Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Arch Toxicol ; 95(6): 1867-1897, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33851225

RESUMEN

The EU Directive 2010/63/EU   on the protection of animals used for scientific purposes and other EU regulations, such as REACH and the Cosmetic Products Regulation advocate for a change in the way toxicity testing is conducted. Whilst the Cosmetic Products Regulation bans animal testing altogether, REACH aims for a progressive shift from in vivo testing towards quantitative in vitro and computational approaches. Several endpoints can already be addressed using non-animal approaches including skin corrosion and irritation, serious eye damage and irritation, skin sensitisation, and mutagenicity and genotoxicity. However, for systemic effects such as acute toxicity, repeated dose toxicity and reproductive and developmental toxicity, evaluation of chemicals under REACH still heavily relies on animal tests. Here we summarise current EU regulatory requirements for the human health assessment of chemicals under REACH and the Cosmetic Products Regulation, considering the more critical endpoints and identifying the main challenges in introducing alternative methods into regulatory testing practice. This supports a recent initiative taken by the International Cooperation on Alternative Test Methods (ICATM) to summarise current regulatory requirements specific for the assessment of chemicals and cosmetic products for several human health-related endpoints, with the aim of comparing different jurisdictions and coordinating the promotion and ultimately the implementation of non-animal approaches worldwide. Recent initiatives undertaken at European level to promote the 3Rs and the use of alternative methods in current regulatory practice are also discussed.


Asunto(s)
Alternativas a las Pruebas en Animales/legislación & jurisprudencia , Cosméticos/legislación & jurisprudencia , Pruebas de Toxicidad/métodos , Alternativas a las Pruebas en Animales/métodos , Animales , Cosméticos/toxicidad , Unión Europea , Humanos , Cooperación Internacional , Medición de Riesgo/legislación & jurisprudencia , Medición de Riesgo/métodos
2.
Environ Health ; 19(1): 23, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-32093744

RESUMEN

BACKGROUND: In light of the vulnerability of the developing brain, mixture risk assessment (MRA) for the evaluation of developmental neurotoxicity (DNT) should be implemented, since infants and children are co-exposed to more than one chemical at a time. One possible approach to tackle MRA could be to cluster DNT chemicals in a mixture on the basis of their mode of action (MoA) into 'similar' and 'dissimilar', but still contributing to the same adverse outcome, and anchor DNT assays to common key events (CKEs) identified in DNT-specific adverse outcome pathways (AOPs). Moreover, the use of human in vitro models, such as induced pluripotent stem cell (hiPSC)-derived neuronal and glial cultures would enable mechanistic understanding of chemically-induced adverse effects, avoiding species extrapolation. METHODS: HiPSC-derived neural progenitors differentiated into mixed cultures of neurons and astrocytes were used to assess the effects of acute (3 days) and repeated dose (14 days) treatments with single chemicals and in mixtures belonging to different classes (i.e., lead(II) chloride and methylmercury chloride (heavy metals), chlorpyrifos (pesticide), bisphenol A (organic compound and endocrine disrupter), valproic acid (drug), and PCB138 (persistent organic pollutant and endocrine disrupter), which are associated with cognitive deficits, including learning and memory impairment in children. Selected chemicals were grouped based on their mode of action (MoA) into 'similar' and 'dissimilar' MoA compounds and their effects on synaptogenesis, neurite outgrowth, and brain derived neurotrophic factor (BDNF) protein levels, identified as CKEs in currently available AOPs relevant to DNT, were evaluated by immunocytochemistry and high content imaging analysis. RESULTS: Chemicals working through similar MoA (i.e., alterations of BDNF levels), at non-cytotoxic (IC20/100), very low toxic (IC5), or moderately toxic (IC20) concentrations, induce DNT effects in mixtures, as shown by increased number of neurons, impairment of neurite outgrowth and synaptogenesis (the most sensitive endpoint as confirmed by mathematical modelling) and increase of BDNF levels, to a certain extent reproducing autism-like cellular changes observed in the brain of autistic children. CONCLUSIONS: Our findings suggest that the use of human iPSC-derived mixed neuronal/glial cultures applied to a battery of assays anchored to key events of an AOP network represents a valuable approach to identify mixtures of chemicals with potential to cause learning and memory impairment in children.


Asunto(s)
Rutas de Resultados Adversos , Contaminantes Ambientales/toxicidad , Síndromes de Neurotoxicidad/etiología , Neurotoxinas/toxicidad , Disruptores Endocrinos/toxicidad , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Metales Pesados/toxicidad , Células-Madre Neurales/efectos de los fármacos , Plaguicidas/toxicidad , Bifenilos Policlorados/toxicidad , Medición de Riesgo , Pruebas de Toxicidad
3.
Crit Rev Toxicol ; 49(2): 174-189, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30931677

RESUMEN

This paper summarizes current challenges, the potential use of novel scientific methodologies, and ways forward in the risk assessment and risk management of mixtures. Generally, methodologies to address mixtures have been agreed; however, there are still several data and methodological gaps to be addressed. New approach methodologies can support the filling of knowledge gaps on the toxicity and mode(s) of action of individual chemicals. (Bio)Monitoring, modeling, and better data sharing will support the derivation of more realistic co-exposure scenarios. As knowledge and data gaps often hamper an in-depth assessment of specific chemical mixtures, the option of taking account of possible mixture effects in single substance risk assessments is briefly discussed. To allow risk managers to take informed decisions, transparent documentation of assumptions and related uncertainties is recommended indicating the potential impact on the assessment. Considering the large number of possible combinations of chemicals in mixtures, prioritization is needed, so that actions first address mixtures of highest concern and chemicals that drive the mixture risk. As chemicals with different applications and regulated separately might lead to similar toxicological effects, it is important to consider chemical mixtures across legislative sectors.


Asunto(s)
Exposición a Riesgos Ambientales , Política Ambiental , Sustancias Peligrosas , Humanos , Medición de Riesgo
4.
Toxicol Appl Pharmacol ; 354: 7-18, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29476865

RESUMEN

Currently, the identification of chemicals that have the potential to induce developmental neurotoxicity (DNT) is based on animal testing. Since at the regulatory level, systematic testing of DNT is not a standard requirement within the EU or USA chemical legislation safety assessment, DNT testing is only performed in higher tiered testing triggered based on chemical structure activity relationships or evidence of neurotoxicity in systemic acute or repeated dose toxicity studies. However, these triggers are rarely used and, in addition, do not always serve as reliable indicators of DNT, as they are generally based on observations in adult rodents. Therefore, there is a pressing need for developing alternative methodologies that can reliably support identification of DNT triggers, and more rapidly and cost-effectively support the identification and characterization of chemicals with DNT potential. We propose to incorporate mechanistic knowledge and data derived from in vitro studies to support various regulatory applications including: (a) the identification of potential DNT triggers, (b) initial chemical screening and prioritization, (c) hazard identification and characterization, (d) chemical biological grouping, and (e) assessment of exposure to chemical mixtures. Ideally, currently available cellular neuronal/glial models derived from human induced pluripotent stem cells (hiPSCs) should be used as they allow evaluation of chemical impacts on key neurodevelopmental processes, by reproducing different windows of exposure during human brain development. A battery of DNT in vitro test methods derived from hiPSCs could generate valuable mechanistic data, speeding up the evaluation of thousands of compounds present in industrial, agricultural and consumer products that lack safety data on DNT potential.


Asunto(s)
Sistema Nervioso/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Síndromes de Neurotoxicidad/etiología , Pruebas de Toxicidad , Toxicología/métodos , Alternativas a las Pruebas en Animales , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Sistema Nervioso/embriología , Sistema Nervioso/metabolismo , Neuronas/metabolismo , Neuronas/patología , Síndromes de Neurotoxicidad/embriología , Síndromes de Neurotoxicidad/metabolismo , Formulación de Políticas , Relación Estructura-Actividad Cuantitativa , Medición de Riesgo , Toxicología/legislación & jurisprudencia
5.
Regul Toxicol Pharmacol ; 80: 321-34, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27211294

RESUMEN

This paper reviews regulatory requirements and recent case studies to illustrate how the risk assessment (RA) of chemical mixtures is conducted, considering both the effects on human health and on the environment. A broad range of chemicals, regulations and RA methodologies are covered, in order to identify mixtures of concern, gaps in the regulatory framework, data needs, and further work to be carried out. Also the current and potential future use of novel tools (Adverse Outcome Pathways, in silico tools, toxicokinetic modelling, etc.) in the RA of combined effects were reviewed. The assumptions made in the RA, predictive model specifications and the choice of toxic reference values can greatly influence the assessment outcome, and should therefore be specifically justified. Novel tools could support mixture RA mainly by providing a better understanding of the underlying mechanisms of combined effects. Nevertheless, their use is currently limited because of a lack of guidance, data, and expertise. More guidance is needed to facilitate their application. As far as the authors are aware, no prospective RA concerning chemicals related to various regulatory sectors has been performed to date, even though numerous chemicals are registered under several regulatory frameworks.


Asunto(s)
Mezclas Complejas/efectos adversos , Cosméticos/efectos adversos , Regulación Gubernamental , Sustancias Peligrosas/efectos adversos , Política Pública/legislación & jurisprudencia , Política Pública/tendencias , Pruebas de Toxicidad , Contaminantes Químicos del Agua/efectos adversos , Animales , Seguridad de Productos para el Consumidor/legislación & jurisprudencia , Relación Dosis-Respuesta a Droga , Política Ambiental/legislación & jurisprudencia , Política Ambiental/tendencias , Política de Salud/legislación & jurisprudencia , Política de Salud/tendencias , Humanos , Formulación de Políticas , Medición de Riesgo
6.
Artículo en Inglés | MEDLINE | ID: mdl-35627658

RESUMEN

Regulating chemical mixtures is a complex scientific and policy task. The aim of this study was to investigate typical mixtures and their potential risks based on internal exposure levels in the European population. Based on human biomonitoring (HBM) data made available via the HBM4EU project, we derived generic mixtures representative of a median (P50) and a worst-case scenario (P95) for adults and children. We performed a mixture risk assessment based on HBM concentrations, health-based guidance values (HBGVs) as internal thresholds of concern, and the conservative assumption of concentration addition applied across different toxicological endpoints. Maximum cumulative ratios (MCRs) were calculated to characterize the mixture risk. The mixtures comprise 136 biomarkers for adults and 84 for children, although concentration levels could be quantified only for a fraction of these. Due to limited availability of HBGVs, the mixture risk was assessed for a subset of 20 substance-biomarker pairs for adults and 17 for children. The mixture hazard index ranged from 2.8 (P50, children) to 9.2 (P95, adults). Six to seven substances contributed to over 95% of the total risk. MCR values ranged between 2.6 and 5.5, which is in a similar range as in previous studies based on human external exposures assessments. The limited coverage of substances included in the calculations and the application of a hazard index across toxicological endpoints argue for caution in the interpretation of the results. Nonetheless the analyses of MCR and MAFceiling can help inform a possible mixture assessment factor (MAF) applicable to single substance risk assessment to account for exposure to unintentional mixtures.


Asunto(s)
Monitoreo Biológico , Adulto , Niño , Humanos , Medición de Riesgo/métodos
7.
Environ Int ; 168: 107476, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36067553

RESUMEN

Human biomonitoring (HBM) is a crucial approach for exposure assessment, as emphasised in the European Commission's Chemicals Strategy for Sustainability (CSS). HBM can help to improve chemical policies in five major key areas: (1) assessing internal and aggregate exposure in different target populations; 2) assessing exposure to chemicals across life stages; (3) assessing combined exposure to multiple chemicals (mixtures); (4) bridging regulatory silos on aggregate exposure; and (5) enhancing the effectiveness of risk management measures. In this strategy paper we propose a vision and a strategy for the use of HBM in chemical regulations and public health policy in Europe and beyond. We outline six strategic objectives and a roadmap to further strengthen HBM approaches and increase their implementation in the regulatory risk assessment of chemicals to enhance our understanding of exposure and health impacts, enabling timely and targeted policy interventions and risk management. These strategic objectives are: 1) further development of sampling strategies and sample preparation; 2) further development of chemical-analytical HBM methods; 3) improving harmonisation throughout the HBM research life cycle; 4) further development of quality control / quality assurance throughout the HBM research life cycle; 5) obtain sustained funding and reinforcement by legislation; and 6) extend target-specific communication with scientists, policymakers, citizens and other stakeholders. HBM approaches are essential in risk assessment to address scientific, regulatory and societal challenges. HBM requires full and strong support from the scientific and regulatory domain to reach its full potential in public and occupational health assessment and in regulatory decision-making.

8.
Reprod Toxicol ; 105: 101-119, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34455033

RESUMEN

Prenatal and postnatal co-exposure to multiple chemicals at the same time may have deleterious effects on the developing nervous system. We previously showed that chemicals acting through similar mode of action (MoA) and grouped based on perturbation of brain derived neurotrophic factor (BDNF), induced greater neurotoxic effects on human induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes compared to chemicals with dissimilar MoA. Here we assessed the effects of repeated dose (14 days) treatments with mixtures containing the six chemicals tested in our previous study (Bisphenol A, Chlorpyrifos, Lead(II) chloride, Methylmercury chloride, PCB138 and Valproic acid) along with 2,2'4,4'-tetrabromodiphenyl ether (BDE47), Ethanol, Vinclozolin and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)), on hiPSC-derived neural stem cells undergoing differentiation toward mixed neurons/astrocytes up to 21 days. Similar MoA chemicals in mixtures caused an increase of BDNF levels and neurite outgrowth, and a decrease of synapse formation, which led to inhibition of electrical activity. Perturbations of these endpoints are described as common key events in adverse outcome pathways (AOPs) specific for DNT. When compared with mixtures tested in our previous study, adding similarly acting chemicals (BDE47 and EtOH) to the mixture resulted in a stronger downregulation of synapses. A synergistic effect on some synaptogenesis-related features (PSD95 in particular) was hypothesized upon treatment with tested mixtures, as indicated by mathematical modelling. Our findings confirm that the use of human iPSC-derived mixed neuronal/glial models applied to a battery of in vitro assays anchored to key events in DNT AOP networks, combined with mathematical modelling, is a suitable testing strategy to assess in vitro DNT induced by chemical mixtures.


Asunto(s)
Bioensayo , Modelos Teóricos , Síndromes de Neurotoxicidad , Astrocitos/efectos de los fármacos , Compuestos de Bencidrilo/toxicidad , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Diferenciación Celular , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cloropirifos/toxicidad , Etanol/toxicidad , Éteres Difenilos Halogenados/toxicidad , Humanos , Células Madre Pluripotentes Inducidas/citología , Plomo/toxicidad , Compuestos de Metilmercurio/toxicidad , Células-Madre Neurales/citología , Neuronas/efectos de los fármacos , Oxazoles/toxicidad , Fenoles/toxicidad , Bifenilos Policlorados/toxicidad , Dibenzodioxinas Policloradas/toxicidad , Ácido Valproico/toxicidad
9.
Environ Int ; 146: 106206, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33120228

RESUMEN

BACKGROUND: Several reviews of synergisms and antagonisms in chemical mixtures have concluded that synergisms are relatively rare. However, these reviews focused on mixtures composed of specific groups of chemicals, such as pesticides or metals and on toxicity endpoints mostly relevant to ecotoxicology. Doubts remain whether these findings can be generalised. A systematic review not restricted to specific chemical mixtures and including mammalian and human toxicity endpoints is missing. OBJECTIVES: We conducted a systematic review and quantitative reappraisal of 10 years' of experimental mixture studies to investigate the frequency and reliability of evaluations of mixture effects as synergistic or antagonistic. Unlike previous reviews, we did not limit our efforts to certain groups of chemicals or specific toxicity outcomes and covered mixture studies relevant to ecotoxicology and human/mammalian toxicology published between 2007 and 2017. DATA SOURCES, ELIGIBILITY CRITERIA: We undertook searches for peer-reviewed articles in PubMed, Web of Science, Scopus, GreenFile, ScienceDirect and Toxline and included studies of controlled exposures of environmental chemical pollutants, defined as unintentional exposures leading to unintended effects. Studies with viruses, prions or therapeutic agents were excluded, as were records with missing details on chemicals' identities, toxicities, doses, or concentrations. STUDY APPRAISAL AND SYNTHESIS METHODS: To examine the internal validity of studies we developed a risk-of-bias tool tailored to mixture toxicology. For a subset of 388 entries that claimed synergisms or antagonisms, we conducted a quantitative reappraisal of authors' evaluations by deriving ratios of predicted and observed effective mixture doses (concentrations). RESULTS: Our searches produced an inventory of 1220 mixture experiments which we subjected to subgroup analyses. Approximately two thirds of studies did not incorporate more than 2 components. Most experiments relied on low-cost assays with readily quantifiable endpoints. Important toxicity outcomes of relevance for human risk assessment (e.g. carcinogenicity, genotoxicity, reproductive toxicity, immunotoxicity, neurotoxicity) were rarely addressed. The proportion of studies that declared additivity, synergism or antagonisms was approximately equal (one quarter each); the remaining quarter arrived at different evaluations. About half of the 1220 entries were rated as "definitely" or "probably" low risk of bias. Strikingly, relatively few claims of synergistic or antagonistic effects stood up to scrutiny in terms of deviations from expected additivity that exceed the boundaries of acceptable between-study variability. In most cases, the observed mixture doses were not more than two-fold higher or lower than the predicted additive doses. Twenty percent of the entries (N = 78) reported synergisms in excess of that degree of deviation. Our efforts of pinpointing specific factors that predispose to synergistic interactions confirmed previous concerns about the synergistic potential of combinations of triazine, azole and pyrethroid pesticides at environmentally relevant doses. New evidence of synergisms with endocrine disrupting chemicals and metal compounds such as chromium (VI) and nickel in combination with cadmium has emerged. CONCLUSIONS, LIMITATIONS AND IMPLICATIONS: These specific cases of synergisms apart, our results confirm the utility of default application of the dose (concentration) addition concept for predictive assessments of simultaneous exposures to multiple chemicals. However, this strategy must be complemented by an awareness of the synergistic potential of specific classes of chemicals. Our conclusions only apply to the chemical space captured in published mixture studies which is biased towards relatively well-researched chemicals. SYSTEMATIC REVIEW REGISTRATION NUMBER: The final protocol was published on the open-access repository Zenodo and attributed the following digital object identifier, doi: https://doi.org//10.5281/zenodo.1319759 (https://zenodo.org/record/1319759#.XXIzdy7dsqM).


Asunto(s)
Disruptores Endocrinos , Contaminantes Ambientales , Plaguicidas , Animales , Interacciones Farmacológicas , Contaminantes Ambientales/toxicidad , Humanos , Plaguicidas/toxicidad , Reproducibilidad de los Resultados
10.
Int J Hyg Environ Health ; 227: 113515, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32305857

RESUMEN

BACKGROUND: The European Commission has developed and put in place the Information Platform for Chemical Monitoring Data (IPCHEM), to promote a more coherent approach to the generation, collection, storage and use of chemical monitoring data in relation to humans and the environment. OBJECTIVES: This paper describes the specific development of the IPCHEM thematic module "Products and Indoor Air Data" which aims to facilitate the retrieval of and access to existing and future chemical monitoring data sources stemming from e.g. national monitoring programs of EU Member States and EU funded projects. The current development focusses on harmonised data and metadata templates and code lists related to indoor air monitoring data. METHODS: The extension and revision of the IPCHEM metadata and data collection templates for indoor air monitoring data was based on harmonisation and standardisation efforts on the development of indoor air monitoring protocols and guidelines for monitoring indoor pollution attributed to chemical and biological stressors, which were undertaken by European Commission Services, EU funded projects and research networks and EU Members States. RESULTS: A list of ten candidate data collections for potential integration were identified and prioritised. A different level of relevance was attributed to the enhanced metadata and data elements (mandatory, recommended, optional) to allow for their flexible applicability by end users. These elements should be provided for reaching the required quality in the data documentation as well as for ensuring a correct data traceability and interpretation. CONCLUSIONS: The proposed enhanced metadata and data models of the IPCHEM thematic module "Products and Indoor Air Data" can be used by data providers when planning and setting up their future indoor air monitoring campaigns, or to further mapping and harmonising data elements of their existing data collections for further integration into IPCHEM. This will boost the effective implementation of a coordinated approach for collecting, accessing and sharing existing and future indoor air monitoring data in support of policy making.


Asunto(s)
Contaminación del Aire Interior/análisis , Monitoreo del Ambiente , Europa (Continente) , Metadatos , Modelos Teóricos
11.
Environ Int ; 143: 105978, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32763630

RESUMEN

Human biomonitoring (HBM) data can provide insight into co-exposure patterns resulting from exposure to multiple chemicals from various sources and over time. Therefore, such data are particularly valuable for assessing potential risks from combined exposure to multiple chemicals. One way to interpret HBM data is establishing safe levels in blood or urine, called Biomonitoring Equivalents (BE) or HBM health based guidance values (HBM-HBGV). These can be derived by converting established external reference values, such as tolerable daily intake (TDI) values. HBM-HBGV or BE values are so far agreed only for a very limited number of chemicals. These values can be established using physiologically based kinetic (PBK) modelling, usually requiring substance specific models and the collection of many input parameters which are often not available or difficult to find in the literature. The aim of this study was to investigate the suitability and limitations of generic PBK models in deriving BE values for several compounds with a view to facilitating the use of HBM data in the assessment of chemical mixtures at a screening level. The focus was on testing the methodology with two generic models, the IndusChemFate tool and High-Throughput Toxicokinetics package, for two different classes of compounds, phenols and phthalates. HBM data on Danish children and on Norwegian mothers and children were used to evaluate the quality of the predictions and to illustrate, by means of a case study, the overall approach of applying PBK models to chemical classes with HBM data in the context of chemical mixture risk assessment. Application of PBK models provides a better understanding and interpretation of HBM data. However, the study shows that establishing safety threshold levels in urine is a difficult and complex task. The approach might be more straightforward for more persistent chemicals that are analysed as parent compounds in blood but high uncertainties have to be considered around simulated metabolite concentrations in urine. Refining the models may reduce these uncertainties and improve predictions. Based on the experience gained with this study, the performance of the models for other chemicals could be investigated, to improve the accuracy of the simulations.


Asunto(s)
Monitoreo Biológico , Monitoreo del Ambiente , Niño , Humanos , Nivel sin Efectos Adversos Observados , Valores de Referencia , Medición de Riesgo
12.
BMC Pharmacol ; 8: 8, 2008 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-18513395

RESUMEN

BACKGROUND: A broad spectrum of cytotoxicity assays is currently used in the fields of (eco)toxicology and pharmacology. To choose an appropriate assay, different parameters like test compounds, detection mechanism, specificity, and sensitivity have to be considered. Furthermore, tissue or cell line can influence test performance. For zebrafish (Danio rerio), as emerging model organism, cell lines are now increasingly used, but few studies examined cytotoxicity in these cell systems. Therefore, we compared four cytotoxicity assays in the zebrafish liver cell line, ZFL, to test four differently acting model compounds. The tests comprised two colorimetric assays (MTT assay using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide, and the LDH assay detecting lactate dehydrogenase activity) and two fluorometric assays (alamarBlue(R) using resazurin, and CFDA-AM based on 5-carboxyfluorescein diacetate acetoxymethyl ester). Model compounds were the pharmaceutical Tamoxifen, its metabolite 4-Hydroxy-Tamoxifen, the fungicide Flusilazole and the polycyclic aromatic hydrocarbon Benzo[a]pyrene. RESULTS: All four assays performed well in the ZFL cells and led to reproducible dose-response curves for all test compounds. Effective concentrations causing 10% or 50% loss of cell viability (EC10 and EC50 values) varied by a maximum factor of 7.0 for the EC10 values and a maximum factor of 1.8 for the EC50 values. The EC values were not statistically different between the four assays, which is due to the assessed unspecific effects of the compounds. However, most often, the MTT assay and LDH assay showed the highest and lowest EC values, respectively. Nevertheless, the LDH assay showed the highest intra- and inter-assay variabilities and the lowest signal-to-noise ratios. In contrast to MTT, the other three assays have the advantage of being non-destructive, easy to handle, and less time consuming. Furthermore, AB and CFDA-AM can be combined on the same set of cells without damaging the cells, allowing later on their use for the investigation of other endpoints. CONCLUSION: We recommend the alamarBlue and CFDA-AM assays for cytotoxicity assessment in ZFL cells, which can be applied either singly or combined.


Asunto(s)
Hepatocitos/química , Hepatocitos/citología , Pruebas de Toxicidad/métodos , Pruebas de Toxicidad/normas , Pez Cebra , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Colorimetría/métodos , Colorimetría/normas , Relación Dosis-Respuesta a Droga , Fluorometría/métodos , Fluorometría/normas , Hepatocitos/efectos de los fármacos , Tamoxifeno/toxicidad
13.
Aquat Toxicol ; 86(2): 197-204, 2008 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-18063143

RESUMEN

Copper is known to pose a serious threat to aquatic organisms. However, the mechanisms of its toxicity still remain unclear. Cu is known to exert its toxicity partly due to the formation of reactive oxygen species (ROS). The purpose of this work was therefore to link the exposure to copper at pH 6 and 7 to cellular formation of ROS and effects like cell viability and genotoxicity using the rainbow trout gill cell line RTgill-W1. To relate effects to bioavailable copper, free Cu(2+) concentrations in the medium were calculated using the programm ChemEQL 3.0. 2',7'-Dichlorodihydrofluorescein-diacetate (H(2)DCF-DA) was used as cell-permeant indicator of ROS formation. Cell viability was assessed using the fluorogenic probe 5-carboxyfluorescein diacetate acetoxymethyl ester (CFDA-AM). DNA strand breaks were assessed using the comet assay, and lipid peroxidation was investigated using the thiobarbituric acid-reactive substances assay (TBARS). Copper treatment resulted in a dose-dependent elevation in cytotoxicity and formation of cellular ROS. Cell viability was significantly reduced at total copper (Cu(T)) concentrations of 5 microM (corresponding to a free Cu(2+) of 0.11 microM at pH 7) and higher, resulting in an EC(50) of Cu(T)=29.2 microM (Cu(2+)=0.63 microM, pH 7). Neither an impairment concerning the viability of control cells due to growth at pH 6 was observed nor significant differences for cytotoxicity in cells exposed to the same nominal Cu(T) concentrations at pH 6 compared to pH 7. Cellular ROS concentrations increased significantly and decreased with loss of cell viability. After normalizing ROS formation to cell viability, ROS induction up to 25-35-fold compared to the control was detected, but mainly for rather high concentrations (Cu(T) > or = 100 microM; Cu(2+) > or = 2.2 microM, pH 7). ROS formation rates were slightly higher when cells were exposed to Cu at pH 6 compared to pH 7, correlating with the higher free Cu(2+) concentrations. A significant induction of DNA strand breaks was noted at Cu(T) of 1 and 2.5 microM with greater effects at pH 6 due to higher free Cu(2+) concentrations than at pH 7. No effects on lipid peroxidation were observed. These results lead to the hypothesis that copper-induced loss in viability and genotoxicity in trout gill cells are partially triggered by the generation of ROS and related to the free Cu(2+).


Asunto(s)
Sulfato de Cobre/toxicidad , Oncorhynchus mykiss , Estrés Oxidativo , Contaminantes Químicos del Agua/toxicidad , Animales , Bioensayo/veterinaria , Línea Celular , Ensayo Cometa/veterinaria , Daño del ADN , Branquias/citología , Peroxidación de Lípido/efectos de los fármacos , Especies Reactivas de Oxígeno/análisis , Análisis de Supervivencia
14.
Environ Health Perspect ; 126(8): 84502, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30235423

RESUMEN

Per- and polyfluoroalkyl substances (PFASs) are man-made chemicals that contain at least one perfluoroalkyl moiety, [Formula: see text]. To date, over 4,000 unique PFASs have been used in technical applications and consumer products, and some of them have been detected globally in human and wildlife biomonitoring studies. Because of their extraordinary persistence, human and environmental exposure to PFASs will be a long-term source of concern. Some PFASs such as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) have been investigated extensively and thus regulated, but for many other PFASs, knowledge about their current uses and hazards is still very limited or missing entirely. To address this problem and prepare an action plan for the assessment and management of PFASs in the coming years, a group of more than 50 international scientists and regulators held a two-day workshop in November, 2017. The group identified both the respective needs of and common goals shared by the scientific and the policy communities, made recommendations for cooperative actions, and outlined how the science-policy interface regarding PFASs can be strengthened using new approaches for assessing and managing highly persistent chemicals such as PFASs. https://doi.org/10.1289/EHP4158.


Asunto(s)
Exposición a Riesgos Ambientales/prevención & control , Contaminantes Ambientales , Contaminación Ambiental/prevención & control , Fluorocarburos , Monitoreo del Ambiente , Humanos
15.
Environ Int ; 120: 544-562, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30170309

RESUMEN

Humans and wildlife are exposed to an intractably large number of different combinations of chemicals via food, water, air, consumer products, and other media and sources. This raises concerns about their impact on public and environmental health. The risk assessment of chemicals for regulatory purposes mainly relies on the assessment of individual chemicals. If exposure to multiple chemicals is considered in a legislative framework, it is usually limited to chemicals falling within this framework and co-exposure to chemicals that are covered by a different regulatory framework is often neglected. Methodologies and guidance for assessing risks from combined exposure to multiple chemicals have been developed for different regulatory sectors, however, a harmonised, consistent approach for performing mixture risk assessments and management across different regulatory sectors is lacking. At the time of this publication, several EU research projects are running, funded by the current European Research and Innovation Programme Horizon 2020 or the Seventh Framework Programme. They aim at addressing knowledge gaps and developing methodologies to better assess chemical mixtures, by generating and making available internal and external exposure data, developing models for exposure assessment, developing tools for in silico and in vitro effect assessment to be applied in a tiered framework and for grouping of chemicals, as well as developing joint epidemiological-toxicological approaches for mixture risk assessment and for prioritising mixtures of concern. The projects EDC-MixRisk, EuroMix, EUToxRisk, HBM4EU and SOLUTIONS have started an exchange between the consortia, European Commission Services and EU Agencies, in order to identify where new methodologies have become available and where remaining gaps need to be further addressed. This paper maps how the different projects contribute to the data needs and assessment methodologies and identifies remaining challenges to be further addressed for the assessment of chemical mixtures.


Asunto(s)
Mezclas Complejas , Exposición a Riesgos Ambientales , Sustancias Peligrosas , Medición de Riesgo , Animales , Unión Europea , Humanos , Investigación
16.
Gene ; 396(2): 293-302, 2007 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-17540515

RESUMEN

Diatoms are eukaryotic algae, which can be found worldwide in oceans and freshwaters. These organisms are ecologically relevant due to their key role in the global carbon cycle, contributing to about 25% to the global primary production [Falciatore, A., Bowler, C., 2002. Revealing the molecular secrets of marine diatoms. Annu. Rev. Plant Biol. 53, 109-130]. We investigated the effects of three polycyclic aromatic hydrocarbons (PAHs, pyrene, fluoranthene, and benzo[a]pyrene), either as single compound or as mixture, at molecular level. Dose-response curves for growth inhibition were determined and four concentrations eliciting from "no effect" up to a severe growth inhibition were chosen for further investigation to detect alterations at gene expression level by Real-Time PCR. Among the eight selected genes, two were strongly influenced by the PAH treatment. lacsA, which is involved in the fatty acid metabolism, was found to be strongly up-regulated by all single PAHs, as well as by the mixture. sil3, involved in the formation of the silica shell, was repressed by a factor up to three even at low PAH concentrations not eliciting any growth inhibition. For other genes, involved e.g. in photosynthesis, a slight down-regulation was detected. Based on the effects at gene expression level it can be assumed that PAHs impair the fatty acid metabolism and silica shell formation.


Asunto(s)
Diatomeas/metabolismo , Regulación de la Expresión Génica , Hidrocarburos Policíclicos Aromáticos/química , Animales , Benzo(a)pireno/química , Relación Dosis-Respuesta a Droga , Ácidos Grasos/metabolismo , Fluorenos/química , Modelos Biológicos , Compuestos Policíclicos/química , Pirenos/química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Environ Toxicol Chem ; 36(12): 3450-3462, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28618056

RESUMEN

The scientific consensus model USEtox® is recommended by the European Commission as the reference model to characterize life cycle chemical emissions in terms of their potential human toxicity and freshwater aquatic ecotoxicity impacts in the context of the International Reference Life Cycle Data System Handbook and the Environmental Footprint pilot phase looking at products (PEF) and organizations (OEF). Consequently, this model has been systematically used within the PEF/OEF pilot phase by 25 European Union industry sectors, which manufacture a wide variety of consumer products. This testing phase has raised some questions regarding the derivation of and the data used for the chemical-specific freshwater ecotoxicity effect factor in USEtox. For calculating the potential freshwater aquatic ecotoxicity impacts, USEtox bases the effect factor on the chronic hazard concentration (HC50) value for a chemical calculated as the arithmetic mean of all logarithmized geometric means of species-specific chronic median lethal (or effect) concentrations (L[E]C50). We investigated the dependency of the USEtox effect factor on the selection of ecotoxicological data source and toxicological endpoints, and we found that both influence the ecotoxicity ranking of chemicals and may hence influence the conclusions of a PEF/OEF study. We furthermore compared the average measure (HC50) with other types of ecotoxicity effect indicators, such as the lowest species EC50 or no-observable-effect concentration, frequently used in regulatory risk assessment, and demonstrated how they may also influence the ecotoxicity ranking of chemicals. We acknowledge that these indicators represent different aspects of a chemical's ecotoxicity potential and discuss their pros and cons for a comparative chemical assessment as performed in life cycle assessment and in particular within the PEF/OEF context. Environ Toxicol Chem 2017;36:3450-3462. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Asunto(s)
Ecotoxicología/métodos , Contaminantes Ambientales/análisis , Agua Dulce/química , Sustancias Peligrosas/análisis , Bases de Datos Factuales , Contaminantes Ambientales/toxicidad , Sustancias Peligrosas/toxicidad , Humanos , Modelos Teóricos , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
18.
Environ Int ; 99: 97-106, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27939949

RESUMEN

The exposome encompasses an individual's exposure to exogenous chemicals, as well as endogenous chemicals that are produced or altered in response to external stressors. While the exposome concept has been established for human health, its principles can be extended to include broader ecological issues. The assessment of exposure is tightly interlinked with hazard assessment. Here, we explore if mechanistic understanding of the causal links between exposure and adverse effects on human health and the environment can be improved by integrating the exposome approach with the adverse outcome pathway (AOP) concept that structures and organizes the sequence of biological events from an initial molecular interaction of a chemical with a biological target to an adverse outcome. Complementing exposome research with the AOP concept may facilitate a mechanistic understanding of stress-induced adverse effects, examine the relative contributions from various components of the exposome, determine the primary risk drivers in complex mixtures, and promote an integrative assessment of chemical risks for both human and environmental health.


Asunto(s)
Exposición a Riesgos Ambientales , Contaminantes Ambientales/toxicidad , Animales , Humanos , Medición de Riesgo
19.
Environ Toxicol Chem ; 25(5): 1390-8, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16704074

RESUMEN

Miniaturized bioassays offer many advantages in exploring the toxic potential of chemicals, including small sample volumes and compatibility with high-throughput screening. One problem common to miniaturized systems, however, is the loss of test chemicals because of sorption. The idea of the current study was to use the sorption phenomenon in a positive way. It was found that contaminants sorbed to the growth surface in wells of tissue-culture plates or to the surface of selected sorbent bead materials are available to vertebrate cells growing in direct contact with the contaminant-coated surface. The use of beads provided more flexibility with regard to surface area, materials, and assay format. Biosilon, a bead cell-culture carrier made of polystyrene, was found to be most suitable. It supported cell adherence and allowed the detection of reproducible dose-response curves of an increase in cytochrome CYP1A enzyme activity by sorbed polycyclic aromatic hydrocarbons in the rainbow trout (Oncorhynchus mykiss) liver cell line, RTL-W1. The resulting bead assay provides a miniaturized, solvent-free exposure system. Potential future applications include the coupling to environmental sampling, in which the bead material is used as solid receiving phase before serving as a surface for vertebrate cells to attach and respond.


Asunto(s)
Bioensayo/métodos , Oncorhynchus mykiss , 7-Alcoxicumarina O-Dealquilasa/metabolismo , Adsorción , Animales , Adhesión Celular , Línea Celular , Supervivencia Celular , Relación Dosis-Respuesta a Droga , Hígado/efectos de los fármacos , Hígado/enzimología , Oncorhynchus mykiss/metabolismo , Hidrocarburos Policíclicos Aromáticos/toxicidad , Poliestirenos/química , Solventes
20.
Sci Total Environ ; 415: 31-8, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21733564

RESUMEN

General protection goals for the environmental risk assessment (ERA) of plant protection products are stated in European legislation but specific protection goals (SPGs) are often not precisely defined. These are however crucial for designing appropriate risk assessment schemes. The process followed by the Panel on Plant Protection Products and their Residues (PPR) of the European Food Safety Authority (EFSA) as well as examples of resulting SPGs obtained so far for environmental risk assessment (ERA) of pesticides is presented. The ecosystem services approach was used as an overarching concept for the development of SPGs, which will likely facilitate communication with stakeholders in general and risk managers in particular. It is proposed to develop SPG options for 7 key drivers for ecosystem services (microbes, algae, non target plants (aquatic and terrestrial), aquatic invertebrates, terrestrial non target arthropods including honeybees, terrestrial non-arthropod invertebrates, and vertebrates), covering the ecosystem services that could potentially be affected by the use of pesticides. These SPGs need to be defined in 6 dimensions: biological entity, attribute, magnitude, temporal and geographical scale of the effect, and the degree of certainty that the specified level of effect will not be exceeded. In general, to ensure ecosystem services, taxa representative for the key drivers identified need to be protected at the population level. However, for some vertebrates and species that have a protection status in legislation, protection may be at the individual level. To protect the provisioning and supporting services provided by microbes it may be sufficient to protect them at the functional group level. To protect biodiversity impacts need to be assessed at least at the scale of the watershed/landscape.


Asunto(s)
Ecosistema , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Plaguicidas/análisis , Conservación de los Recursos Naturales , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA