)4 (Ag14) clusters with bulky thiolate ligands as an example, we demonstrate herein an interesting assembly disassembly (ASDS) strategy to obtain the corresponding, optically pure crystals of both homochiral enantiomers, R-Ag14m and S-Ag14m. The ASDS strategy makes use of two bidentate linkers with different chiral configurations, namely, (1R,2R,N1E,N2E)-N1,N2-bis(pyridin-3-ylmethylene)cyclohexane-1,2-diamine (LR) and the corresponding chiral analogue LS. For comparison, we also use the racemic mixture of equimolar of LR and LS (LRS). Three three-dimensional (3D) Ag14-based metal-organic frameworks (MOFs) were characterized by X-ray crystallography to be [Ag14(SPh(CF3)2)12(PPh3)4(LR)2]n (Ag14-LR), [Ag14(SPh(CF3)2)12(PPh3)4(LS)2]n (Ag14-LS), and [Ag14(SPh(CF3)2)12(PPh3)4(LRS)2]n (Ag14-LRS), respectively. As expected, the building blocks in Ag14-LR or Ag14-LS are homochiral R-Ag14 or S-Ag14, respectively. In contrast, Ag14-LRS is achiral and crystallizes with a diamond-like structure containing alternate R-Ag14 and S-Ag14 clusters. During the assembly process, the racemic Ag14 clusters were converted to homochiral building blocks, namely, R-Ag14 for Ag14-LR and S-Ag14 for Ag14-LS. Subsequently, the chiral linkers were removed from the crystals of Ag14-LR and Ag14-LS via hydrolysis with water, and from the disassembled solid material Ag14-DR and Ag14-DS, optically pure enantiomers R-Ag14m and S-Ag14m were obtained. It is hoped that this simple assembly strategy can be used to construct cluster-based chiral assemblage materials and that the subsequent disassembly protocol can be used to obtain optically pure chiral cluster molecules from as-prepared racemic mixtures.

5.
Inorg Chem ; 60(6): 3529-3533, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33615777

RESUMEN

Reported herein are the synthesis and structures of two high-nuclearity AuAg nanoclusters, namely, [Au78Ag66(C≡CPh)48Cl8]q- and [Au74Ag60(C≡CPh)40Br12]2-. Both clusters possess a three-concentric-shell Au12@Au42@Ag60 structure. However, the dispositions of the metal atoms, and the ligand coordination modes, of the outermost shells of these clusters are distinctly different. These structural differences reflect the bonding characteristics of the halide ligands. As revealed by density functional theory analysis, these clusters exhibit superatomic electron shell closings at magic numbers of 92 (for q = 4) and 84, respectively, consistent with their spherical shapes. Both clusters exhibit unusual multivalent redox properties.

6.
Angew Chem Int Ed Engl ; 60(23): 12897-12903, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33719174

RESUMEN

Surface ligands play critical roles in determining the surface properties of metal clusters. However, modulating the properties and controlling the surface structure of clusters through surface-capping-agent displacement is challenging. Herein, [Ag14 (SPh(CF3 )2 )12 (PPh3 )4 (DMF)4 ] (Ag14 -DMF; DMF=N,N-dimethylformamide), with weakly coordinated DMF ligands on surface silver sites, was synthesized by a mixed-ligands strategy. Owing to the high surface reactivity of Ag14 -DMF, the surface ligands are labile, easily dissociated or exchanged by other ligands. Based on the enhanced surface reactivity, easy modulation of the optical properties of Ag14 by reversible "on-off" DMF ligation was realized. When chiral amines were introduced to as-prepared products, all eight surface ligands were replaced by amines and the racemic Ag14 clusters were converted to optically pure homochiral Ag14 clusters as evidenced by circular dichroism (CD) activity and single-crystal X-ray diffraction (SCXRD). This work provides a new insight into modulation of the optical properties of metal clusters and atomically precise homochiral clusters for specific applications are obtained.

7.
Angew Chem Int Ed Engl ; 60(41): 22411-22416, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34347339

RESUMEN

We report the synthesis and structure of tertiary chiral nanostructures with 100 % optical purity. A novel synthetic strategy, using chiral reducing agent, R and S-BINAPCuBH4 (BINAP is 2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl), is developed to access to atomically precise, intrinsically chiral [Au7 Ag6 Cu2 (R- or S-BINAP)3 (SCH2 Ph)6 ]SbF6 nanoclusters in one-pot synthesis. The clusters represent the first tri-metallic superatoms with inherent chirality and fair stability. Both metal distribution (primary) and ligand arrangement (secondary) of the enantiomers exhibited perfect mirror images, and unprecedentedly, the self-assembly driven by the C-H⋅⋅⋅F interaction between the phenyl groups of the superatom moieties and SbF6 - anions induced the formation of bio-mimic left- and right-handed helices, achieving the tertiary chiral nanostructures. DFT calculations revealed the connections between the molecular details and chiral optical activity.

8.
Angew Chem Int Ed Engl ; 60(7): 3752-3758, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33104265

RESUMEN

Deciphering the molecular pictures of the multi-component and non-periodic organic-inorganic interlayer is a grand technical challenge. Here we show that the atomic arrangement of hybrid surface ligands on metal nanoparticles can be precisely quantified through comprehensive characterization of a novel gold cluster, Au44 (i Pr2 -bimy)9 (PA)6 Br8 (1), which features three types of ligands, namely, carbene (1,3-diisopropylbenzimidazolin-2-ylidene, i Pr2 -bimy), alkynyl (phenylacetylide, PA), and halide (Br), respectively. The delicately balanced stereochemical effects and bonding capabilities of the three ligands give rise to peculiar geometrical and electronic structures. Remarkably, despite its complex and highly distorted surface structure, cluster 1 exhibits unusual catalytic properties and yet it is highly stable, both chemically and thermally. Moreover, rich reactive sites on the cluster surface raise the prospect of bio-compatibility (as it can be functionalized to yield water-soluble derivatives) and bio-applications.

9.
Chemistry ; 26(38): 8465-8470, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32302026

RESUMEN

The conventional synthetic methodology for atomically precise gold nanoclusters by using reduction in solution offers only the thermodynamically most stable nanoclusters. Herein, a solubility-driven isolation strategy is reported to access a metastable gold cluster. The cluster, with the composition of [Au9 (PPh3 )8 ]+ (1), displays an unusual, nearly perfect body-centered cubic (bcc) structure. As revealed by ESI-MS and UV/Vis measurements, the cluster is metastable in solution and converts to the well-known [Au11 (PPh3 )8 Cl2 ]+ (2) within just 90 min. DFT calculations revealed that although both 1 and 2 are eight-electron superatoms, there is a driving force to convert 1 to 2 as shown by the increased cohesion and larger HOMO-LUMO energy gap of 2. The isolation and crystallization of the metastable gold cluster were achieved in a biphasic reaction system in which reduction of gold precursors and crystallization of 1 took place concurrently. This synthetic protocol represents a successful strategy for investigations of other metastable species in metal nanocluster chemistry.

10.
Inorg Chem ; 59(13): 8836-8845, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32551557

RESUMEN

Three face-centered-cubic (fcc) silver clusters-namely, [Ag14(LA)2(HLA)4(PPh3)8]2- (1), [Ag14(HLA)6(PPh3)8] (2), and [Ag14(NLA)6(PPh3)8] (3)-that are coprotected by lipoic acid (or its amide derivative) and phosphine ligands have been synthesized and structurally characterized (HLA = (±)-α-lipoic acid, LA = (±)-α-lipoate, and NLA = d,l-6,8-thioctamide). These clusters possess two superatomic electrons (the Jellium model), in harmony with a bonding octahedral Ag6 core capped with 8 Ag atoms. Alternatively, the metal framework of 1-3 can be described as adopting a face-centered cubic (fcc) structure elongated along one of the 3-fold axes. The 12 S atoms from the six bioligands bridge the 12 edges of the (fcc) cube, forming a distorted icosahedron. The counterions, solvent or guest molecules play an important role in dictating the crystal lattices of the products. This is the first report of atom-precise structures of Ag-lipoic acid (or its derivatives) clusters, paving the way for further study of structure-property relationships of these bioligand protected metal nanoclusters. Photoluminescence was observed for cluster 3 with complex temperature-dependent emission patterns and efficiencies.

11.
J Am Chem Soc ; 141(30): 11905-11911, 2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31294970

RESUMEN

No formation of bulk silver hydride has been reported. Until very recently, only a few silver nanoclusters containing hydrides have been successfully prepared. However, due to the lack of effective techniques and also poor stability of hydride-containing Ag nanoclusters, the identification of hydrides' location within Ag nanoclusters is challenging and not yet achieved, although some successes have been reported on clusters of several Ag atoms. In this work, we report a detailed structural and spectroscopic characterization of the [Ag40(DMBT)24(PPh3)8H12]2+ (Ag40H12) cluster (DMBT = 2,4-dimethylbenzenethiol). The metal framework consists of three concentric shells of Ag8@Ag24@Ag8, which can be described as (ν1-cube)@(truncated-ν3-octahedron)@(ν2-cube), respectively. The presence of 12 hydrides in each cluster was systematically identified by various techniques. Based on a detailed analysis of the structural features and 1H and 2H NMR spectra, the positions of the 12 hydrides were determined to be residing on the 12 edges of the cubic core. As a result, the electron count of the Ag40 cluster is a two-electron superatomic system instead of a 14-electron system. Moreover, based on our DFT calculations and experimental probes, it was demonstrated that the 12 hydrides play a crucial role in stabilizing both the electronic and geometric structure of the Ag40H12 cluster. The successful synthesis of stable hydride-containing Ag nanoclusters and the identification of hydride positions are expected to simulate research attention on both synthesis and application of hydride-containing Ag nanomaterials.

12.
Acc Chem Res ; 51(12): 3084-3093, 2018 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-30433756

RESUMEN

A comprehensive understanding of chemical bonding and reactions at the surface of nanomaterials is of great importance in the rational design of their functional properties and applications. With the rapid development in cluster science, it has become clear that atomically precise metal clusters represent ideal models for resolving various important and/or unsolved issues related to surface science. This Account highlights our recent efforts on the fabrication of ligand-stabilized coinage nanoclusters with atomic precision from the viewpoint of surface coordination chemistry in particular. The successful synthesis of a large variety of metal clusters in our group has greatly benefitted from the development of an effective amine-assisted NaBH4 reduction method. First discussed in this Account is how the introduction of amines in the synthetic protocol enhances the long-term stability and high-yield production of Ag/Cu-based metals in air. Such a method allows the utilization of different organic ligands as surface stabilizing agents to manipulate both the core and surface structures of metal nanoclusters, helping to understand the role of surface ligands in determining the structures of metal nanoclusters. The coordination chemistry of ligands used in the synthesis of metal nanoclusters is crucial in determining their overall shape, metal arrangement, surface ligand binding structure, chirality and also metal exposure. Detailed discussions are given in the following four different systems: (1) The co-use of phosphines and thiolates with rich coordination structures (2 to 4-coordinated) helps to control the formation of a sequence of Ag nanoclusters with a near-perfectly cubic shape; (2) The metal arrangements and surface structures of AuCu clusters highly depend on metal precursors and counter cations used in the synthesis; (3) Metal clusters with intrinsic chirality are readily prepared by introducing chiral ligands or counterions, making it possible to obtain optically active enantiomers and understand the origin of chirality of metal nanoclusters; (4) The variation of metal exposure of the inner metal core of metal nanocluster can be controlled by the surface ligand coordination structure. Such capabilities to manipulate the surface structure of metal nanoclusters allow the creation of model systems for investigating the structure-reactivity relationship of metal nanomaterials. Several important examples are then discussed to highlight the importance of ligand coordination chemistry in tuning the surface reactivity and catalysis of metal nanoclusters. For example, bulky thiolates on Ag are demonstrated to be more labile than small thiolates for making metal nanoclusters with both enhanced ligand exchange capability and catalysis. Alkynyl ligands can be thermally released from metal nanoclusters more easily than thiolates and halides while maintaining the overall structure, thereby serving as ideal systems for understanding the promoting effect of surface stabilizers on catalysis. Finally, we provide a perspective on the principles of surface coordination chemistry of metal nanoclusters and their potential applications with regards to catalysis of protected metal clusters.

13.
Gynecol Oncol ; 153(2): 343-355, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30898391

RESUMEN

OBJECTIVE: Genome-wide association studies (GWASs) for epithelial ovarian cancer (EOC) have focused largely on populations of European ancestry. We aimed to identify common germline variants associated with EOC risk in Asian women. METHODS: Genotyping was performed as part of the OncoArray project. Samples with >60% Asian ancestry were included in the analysis. Genotyping was performed on 533,631 SNPs in 3238 Asian subjects diagnosed with invasive or borderline EOC and 4083 unaffected controls. After imputation, genotypes were available for 11,595,112 SNPs to identify associations. RESULTS: At chromosome 6p25.2, SNP rs7748275 was associated with risk of serous EOC (odds ratio [OR] = 1.34, P = 8.7 × 10-9) and high-grade serous EOC (HGSOC) (OR = 1.34, P = 4.3 × 10-9). SNP rs6902488 at 6p25.2 (r2 = 0.97 with rs7748275) lies in an active enhancer and is predicted to impact binding of STAT3, P300 and ELF1. We identified additional risk loci with low Bayesian false discovery probability (BFDP) scores, indicating they are likely to be true risk associations (BFDP <10%). At chromosome 20q11.22, rs74272064 was associated with HGSOC risk (OR = 1.27, P = 9.0 × 10-8). Overall EOC risk was associated with rs10260419 at chromosome 7p21.3 (OR = 1.33, P = 1.2 × 10-7) and rs74917072 at chromosome 2q37.3 (OR = 1.25, P = 4.7 × 10-7). At 2q37.3, expression quantitative trait locus analysis in 404 HGSOC tissues identified ESPNL as a putative candidate susceptibility gene (P = 1.2 × 10-7). CONCLUSION: While some risk loci were shared between East Asian and European populations, others were population-specific, indicating that the landscape of EOC risk in Asian women has both shared and unique features compared to women of European ancestry.


Asunto(s)
Carcinoma Epitelial de Ovario/genética , Pueblo Asiatico/genética , Secuencia de Bases , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
14.
Inorg Chem ; 58(1): 259-264, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30582690

RESUMEN

An ab initio one-pot synthesis of the bimetallic clusters [Au nAg44- n(SC6H3F2)30]4- (abbreviated (AuAg)44; n ≤ 12) is reported. The mixed-metal (AuAg)44 clusters, synthesized with different reactant Au/Ag ratios, exhibit a fractal-like distribution, suggesting that nucleation of the icosahedral core is a fractal growth process. X-ray crystallographic studies provided unambiguous evidence that the doped Au atoms occupy the icosahedral sites and the maximal doping is 12. The number of Au atoms ( n) in [Au nAg44- n(SR)30]4- (SR = SC6H3F2) can be continuously tuned from 0 to 12. A three-way correspondence between single-crystal structure, MS, and UV-vis is established, thereby facilitating future identification (finger-printing) of the alloy [Au nAg44- n(SR)30]4- clusters. The temperature, solvent, and temporal effects in the synthesis were also investigated.

15.
Angew Chem Int Ed Engl ; 58(49): 17731-17735, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31517436

RESUMEN

Surface organic ligands play a critical role in stabilizing atomically precise metal nanoclusters in solutions. However, it is still challenging to prepare highly robust ligated metal nanoclusters that are surface-active for liquid-phase catalysis without any pre-treatment. Now, an N-heterocyclic carbene-stabilized Au25 nanocluster with high thermal and air stabilities is presented as a homogenous catalyst for cycloisomerization of alkynyl amines to indoles. The nanocluster, characterized as [Au25 (i Pr2 -bimy)10 Br7 ]2+ (i Pr2 -bimy=1,3-diisopropylbenzimidazolin-2-ylidene) (1), was synthesized by direct reduction of AuSMe2 Cl and i Pr2 -bimyAuBr with NaBH4 in one pot. X-ray crystallization analysis revealed that the cluster comprises two centered Au13 icosahedra sharing a vertex. Cluster 1 is highly stable and can survive in solution at 80 °C for 12 h, which is superior to Au25 nanoclusters passivated with phosphines or thiols. DFT computations reveal the origins of both electronic and thermal stability of 1 and point to the probable catalytic sites. This work provides new insights into the bonding capability of N-heterocyclic carbene to Au in a cluster, and offers an opportunity to probe the catalytic mechanism at the atomic level.

16.
Angew Chem Int Ed Engl ; 58(3): 835-839, 2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-30406951

RESUMEN

An effective strategy is developed to synthesize high-nuclearity Cu clusters, [Cu53 (RCOO)10 (C≡CtBu)20 Cl2 H18 ]+ (Cu53 ), which is the largest CuI /Cu0 cluster reported to date. Cu powder and Ph2 SiH2 are employed as the reducing agents in the synthesis. As revealed by single-crystal diffraction, Cu53 is arranged as a four-concentric-shell Cu3 @Cu10 Cl2 @Cu20 @Cu20 structure, possessing an atomic arrangement of concentric M12 icosahedral and M20 dodecahedral shells which popularly occurs in Au/Ag nanoclusters. Surprisingly, Cu53 can be dissolved in diethyl ether and spin coated to form uniform nanoclusters film on organolead halide perovskite. The cluster film can subsequently be converted into high-quality CuI film via in situ iodination at room temperature. The as-fabricated CuI film is an excellent hole-transport layer for fabricating highly stable CuI-based perovskite solar cells (PSCs) with 14.3 % of efficiency.

17.
Angew Chem Int Ed Engl ; 57(13): 3421-3425, 2018 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-29405573

RESUMEN

A general method, using mixed ligands (here diphosphines and thiolates) is devised to turn an achiral metal cluster, Au13 Cu2 , into an enantiomeric pair by breaking (lowering) the overall molecular symmetry with the ligands. Using an achiral diphosphine, a racemic [Au13 Cu2 (DPPP)3 (SPy)6 ]+ was prepared which crystallizes in centrosymmetric space groups. Using chiral diphosphines, enantioselective synthesis of an optically pure, enantiomeric pair of [Au13 Cu2 ((2r,4r)/(2s,4s)-BDPP)3 (SPy)6 ]+ was achieved in one pot. Their circular dichroism (CD) spectra give perfect mirror images in the range of 250-500 nm with maximum anisotropy factors of 1.2×10-3 . DFT calculations provided good correlations with the observed CD spectra of the enantiomers and, more importantly, revealed the origin of the chirality. Racemization studies show high stability (no racemization at 70 °C) of these chiral nanoclusters, which hold great promise in applications such as asymmetry catalysis.

18.
J Am Chem Soc ; 139(45): 16113-16116, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29053274

RESUMEN

A general strategy, using mixed ligands, is utilized to synthesize atomically precise, intrinsically chiral nanocluster [Ag78(DPPP)6(SR)42] (Ag78) where DPPP is the achiral 1,3-bis(diphenyphosphino)propane and SR = SPhCF3. Ag78 crystallizes as racemates in a centric space group. Using chiral diphosphines BDPP = 2,4-bis(diphenylphosphino)pentane, the enantiomeric pair [Ag78(R/S-BDPP)6(SR)42] can be prepared with 100% optical purity. The chiral diphosphines gives rise to, separately, two asymmetric surface coordination motifs composed of tetrahedral R3PAg(SR)3 moieties. The flexible nature of C-C-C angles between the two phosphorus atoms restricts the relative orientation of the tetrahedral R3PAg(SR)3 moieties, thereby resulting in the enantiomeric selection of the intrinsic chiral metal core. This proof-of-concept strategy raises the prospect of enantioselectively synthesizing optically pure, atomically precise chiral noble metal nanoclusters for specific applications.

19.
J Am Chem Soc ; 139(38): 13288-13291, 2017 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-28892364

RESUMEN

Surface ligands play important roles in controlling the size and shape of metal nanoparticles and their surface properties. In this work, we demonstrate that the use of bulky thiolate ligands, along with halides, as the surface capping agent promotes the formation of plasmonic multiple-twinned Ag nanoparticles with high surface reactivities. The title nanocluster [Ag141X12(S-Adm)40]3+ (where X = Cl, Br, I; S-Adm = 1-adamantanethiolate) has a multiple-shell structure with an Ag71 core protected by a shell of Ag70X12(S-Adm)40. The Ag71 core can be considered as 20 frequency-two Ag10 tetrahedra fused together with a dislocation that resembles multiple-twinning in nanoparticles. The nanocluster has a strong plasmonic absorption band at 460 nm. Because of the bulkiness of S-Adm, the nanocluster has a low surface thiolate coverage and thus unusually high surface reactivities toward exchange reactions with different ligands, including halides, phenylacetylene and thiols. The cluster can be made water-soluble by metathesis with water-soluble thiols, thereby creating new functionalities for potential bioapplications.

20.
J Am Chem Soc ; 139(1): 31-34, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-27992210

RESUMEN

Demonstrated herein are the preparation and crystallographic characterization of the family of fcc silver nanoclusters from Nichol's cube to Rubik's cube and beyond via ligand-control (thiolates and phosphines in this case). The basic building block is our previously reported fcc cluster [Ag14(SPhF2)12(PPh3)8] (1). The metal frameworks of [Ag38(SPhF2)26(PR'3)8] (22) and [Ag63(SPhF2)36(PR'3)8]+ (23), where HSPhF2 = 3,4-difluorothiophenol and R' = alkyl/aryl, are composed of 2 × 2 = 4 and 2 × 2 × 2 = 8 metal cubes of 1, respectively. All serial clusters share similar surface structural features. The thiolate ligands cap the six faces and the 12 edges of the cube (or half cube) while the phosphine ligands are terminally bonded to its eight corners. On the basis of the analysis of the crystal structures of 1, 22, and 23, we predict the next "cube of cubes" to be Ag172(SR)72(PR'3)8] (33), in the evolution of growth of this cluster sequence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA