Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 126(15): 153201, 2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33929231

RESUMEN

Overcoming the detrimental effect of disorder at the nanoscale is very hard since disorder induces localization and an exponential suppression of transport efficiency. Here we unveil novel and robust quantum transport regimes achievable in nanosystems by exploiting long-range hopping. We demonstrate that in a 1D disordered nanostructure in the presence of long-range hopping, transport efficiency, after decreasing exponentially with disorder at first, is then enhanced by disorder [disorder-enhanced transport (DET) regime] until, counterintuitively, it reaches a disorder-independent transport (DIT) regime, persisting over several orders of disorder magnitude in realistic systems. To enlighten the relevance of our results, we demonstrate that an ensemble of emitters in a cavity can be described by an effective long-range Hamiltonian. The specific case of a disordered molecular wire placed in an optical cavity is discussed, showing that the DIT and DET regimes can be reached with state-of-the-art experimental setups.

2.
Nano Lett ; 20(10): 7382-7388, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32969667

RESUMEN

Recent experiments by Rainò et al. ( Nature 2018, 563, 671-675) have documented cooperative emission from CsPbBr3 nanocrystal superlattices, exhibiting the hallmarks of low-temperature superradiance. In particular, the optical response is coherent and the radiative decay rate is increased by a factor of 3, relative to that of individual nanocrystals. However, the increase is 6 orders of magnitude smaller than what is theoretically expected from the superradiance of large assemblies, consisting of 106-108 interacting nanocrystals. Here, we develop a theoretical model of superradiance for such systems and show that thermal decoherence is largely responsible for the drastic reduction of the radiative decay rate in nanocrystal superlattices. Our theoretical approach explains the experimental results ( Nature 2018, 563, 671-675), provides insight into the design of small nanocrystal superlattices, and shows a 4 orders of magnitude enhancement in superradiant response. These quantitative predictions pave the path toward observing superradiance at higher temperatures.

3.
Phys Rev Lett ; 116(25): 250402, 2016 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-27391705

RESUMEN

In recent experiments with ion traps, long-range interactions were associated with the exceptionally fast propagation of perturbation, while in some theoretical works they have also been related with the suppression of propagation. Here, we show that such apparently contradictory behavior is caused by a general property of long-range interacting systems, which we name cooperative shielding. It refers to shielded subspaces that emerge as the system size increases and inside of which the evolution is unaffected by long-range interactions for a long time. As a result, the dynamics strongly depends on the initial state: if it belongs to a shielded subspace, the spreading of perturbation satisfies the Lieb-Robinson bound and may even be suppressed, while for initial states with components in various subspaces, the propagation may be quasi-instantaneous. We establish an analogy between the shielding effect and the onset of quantum Zeno subspaces. The derived effective Zeno Hamiltonian successfully describes the short-ranged dynamics inside the subspaces up to a time scale that increases with system size. Cooperative shielding can be tested in current experiments with trapped ions.

4.
Phys Rev E ; 104(3-1): 034212, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34654076

RESUMEN

We address the old and widely debated question of the spectrum statistics of integrable quantum systems, through the analysis of the paradigmatic Lieb-Liniger model. This quantum many-body model of one-dimensional interacting bosons allows for the rigorous determination of energy spectra via the Bethe ansatz approach and our interest is to reveal the characteristic properties of energy levels in dependence of the model parameters. Using both analytical and numerical studies we show that the properties of spectra strongly depend on whether the analysis is done for a full energy spectrum or for a single subset with fixed total momentum. We show that the Poisson distribution of spacing between nearest-neighbor energies can occur only for a set of energy levels with fixed total momentum, for neither too large nor too weak interaction strength, and for sufficiently high energy. By studying long-range correlations between energy levels, we found strong deviations from the predictions based on the assumption of pseudorandom character of the distribution of energy levels.

5.
Phys Rev E ; 99(1-1): 012115, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30780353

RESUMEN

We address the question of the relevance of thermalization and scrambling to the increase of correlations in the quench dynamics of an isolated system with a finite number of interacting bosons. Specifically, we study how, in the process of thermalization, the correlations between occupation numbers increase in time, resulting in the emergence of the Bose-Einstein distribution. Despite the exponential increase of the number of principal components of the wave function, we show, both analytically and numerically, that the two-point correlation function before saturation increases quadratically in time according to perturbation theory. In contrast, we find that the out-of-time-order correlator increases algebraically and not exponentially in time after the perturbative regime and before the saturation. Our results can be confirmed experimentally in traps with interacting bosons and they may be relevant to the problem of black hole scrambling.

6.
Phys Rev E ; 99(1-1): 010101, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30780249

RESUMEN

We demonstrate analytically and numerically that in isolated quantum systems of many interacting particles, the number of many-body states participating in the evolution after a quench increases exponentially in time, provided the eigenstates are delocalized in the energy shell. The rate of the exponential growth is defined by the width Γ of the local density of states and is associated with the Kolmogorov-Sinai entropy for systems with a well-defined classical limit. In a finite system, the exponential growth eventually saturates due to the finite volume of the energy shell. We estimate the timescale for the saturation and show that it is much larger than ℏ/Γ. Numerical data obtained for a two-body random interaction model of bosons and for a dynamical model of interacting spin-1/2 particles show excellent agreement with the analytical predictions.

7.
Phys Rev E ; 99(5-1): 052143, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31212440

RESUMEN

We study quench dynamics in the many-body Hilbert space using two isolated systems with a finite number of interacting particles: a paradigmatic model of randomly interacting bosons and a dynamical (clean) model of interacting spins-1/2. For both systems in the region of strong quantum chaos, the number of components of the evolving wave function, defined through the number of principal components N_{pc} (or participation ratio), was recently found to increase exponentially fast in time [Phys. Rev. E 99, 010101(R) (2019)2470-004510.1103/PhysRevE.99.010101]. Here, we ask whether the out-of-time ordered correlator (OTOC), which is nowadays widely used to quantify instability in quantum systems, can manifest analogous time dependence. We show that N_{pc} can be formally expressed as the inverse of the sum of all OTOCs for projection operators. While none of the individual projection OTOCs show an exponential behavior, their sum decreases exponentially fast in time. The comparison between the behavior of the OTOC with that of the N_{pc} helps us better understand wave packet dynamics in the many-body Hilbert space, in close connection with the problems of thermalization and information scrambling.

8.
Phys Rev E ; 95(4-1): 042135, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28505710

RESUMEN

The onset of thermalization in a closed system of randomly interacting bosons at the level of a single eigenstate is discussed. We focus on the emergence of Bose-Einstein distribution of single-particle occupation numbers, and we give a local criterion for thermalization dependent on the eigenstate energy. We show how to define the temperature of an eigenstate, provided that it has a chaotic structure in the basis defined by the single-particle states. The analytical expression for the eigenstate temperature as a function of both interparticle interaction and energy is complemented by numerical data.

9.
Phys Rev E ; 95(2-1): 022122, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28297933

RESUMEN

We study quantum enhancement of transport in open systems in the presence of disorder and dephasing. Quantum coherence effects may significantly enhance transport in open systems even in the semiclassical regime (where the decoherence rate is greater than the intersite hopping amplitude), as long as the disorder is sufficiently strong. When the strengths of disorder and dephasing are fixed, there is an optimal opening strength at which the coherent transport enhancement is optimized. Analytic results are obtained in two simple paradigmatic tight-binding models of large systems: the linear chain and the fully connected network. The physical behavior is also reflected in the Fenna-Matthews-Olson (FMO) photosynthetic complex, which may be viewed as intermediate between these paradigmatic models.

10.
Phys Rev E ; 96(5-1): 052103, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29347695

RESUMEN

We study the interplay between dephasing, disorder, and coupling to a sink on transport efficiency in a one-dimensional chain of finite length N, and in particular the beneficial or detrimental effect of dephasing on transport. The excitation moves along the chain by coherent nearest-neighbor hopping Ω, under the action of static disorder W and dephasing γ. The last site is coupled to an external acceptor system (sink), where the excitation can be trapped with a rate Γ_{trap}. While it is known that dephasing can help transport in the localized regime, here we show that dephasing can enhance energy transfer even in the ballistic regime. Specifically, in the localized regime we recover previous results, where the optimal dephasing is independent of the chain length and proportional to W or W^{2}/Ω. In the ballistic regime, the optimal dephasing decreases as 1/N or 1/sqrt[N], respectively, for weak and moderate static disorder. When focusing on the excitation starting at the beginning of the chain, dephasing can help excitation transfer only above a critical value of disorder W^{cr}, which strongly depends on the sink coupling strength Γ_{trap}. Analytic solutions are obtained for short chains.

11.
Phys Rev E ; 93(3): 032136, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27078321

RESUMEN

Disordered quantum networks, such as those describing light-harvesting complexes, are often characterized by the presence of peripheral ringlike structures, where the excitation is initialized, and inner structures and reaction centers (RCs), where the excitation is trapped and transferred. The peripheral rings often display distinguished coherent features: Their eigenstates can be separated, with respect to the transfer of excitation, into two classes of superradiant and subradiant states. Both are important to optimize transfer efficiency. In the absence of disorder, superradiant states have an enhanced coupling strength to the RC, while the subradiant ones are basically decoupled from it. Static on-site disorder induces a coupling between subradiant and superradiant states, thus creating an indirect coupling to the RC. The problem of finding the optimal transfer conditions, as a function of both the RC energy and the disorder strength, is very complex even in the simplest network, namely, a three-level system. In this paper we analyze such trimeric structure, choosing as the initial condition an excitation on a subradiant state, rather than the more common choice of an excitation localized on a single site. We show that, while the optimal disorder is of the order of the superradiant coupling, the optimal detuning between the initial state and the RC energy strongly depends on system parameters: When the superradiant coupling is much larger than the energy gap between the superradiant and the subradiant levels, optimal transfer occurs if the RC energy is at resonance with the subradiant initial state, whereas we find an optimal RC energy at resonance with a virtual dressed state when the superradiant coupling is smaller than or comparable to the gap. The presence of dynamical noise, which induces dephasing and decoherence, affects the resonance structure of energy transfer producing an additional incoherent resonance peak, which corresponds to the RC energy being equal to the energy of the superradiant state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA