Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Med Virol ; 96(3): e29552, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38511598

RESUMEN

Ivermectin has broad-spectrum antiviral activities. Despite the failure in clinical application of COVID-19, it can serve as a lead compound for the development of more effective broad-spectrum antivirals, for which a better understanding of its antiviral mechanisms is essential. We thus searched for potential novel targets of ivermectin in host cells by label-free thermal proteomic profiling using Huh-7 cells. Inositol monophosphatase (IMPase) was found among the proteins with shifted thermal stability by ivermectin. Ivermectin could inhibit IMPase activity and reduce cellular myo-inositol and phosphatidylinositol-4-phosphate levels. On the other hand, inositol could impair the antiviral activity of ivermectin and lithium, an IMPase inhibitor with known antiviral activity. As phosphatidylinositol phosphate is crucial for the replication of many RNA viruses, inhibition of cellular myo-inositol biosynthesis may be an important antiviral mechanism of ivermectin. Hence, inhibition of IMPase could serve as a potential target for broad-spectrum antiviral development.


Asunto(s)
5'-Nucleotidasa , Ivermectina , Monoéster Fosfórico Hidrolasas , Humanos , Ivermectina/farmacología , Proteómica , Inositol/farmacología , Antivirales/farmacología
2.
Arch Virol ; 169(8): 169, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078431

RESUMEN

Enteroviruses cause viral diseases that are harmful to children. Hand, foot, and mouth disease (HFMD) with neurological complications is mainly caused by enterovirus 71 (EV71). Despite its clinical importance, there is no effective antiviral drug against EV71. However, several repurposed drugs have been shown to have antiviral activity against related viruses. Treatments with single drugs and two-drug combinations were performed in vitro to assess anti-EV71 activity. Three repurposed drug candidates with broad-spectrum antiviral activity were found to demonstrate potent anti-EV71 activity: prochlorperazine, niclosamide, and itraconazole. To improve antiviral activity, combinations of two drugs were tested. Niclosamide and itraconazole showed synergistic antiviral activity in Vero cells, whereas combinations of niclosamide-prochlorperazine and itraconazole-prochlorperazine showed only additive effects. Furthermore, the combination of itraconazole and prochlorperazine showed an additive effect in neuroblastoma cells. Itraconazole and prochlorperazine exert their antiviral activities by inhibiting Akt phosphorylation. Repurposing of drugs can provide a treatment solution for HFMD, and our data suggest that combining these drugs can enhance that efficacy.


Asunto(s)
Antivirales , Reposicionamiento de Medicamentos , Sinergismo Farmacológico , Enterovirus Humano A , Itraconazol , Antivirales/farmacología , Enterovirus Humano A/efectos de los fármacos , Enterovirus Humano A/fisiología , Chlorocebus aethiops , Animales , Células Vero , Itraconazol/farmacología , Humanos , Niclosamida/farmacología , Enfermedad de Boca, Mano y Pie/virología , Enfermedad de Boca, Mano y Pie/tratamiento farmacológico
3.
Arch Virol ; 166(9): 2579-2584, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34170427

RESUMEN

Airway microparticles (MPs) have been shown previously to inhibit influenza virus by trapping virions on their surface through their surface viral receptor. It was hypothesized that airway MPs may carry most of the epithelial cell surface molecules, including receptors for respiratory viruses, and may be able to inhibit various respiratory viruses. We show here that MPs from human bronchoalveolar lavage (BAL) can inhibit respiratory syncytial virus (RSV). Those MPs stained positive for the RSV receptor, CX3CR1. Furthermore, incubating the MPs with a monoclonal antibody against CX3CR1 reduced the anti-RSV activity. These data indicate that MPs can contribute to respiratory innate antiviral defense.


Asunto(s)
Antivirales/uso terapéutico , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Sistema Respiratorio/virología , Animales , Anexina A5 , Anticuerpos Monoclonales , Anticuerpos Antivirales/inmunología , Receptor 1 de Quimiocinas CX3C , Micropartículas Derivadas de Células , Células Epiteliales/inmunología , Células Epiteliales/virología , Humanos , Ratones , Virus Sincitial Respiratorio Humano/inmunología
4.
Arch Virol ; 165(5): 1151-1161, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32227307

RESUMEN

Influenza A virus (IAV) depends on the metabolism of its cellular host to provide energy and essential factors, including lipids, for viral replication. Previous studies have shown that fatty acids (FAs) play an important role in IAV replication and that inhibition of FA biosynthesis can diminish viral replication. However, cellular lipids can either be synthesized intracellularly or be imported from the extracellular environment. Interfering with FA import mechanisms may reduce the cellular lipid content and inhibit IAV replication. To test this hypothesis, MDCK and Detroit 562 cells were infected with IAV followed by exposure to palmitic acid and inhibitors of FA import. Replication of IAV significantly increased when infected cells were supplied with palmitic acid. This enhancement could be reduced by adding an FA import inhibitor. The addition of palmitic acid significantly increased the cellular lipid content, and this increased level was reduced by treatment with an FA import inhibitor. These results show that reducing the cellular lipid level might be an approach for IAV therapy.


Asunto(s)
Ácidos Grasos/metabolismo , Virus de la Influenza A/crecimiento & desarrollo , Replicación Viral , Animales , Línea Celular , Perros , Ácidos Grasos/antagonistas & inhibidores , Humanos
5.
Arch Virol ; 164(10): 2479-2491, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31321584

RESUMEN

Codon usage is biased in most species, and the pattern of codon usage bias is specific to each species or group of closely related species. Although viruses use the host translational machinery for synthesis of their proteins, their codon usage patterns do not match those of their host. Viral codon usage is determined by a complex interplay of mutational bias, genome composition constraints, translational adaptation to the host, and host cellular innate defense. The codon usage of parvoviruses was previously shown not to be strongly biased and selective pressure was found to be a dominating factor driving codon usage. The family Parvoviridae includes the genus Dependoparvovirus, some of the members of which require a helper virus to complete their replication cycle, whereas the rest of the family can replicate without the need for helper viruses. Here, we show that difference in the replication strategy of these viruses may be an important factor determining viral codon usage. Hierarchical clustering and principal component analysis revealed that the codon usage pattern of adeno-associated viruses (AAVs) of the genus Dependoparvovirus is distinct from that of members of the other genera of vertebrate parvoviruses, and even from that of independent viruses of the genus Dependoparvovirus. Furthermore, the codon usage of human AAVs was found to be similar to that of some human adenoviruses in hierarchical clustering and principal component analysis. This suggests that the codon usage of AAVs is different from that of other parvoviruses because of their distinctive replication strategy and that their codon usage is probably driven by forces similar to those that shaped the codon usage pattern of their helper viruses.


Asunto(s)
Codón , Parvovirus/crecimiento & desarrollo , Parvovirus/genética , Replicación Viral , Animales , Humanos
6.
Arch Virol ; 163(10): 2883-2888, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29987380

RESUMEN

RNA viruses are classified by their genome polarity and replication strategies. Nucleotide composition and codon usage differ among virus groups, for instance positive-sense RNA (+ssRNA) viruses have higher GC-content than the other RNA virus groups. Codon usage of +ssRNA viruses is closer to humans showing significantly higher codon adaptation index (CAI) than those of negative-sense RNA (-ssRNA), double stranded RNA (dsRNA) and retroviruses. Ambisense viruses have high CAI comparable to that of +ssRNA virus despite their lower GC content, whereas dsRNA viruses have the lowest CAI. This may provide a benefit for +ssRNA viruses as their genomes are used as mRNA. However, analyses for influence of nucleotide composition on codon usage did not show a difference between +ssRNA and -ssRNA viruses. This suggests that genome composition and hence mutational pressure remain the major pressure causing the differences in codon usage among RNA viruses with different genome types.


Asunto(s)
Composición de Base/genética , Genoma Viral/genética , Virus ARN/genética , ARN Viral/genética , Humanos , ARN Mensajero/genética
7.
Arch Virol ; 163(2): 337-348, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29067529

RESUMEN

Codon usage bias can be a result of either mutational bias or selection for translational efficiency and/or accuracy. Previous data has suggested that nucleotide composition constraint was the main determinant of HIV codon usage, and that nucleotide composition and codon usage were different between the regulatory genes, tat and rev, and other viral genes. It is not clear whether translational selection contributed to the codon usage difference and how nucleotide composition and translational selection interact to determine HIV codon usage. In this study, a model of codon bias due to GC composition with modification for the A-rich third codon position was used to calculate predicted HIV codon frequencies based on its nucleotide composition. The predicted codon usage of each gene was compared with the actual codon frequency. The predicted codon usage based on GC composition matched well with the actual codon frequencies for the structural genes (gag, pol and env). However, the codon usage of the regulatory genes (tat and rev) could not be predicted. Codon usage of the regulatory genes was also relatively unbiased showing the highest effective number of codons (ENC). Moreover, the codon adaptation index (CAI) of the regulatory genes showed better adaptation to human codons when compared to other HIV genes. Therefore, the early expressed genes responsible for regulation of the replication cycle, tat and rev, were more similar to humans in terms of codon usage and GC content than other HIV genes. This may help these genes to be expressed efficiently during the early stages of infection.


Asunto(s)
Composición de Base , Codón/genética , Infecciones por VIH/virología , VIH-1/genética , Nucleótidos/genética , Proteínas Virales/genética , VIH-1/metabolismo , Humanos , Mutación , Proteínas Virales/metabolismo
8.
J Virol ; 90(9): 4637-4646, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26912622

RESUMEN

UNLABELLED: Human bronchoalveolar fluid is known to have anti-influenza activity. It is believed to be a frontline innate defense against the virus. Several antiviral factors, including surfactant protein D, are believed to contribute to the activity. The 2009 pandemic H1N1 influenza virus was previously shown to be less sensitive to surfactant protein D. Nevertheless, whether different influenza virus strains have different sensitivities to the overall anti-influenza activity of human bronchoalveolar fluid was not known. We compared the sensitivities of 2009 pandemic H1N1, seasonal H1N1, and seasonal H3N2 influenza virus strains to inhibition by human bronchoalveolar lavage (BAL) fluid. The pandemic and seasonal H1N1 strains showed lower sensitivity to human BAL fluid than the H3N2 strains. The BAL fluid anti-influenza activity could be enhanced by oseltamivir, indicating that the viral neuraminidase (NA) activity could provide resistance to the antiviral defense. In accordance with this finding, the BAL fluid anti-influenza activity was found to be sensitive to sialidase. The oseltamivir resistance mutation H275Y rendered the pandemic H1N1 virus but not the seasonal H1N1 virus more sensitive to BAL fluid. Since only the seasonal H1N1 but not the pandemic H1N1 had compensatory mutations that allowed oseltamivir-resistant strains to maintain NA enzymatic activity and transmission fitness, the resistance to BAL fluid of the drug-resistant seasonal H1N1 virus might play a role in viral fitness. IMPORTANCE: Human airway secretion contains anti-influenza activity. Different influenza strains may vary in their susceptibilities to this antiviral activity. Here we show that the 2009 pandemic and seasonal H1N1 influenza viruses were less sensitive to human bronchoalveolar lavage (BAL) fluid than H3N2 seasonal influenza virus. The resistance to the pulmonary innate antiviral activity of the pandemic virus was determined by its neuraminidase (NA) gene, and it was shown that the NA inhibitor resistance mutation H275Y abolished this resistance of the pandemic H1N1 but not the seasonal H1N1 virus, which had compensatory mutations that maintained the fitness of drug-resistant strains. Therefore, the innate respiratory tract defense may be a barrier against NA inhibitor-resistant mutants, and evasion of this defense may play a role in the emergence and spread of drug-resistant strains.


Asunto(s)
Líquido del Lavado Bronquioalveolar/inmunología , Resistencia a la Enfermedad/inmunología , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/inmunología , Gripe Humana/virología , Neuraminidasa/metabolismo , Proteínas Virales/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antivirales/farmacología , Modelos Animales de Enfermedad , Farmacorresistencia Viral , Femenino , Hurones , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Masculino , Persona de Mediana Edad , Oseltamivir/farmacología , Carga Viral
9.
Arch Virol ; 162(8): 2231-2237, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28361289

RESUMEN

It is commonly believed that exposure to low temperature increases susceptibility to viral infection in the human respiratory tract, but a molecular mechanism supporting this belief has yet to be discovered. In this study, we investigated the effect of low temperature on viral infection and innate defense in cell lines from the human respiratory tract and found that interferon-induced antiviral responses were impaired at low temperatures. Cells maintained at 25°C and 33°C expressed lower levels of myxovirus resistance protein 1 (MxA) and 2'5'-oligoadenylate synthetase 1 (OAS1) mRNAs when compared to cells maintained at 37°C after infection by seasonal influenza viruses. Exogenous ß-interferon treatment reduced the viral replication at 37°C, but not at 25°C. Our results suggest that the impairment of interferon-induced antiviral responses by low temperature is one of several mechanisms that could explain an increase in host susceptibility to respiratory viruses after exposure to cold temperature.


Asunto(s)
Antivirales/farmacología , Frío/efectos adversos , Virus de la Influenza A/patogenicidad , Interferón beta/farmacología , Replicación Viral/efectos de los fármacos , 2',5'-Oligoadenilato Sintetasa/metabolismo , Células HEK293 , Humanos , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/fisiología , Gripe Humana/virología , Proteínas de Resistencia a Mixovirus/metabolismo
10.
Virol J ; 13: 90, 2016 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-27260303

RESUMEN

BACKGROUND: Transportation into the host cell nucleus is crucial for replication and transcription of influenza virus. The classical nuclear import is regulated by specific cellular factor, importin-α. Seven isoforms of importin-α have been identified in human. The preference of importin-α3 of avian influenza virus and -α7 isoform of human strains during replication in human cells was previously identified. In addition, both avian and human influenza viruses were shown to use importin-α1 isoform for their replication. FINDING: The mRNA levels of importin-α1, -α3, and -α7 isoforms in human respiratory tract was determined by real-time RT-PCR. The results indicate that mRNA level of importin-α7 was significantly higher than that of importin-α1 (p-value < 0.0001) and importin-α3 (p-value < 0.0001) isoforms in human nasal mucosa while importin-α1 was detected as the highest expression importin-α isoform in lung tissues. CONCLUSIONS: These results may explain the preference of importin-α7 isoforms in seasonal influenza viruses in human upper respiratory tract and may suggest a selective pressure toward importin-α7 in human respiratory tract infection of an avian virus.


Asunto(s)
Mucosa Nasal/fisiología , Isoformas de Proteínas/biosíntesis , alfa Carioferinas/biosíntesis , Adaptación Biológica , Adulto , Femenino , Humanos , Virus de la Influenza A/genética , Virus de la Influenza A/fisiología , Pulmón/fisiología , Masculino , Persona de Mediana Edad , Isoformas de Proteínas/genética , ARN Mensajero/análisis , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Selección Genética , Replicación Viral , Adulto Joven , alfa Carioferinas/genética
11.
Arch Virol ; 161(3): 649-56, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26671828

RESUMEN

It was shown previously that human saliva has higher antiviral activity against human influenza viruses than against H5N1 highly pathogenic avian influenza viruses, and that the major anti-influenza activity was associated with sialic-acid-containing molecules. To further characterize the differential susceptibility to saliva among influenza viruses, seasonal influenza A and B virus, pandemic H1N1 virus, and 15 subtypes of avian influenza virus were tested for their susceptibility to human and chicken saliva. Human saliva showed higher hemagglutination inhibition (HI) and neutralization (NT) titers against seasonal influenza A virus and the pandemic H1N1 viruses than against influenza B virus and most avian influenza viruses, except for H9N2 and H12N9 avian influenza viruses, which showed high HI and NT titers. To understand the nature of sialic-acid-containing anti-influenza factors in human saliva, α2,3- and α2,6-linked sialic acid was measured in human saliva samples using a lectin binding and dot blot assay. α2,6-linked sialic acid was found to be more abundant than α2,3-linked sialic acid, and a seasonal H1N1 influenza virus bound more efficiently to human saliva than an H5N1 virus in a dot blot analysis. These data indicated that human saliva contains the sialic acid type corresponding to the binding preference of seasonal influenza viruses.


Asunto(s)
Antivirales/química , Antivirales/metabolismo , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza B/efectos de los fármacos , Ácido N-Acetilneuramínico/análisis , Saliva/química , Saliva/metabolismo , Animales , Pollos , Humanos , Virus de la Influenza A/fisiología , Virus de la Influenza B/fisiología , Gripe Aviar
12.
Arch Virol ; 160(2): 409-15, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25504159

RESUMEN

N-linked glycosylation of the influenza virus hemagglutinin (HA) protein plays crucial roles in HA structure and function, evasion of neutralizing antibodies, and susceptibility to innate soluble antiviral factors. The N-linked glycosylation site at position 158 of highly pathogenic H5N1 virus was previously shown to affect viral receptor-binding preference. H5N1 viruses show heterogeneity with respect to the presence of this glycosylation site. Clade 1 viruses that caused outbreaks in Southeast Asia in 2004 contained this glycosylation site, while the site is absent in the more recent clade 2 viruses. Here, we show that elimination of this glycosylation site increases viral virulence in mice. The mutant lacking the glycosylation site at position 158 showed unaltered growth kinetics in vitro and a comparable level of sensitivity to a major antiviral protein found in respiratory secretions, surfactant protein D (SP-D).


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/virología , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Animales , Perros , Femenino , Glicosilación , Interacciones Huésped-Patógeno , Evasión Inmune/inmunología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Mutación , Carga Viral , Factores de Virulencia/genética , Replicación Viral/fisiología
13.
J Med Virol ; 86(5): 872-8, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24214532

RESUMEN

Oral cavity can be an entry site of influenza virus and saliva is known to contain innate soluble anti-influenza factors. Influenza strains were shown to vary in their susceptibility to those antiviral factors. Whether the susceptibility to the saliva antiviral factors plays any role in the host species specificity of influenza viruses is not known. In this study, the antiviral activity of human and chicken saliva against human and the H5N1 avian influenza viruses were investigated by hemagglutination inhibition (HI) and neutralization (NT) assays. In comparison to human influenza viruses, H5N1 isolates showed reduced susceptibility to human saliva as measured by HI and NT assays. Interestingly, an H5N1 isolate that bind to both α2,3- and α2,6-linked sialic acid showed much higher HI titers with human saliva, suggesting that the susceptibility profile was linked to the receptor-binding preference and the presence of α2,6-linked sialic in human saliva. On the other hand, the H5N1 isolates showed increased HI titers but reduced NT titers to chicken saliva as compared to human influenza isolates. The human salivary antiviral components were characterized by testing the sensitivity to heat, receptor destroying enzyme (RDE), CaCl2/EDTA dependence, and inhibition by mannan, and shown to be α- and γ-inhibitors. These data suggest that the H5N1 HPAI influenza virus had distinctive susceptibility patterns to human and chicken saliva, which may play some roles in its infectivity and transmissibility in these hosts.


Asunto(s)
Viabilidad Microbiana/efectos de los fármacos , Orthomyxoviridae/efectos de los fármacos , Orthomyxoviridae/fisiología , Saliva/química , Saliva/inmunología , Animales , Pollos , Femenino , Pruebas de Inhibición de Hemaglutinación , Humanos , Pruebas de Neutralización , Orthomyxoviridae/inmunología , Carga Viral
14.
Adv Virol ; 2024: 5691673, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38379638

RESUMEN

Hemagglutinin (HA) is the major envelope glycoprotein and antigen on the surface of influenza virions. The glycoprotein comprises a globular head and a stalk region. While immunodominant epitopes on influenza HA head are highly variable, the stalk domain is conserved. The variability of the HA head causes the antigenic drift that made the requirement of annual update of vaccine strains. Induction of antibody against the stalk domain has been proposed as an approach for a broadly protective influenza vaccine strategy. Sequential exposure to influenza strains with highly diverse HA heads but conserved stalks have been shown to induce antibody to the low immunogenic stalk domain. Here, we tested this approach by using old influenza vaccine strains that are decades apart in evolution. Inactivated whole virion vaccine of influenza A/Puerto Rico/8/1934, A/USSR/92/1977, and A/Thailand/102/2009 (H1N1) was sequentially immunized into BALB/c mice in comparison to immunization using single strain (A/Thailand/102/2009 (H1N1)). The sequentially immunized mice developed higher levels of binding antibody to the stalk domain. These suggested that using old vaccine strains in sequential vaccination may be a possible approach to induce antibody to the conserved stalk domain.

15.
Arch Virol ; 158(6): 1151-7, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23307364

RESUMEN

We have generated a temperature-sensitive (ts) mutant from a human isolate of the H5N1 avian influenza virus by classical adaptation in cell culture. After 20 passages at low temperature, the virus showed a ts phenotype. The ts mutant also showed an attenuated phenotype after nasal inoculation in mice. Using reverse genetics, we generated reassortants carrying individual genomic segments of the wild-type and mutant viruses in an A/Puerto Rico/8/34 background, and found that the nucleoprotein (NP) gene could confer the ts phenotype. This mutant NP contains a serine-to-asparagine mutation at position 314 (S314N). The mutant NP protein showed a defect in nuclear localization at high temperature in mammalian cells.


Asunto(s)
Sustitución de Aminoácidos/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Proteínas de Unión al ARN/genética , Proteínas del Núcleo Viral/genética , Sustitución de Aminoácidos/fisiología , Animales , Asparagina , Clonación Molecular , Femenino , Humanos , Subtipo H5N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H5N1 del Virus de la Influenza A/fisiología , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Proteínas de la Nucleocápside , Fenotipo , Serina , Temperatura
16.
J Tradit Complement Med ; 13(1): 1-10, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36685072

RESUMEN

Background and aim: Dengue is a potentially deadly tropical infectious disease transmitted by mosquito vector Aedes aegypti with no antiviral drug available to date. Dengue NS5 protein is crucial for viral replication and is the most conserved among all four Dengue serotypes, making it an attractive drug target. Both Ginseng and Notoginseng extracts and isolates have been shown to be effective against various viral infections yet against Dengue Virus is understudied. We aim to identify potential inhibitors against Dengue NS5 Methyl transferase from small molecular compounds found in Ginseng and Notoginseng. Experimental procedure: A molecular docking model of Dengue NS5 Methyl transferase (MTase) domain was tested with decoys and then used to screen 91 small molecular compounds found in Ginseng and Notoginseng followed by Molecular dynamics simulations and the per-residue free energy decompositions based on molecular mechanics/Poisson-Boltzmann (generalised Born) surface area (MM/PB(GB)SA) calculations of the hit. ADME predictions and drug-likeness analyses were discussed to evaluate the viability of the hit as a drug candidate. To confirm our findings, in vitro studies of antiviral activities against RNA and a E protein synthesis and cell toxicity were carried out. Results and conclusion: The virtual screening resulted in Isoquercitrin as a single hit. Further analyses of the Isoquercitrin-MTase complex show that Isoquercitrin can reside within both of the NS5 Methyl Transferase active sites; the AdoMet binding site and the RNA capping site. The Isoquercitrin is safe for consumption and accessible on multikilogram scale. In vitro studies showed that Isoquercitrin can inhibit Dengue virus by reducing viral RNA and viral protein synthesis with low toxicity to cells (CC50 > 20 µM). Our work provides evidence that Isoquercitrin can serve as an inhibitor of Dengue NS5 protein at the Methyl Transferase domain, further supporting its role as an anti-DENV agent.

17.
Virus Res ; 334: 199162, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37356582

RESUMEN

Schlafen (SLFN) proteins are a subset of interferon-stimulated early response genes with antiviral properties. An antiviral mechanism of SLFN11 was previously demonstrated in human immunodeficiency virus type 1 (HIV-1)-infected cells, and it was shown that SLFN11 inhibited HIV-1 virus production in a codon usage-specific manner. The codon usage patterns of many viruses are vastly different from those of their hosts. The codon usage-specific inhibition of HIV-1 expression by SLFN11 suggests that SLFN11 may be able to inhibit other viruses with a suboptimal codon usage pattern. However, the effect of SLFN11 on the replication of influenza A virus (IAV) has never been reported. The induction of SLFN11 expression was observed upon IAV infection. The reduction of SLFN11 expression also promotes influenza virus replication. Moreover, we found that overexpression of SLFN11 could reduce the expression of a reporter gene with a viral codon usage pattern, and the inhibition of viral hemagglutinin (HA) gene was codon-specific as the expression of codon optimized HA was not affected. These results indicate that SLFN11 inhibits the influenza A virus in a codon-specific manner and that SLFN11 may contribute to innate defense against influenza A viruses.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Humanos , Virus de la Influenza A/fisiología , Proteínas , Interferones/genética , Replicación Viral , Codón , Antivirales , Gripe Humana/genética , Proteínas Nucleares/genética
18.
Virus Res ; 323: 199009, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36414188

RESUMEN

Influenza A virus (IAV) infection in pregnant women is a major public health concern. However, the effect of IAV infection on human embryogenesis is still unclear. Here we show that human induced pluripotent stem cells (hiPSCs) and hiPSC-derived ectodermal, mesodermal and endodermal cells are susceptible to IAV infection. These cell types stained positive for α2,6-linked sialic acid, the receptor for IAV infection expressed on the cell surface. While hiPSCs produced high viral titers for up to 7 days with increasing infected cell number suggesting that the viral progenies produced from hiPSCs without exogenous protease were infectious and could spread to other cells, the three germ-layer cells showed a decline in viral titers suggesting the lack of viral spreading. Amongst the three germ layers, endodermal cells were less susceptible than ectodermal and mesodermal cells. These results indicate the permissiveness of cells of early embryogenesis, and suggest a risk of detrimental effects of IAV infection in early human embryonic development.

19.
J Med Virol ; 84(3): 380-5, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22246822

RESUMEN

A case of unusually high severity of influenza pneumonia leading to acute respiratory distress syndrome and death was investigated. This was a previously a healthy 28-year-old man with no underlying conditions, admitted to a hospital during the first wave of influenza pandemic in Thailand in July 2009. He had experienced high fever and influenza-like illness for 5 days before coming to the hospital. He developed acute respiratory distress syndrome and expired on day 7 after admission. In comparison to three other cases of influenza pneumonia in the same outbreak with known risk factors for severe influenza, such as pregnancy and diabetes mellitus, a much higher viral load was detected in the lungs of this patient despite antiviral treatment. In agreement with the high viral load, the lung specimens from this patient, but not the other three patients, showed a high expression of α-2,6-linked sialic acid by lectin staining. The gene responsible for the synthesis of this sialic acid was also found to be upregulated. The data indicated overexpression of the viral receptor as a potential mechanism for severe disease in some patients.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/metabolismo , Gripe Humana/virología , Neumonía/metabolismo , Neumonía/virología , Receptores Virales/metabolismo , Ácidos Siálicos/metabolismo , Carga Viral , Adulto , Antígenos CD/genética , Humanos , Gripe Humana/complicaciones , Gripe Humana/tratamiento farmacológico , Pulmón/metabolismo , Pulmón/patología , Pulmón/virología , Masculino , Neumonía/etiología , ARN Mensajero/metabolismo , ARN Viral/genética , Sialiltransferasas/genética
20.
BMC Pharmacol Toxicol ; 23(1): 41, 2022 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-35717393

RESUMEN

BACKGROUND: COVID-19 pandemic has claimed millions of lives and devastated the health service system, livelihood, and economy in many countries worldwide. Despite the vaccination programs in many countries, the spread of the pandemic continues, and effective treatment is still urgently needed. Although some antiviral drugs have been shown to be effective, they are not widely available. Repurposing of anti-parasitic drugs with in vitro anti-SARS-CoV-2 activity is a promising approach being tested in many clinical trials. Combination of these drugs is a plausible way to enhance their effectiveness. METHODS: The in vitro anti-SARS-CoV-2 activity of combinations of niclosamide, ivermectin and chloroquine were evaluated in Vero E6 and lung epithelial cells, Calu-3. RESULTS: All the two-drug combinations showed higher potency resulting in up to 4-fold reduction in the half maximal inhibitory concentration (IC50) values compared to individual drugs. Among these combinations, niclosamide-ivermectin achieved the highest inhibitory level of over 99%. Combination synergy analysis showed niclosamide-ivermectin combination to have the best synergy score with a mean Loewe synergy score of 4.28 and a peak synergy score of 24.6 in Vero E6 cells and a mean Loewe synergy score of 3.82 and a peak synergy score of 10.86 in Calu-3 cells. CONCLUSIONS: The present study demonstrated the benefit of drug combinations on anti-SARS-CoV-2 activity. Niclosamide and ivermectin showed the best synergistic profile and should be further tested in clinical trials.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Antivirales/farmacología , Combinación de Medicamentos , Humanos , Ivermectina/farmacología , Niclosamida/farmacología , Pandemias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA