Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Appl Environ Microbiol ; 88(8): e0243121, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35357191

RESUMEN

The regulation and production of secondary metabolites during biofilm growth of Burkholderia spp. is not well understood. To learn more about the crucial role and regulatory control of cryptic molecules produced during biofilm growth, we disrupted c-di-GMP signaling in Burkholderia pseudomallei, a soilborne bacterial saprophyte and the etiologic agent of melioidosis. Our approach to these studies combined transcriptional profiling with genetic deletions that targeted key c-di-GMP regulatory components to characterize responses to changes in temperature. Mutational analyses and conditional expression studies of c-di-GMP genes demonstrates their contribution to phenotypes such as biofilm formation, colony morphology, motility, and expression of secondary metabolite biosynthesis when grown as a biofilm at different temperatures. RNA-seq analysis was performed at various temperatures in a ΔII2523 mutant background that is responsive to temperature alterations resulting in hypobiofilm- and hyperbiofilm-forming phenotypes. Differential regulation of genes was observed for polysaccharide biosynthesis, secretion systems, and nonribosomal peptide and polyketide synthase (NRPS/PKS) clusters in response to temperature changes. Deletion mutations of biosynthetic gene clusters (BGCs) 2, 11, 14 (syrbactin), and 15 (malleipeptin) in parental and ΔII2523 backgrounds also reveal the contribution of these BGCs to biofilm formation and colony morphology in addition to inhibition of Bacillus subtilis and Rhizoctonia solani. Our findings suggest that II2523 impacts the regulation of genes that contribute to biofilm formation and competition. Characterization of cryptic BGCs under different environmental conditions will allow for a better understanding of the role of secondary metabolites in the context of biofilm formation and microbe-microbe interactions. IMPORTANCE Burkholderia pseudomallei is a saprophytic bacterium residing in the environment that switches to a pathogenic lifestyle during infection of a wide range of hosts. The environmental cues that serve as the stimulus to trigger this change are largely unknown. However, it is well established that the cellular level of c-di-GMP, a secondary signal messenger, controls the switch from growth as planktonic cells to growth as a biofilm. Disrupting the signaling mediated by c-di-GMP allows for a better understanding of the regulation and the contribution of the surface associated and secreted molecules that contribute to the various lifestyles of this organism. The genome of B. pseudomallei also encodes cryptic biosynthetic gene clusters predicted to encode small molecules that potentially contribute to growth as a biofilm, adaptation, and interactions with other organisms. A better understanding of the regulation of these molecules is crucial to understanding how this versatile pathogen alters its lifestyle.


Asunto(s)
Burkholderia pseudomallei , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Burkholderia pseudomallei/genética , GMP Cíclico/análogos & derivados
2.
Int J Mol Sci ; 23(6)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35328372

RESUMEN

Biofilm growth is thought to be a significant obstacle to the successful treatment of Mycobacterium abscessus infections. A search for agents capable of inhibiting M. abscessus biofilms led to our interest in 2-aminoimidazoles and related scaffolds, which have proven to display antibiofilm properties against a number of Gram-negative and Gram-positive bacteria, including Mycobacterium tuberculosis and Mycobacterium smegmatis. The screening of a library of 30 compounds led to the identification of a compound, AB-2-29, which inhibits the formation of M. abscessus biofilms with an IC50 (the concentration required to inhibit 50% of biofilm formation) in the range of 12.5 to 25 µM. Interestingly, AB-2-29 appears to chelate zinc, and its antibiofilm activity is potentiated by the addition of zinc to the culture medium. Preliminary mechanistic studies indicate that AB-2-29 acts through a distinct mechanism from those reported to date for 2-aminoimidazole compounds.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Antibacterianos/farmacología , Biopelículas , Humanos , Imidazoles/farmacología , Pruebas de Sensibilidad Microbiana , Zinc/farmacología
3.
Infect Immun ; 89(1)2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33106293

RESUMEN

Burkholderia pseudomallei is a Gram-negative bacterium and the causative agent of melioidosis. Despite advances in our understanding of the disease, B. pseudomallei poses a significant health risk, especially in regions of endemicity, where treatment requires prolonged antibiotic therapy. Even though the respiratory and percutaneous routes are well documented and considered the main ways to acquire the pathogen, the gastrointestinal tract is believed to be an underreported and underrecognized route of infection. In the present study, we describe the development of in vitro and in vivo models to study B. pseudomallei gastrointestinal infection. Further, we report that the type 6 secretion system (T6SS) and type 1 fimbriae are important virulence factors required for gastrointestinal infection. Using a human intestinal epithelial cell line and mouse primary intestinal epithelial cells (IECs), we demonstrated that B. pseudomallei adheres, invades, and forms multinucleated giant cells, ultimately leading to cell toxicity. We demonstrated that mannose-sensitive type 1 fimbria is involved in the initial adherence of B. pseudomallei to IECs, although the impact on full virulence was limited. Finally, we also showed that B. pseudomallei requires a functional T6SS for full virulence, bacterial dissemination, and lethality in mice infected by the intragastric route. Overall, we showed that B. pseudomallei is an enteric pathogen and that type 1 fimbria is important for B. pseudomallei intestinal adherence, and we identify a new role for T6SS as a key virulence factor in gastrointestinal infection. These studies highlight the importance of gastrointestinal melioidosis as an understudied route of infection and open a new avenue for the pathogenesis of B. pseudomallei.


Asunto(s)
Burkholderia pseudomallei/fisiología , Gastroenteritis/microbiología , Melioidosis/microbiología , Factores de Virulencia/genética , Animales , Adhesión Bacteriana/genética , Burkholderia pseudomallei/patogenicidad , Modelos Animales de Enfermedad , Fimbrias Bacterianas/fisiología , Regulación Bacteriana de la Expresión Génica , Células Gigantes/microbiología , Células Gigantes/patología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Ratones , Sistemas de Secreción Tipo VI , Virulencia/genética
4.
Microbiology (Reading) ; 166(8): 695-706, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32459167

RESUMEN

Biofilm-associated infections are difficult to eradicate because of their ability to tolerate antibiotics and evade host immune responses. Amoebae and/or their secreted products may provide alternative strategies to inhibit and disperse biofilms on biotic and abiotic surfaces. We evaluated the potential of five predatory amoebae - Acanthamoeba castellanii, Acanthamoeba lenticulata, Acanthamoeba polyphaga, Vermamoeba vermiformis and Dictyostelium discoideum - and their cell-free secretions to disrupt biofilms formed by methicillin-resistant Staphylococcus aureus (MRSA) and Mycobacterium bovis. The biofilm biomass produced by MRSA and M. bovis was significantly reduced when co-incubated with A. castellanii, A. lenticulata and A. polyphaga, and their corresponding cell-free supernatants (CFS). Acanthamoeba spp. generally produced CFS that mediated biofilm dispersal rather than directly killing the bacteria; however, A. polyphaga CFS demonstrated active killing of MRSA planktonic cells when the bacteria were present at low concentrations. The active component(s) of the A. polyphaga CFS is resistant to freezing, but can be inactivated to differing degrees by mechanical disruption and exposure to heat. D. discoideum and its CFS also reduced preformed M. bovis biofilms, whereas V. vermiformis only decreased M. bovis biofilm biomass when amoebae were added. These results highlight the potential of using select amoebae species or their CFS to disrupt preformed bacterial biofilms.


Asunto(s)
Amébidos/fisiología , Biopelículas/crecimiento & desarrollo , Staphylococcus aureus Resistente a Meticilina/fisiología , Mycobacterium bovis/fisiología , Amébidos/clasificación , Amébidos/metabolismo , Antibiosis , Biopelículas/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Mycobacterium bovis/efectos de los fármacos , Especificidad de la Especie
5.
Mol Microbiol ; 106(6): 976-985, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29030956

RESUMEN

Bacterial cooperative associations and dynamics in biofilm microenvironments are of special interest in recent years. Knowledge of localized gene-expression and corresponding bacterial behaviors within the biofilm architecture at a global scale has been limited, due to a lack of robust technology to study limited number of cells in stratified layers of biofilms. With our recent pioneering developments in single bacterial cell transcriptomic analysis technology, we generated herein an unprecedented spatial transcriptome map of the mature in vitro Pseudomonas aeruginosa biofilm model, revealing contemporaneous yet altered bacterial behaviors at different layers within the biofilm architecture (i.e., surface, middle and interior of the biofilm). Many genes encoding unknown functions were highly expressed at the biofilm-solid interphase, exposing a critical gap in the knowledge of their activities that may be unique to this interior niche. Several genes of unknown functions are critical for biofilm formation. The in vivo importance of these unknown proteins was validated in invertebrate (fruit fly) and vertebrate (mouse) models. We envisage the future value of this report to the community, in aiding the further pathophysiological understanding of P. aeruginosa biofilms. Our approach will open doors to the study of bacterial functional genomics of different species in numerous settings.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Animales , Proteínas Bacterianas/genética , Drosophila/genética , Ratones , Mutación , Transcriptoma , Factores de Virulencia/genética
6.
Appl Environ Microbiol ; 84(7)2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29427430

RESUMEN

Pseudomonas aeruginosa exhibits flagellum-mediated swimming in liquid and swarming on hydrated surfaces under diverse nutrient conditions. Prior studies have implicated a phosphodiesterase, DipA, in regulating these flagellum-mediated motilities, but collectively, the necessity for DipA was unclear. In this study, we find that the medium composition conditionally constrains the influence of DipA on flagellar motility. We show that DipA exhibits more influence on minimal medium supplemented with glutamate or glucose, where flagellar motility was negated for the dipA mutant. Conversely, a dipA-deficient mutant exhibits flagellar motility when growing with LB Lennox broth and minimal medium supplemented with Casamino Acids. Swarming under these rich medium conditions occurs under elevated levels of c-di-GMP. We also demonstrate that the influence of DipA upon swimming often differs from that upon swarming, and we conclude that a direct comparison of the motility phenotypes is generally valid only when characterizing motility assay results from the same medium composition. Our results are consistent with the explanation that DipA is one of several phosphodiesterases responding to the nutrient environment sensed by P. aeruginosa On minimal medium with glutamate or glucose, DipA is dominant; however, on rich medium, the necessity of DipA is fully negated.IMPORTANCE Motile and ubiquitous bacteria such as Pseudomonas aeruginosa can quickly colonize surfaces and form biofilms in numerous environments such as water distribution systems, soil, and the human lung. To effectively disrupt bacterial colonization, it is imperative to understand how bacteria regulate motility in these different growth environments. Here, we show that the phosphodiesterase DipA is not required for flagellar motility under all nutrient conditions. Thus, the maintenance of intracellular c-di-GMP levels to promote flagellar motility or biofilm development must be conditionally regulated by differing phosphodiesterases in variation with select nutrient cues.


Asunto(s)
Proteínas Bacterianas/genética , GMP Cíclico/análogos & derivados , Regulación Bacteriana de la Expresión Génica/fisiología , Hidrolasas Diéster Fosfóricas/genética , Pseudomonas aeruginosa/genética , Proteínas Bacterianas/metabolismo , GMP Cíclico/administración & dosificación , Hidrolasas Diéster Fosfóricas/metabolismo , Pseudomonas aeruginosa/metabolismo
7.
J Bacteriol ; 199(5)2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27956524

RESUMEN

Burkholderia pseudomallei, a tier 1 select agent and the etiological agent of melioidosis, transitions from soil and aquatic environments to infect a variety of vertebrate and invertebrate hosts. During the transition from an environmental saprophyte to a mammalian pathogen, B. pseudomallei encounters and responds to rapidly changing environmental conditions. Environmental sensing systems that control cellular levels of cyclic di-GMP promote pathogen survival in diverse environments. Cyclic di-GMP controls biofilm production, virulence factors, and motility in many bacteria. This study is an evaluation of cyclic di-GMP-associated genes that are predicted to metabolize and interact with cyclic di-GMP as identified from the annotated genome of B. pseudomallei 1026b. Mutants containing transposon disruptions in each of these genes were characterized for biofilm formation and motility at two temperatures that reflect conditions that the bacteria encounter in the environment and during the infection of a mammalian host. Mutants with transposon insertions in a known phosphodiesterase (cdpA) and a predicted hydrolase (Bp1026b_I2285) gene exhibited decreased motility regardless of temperature. In contrast, the phenotypes exhibited by mutants with transposon insertion mutations in a predicted diguanylate cyclase gene (Bp1026b_II2523) were strikingly influenced by temperature and were dependent on a conserved GG(D/E)EF motif. The transposon insertion mutant exhibited enhanced biofilm formation at 37°C but impaired biofilm formation at 30°C. These studies illustrate the importance of studying behaviors regulated by cyclic di-GMP under varied environmental conditions in order to better understand cyclic di-GMP signaling in bacterial pathogens.IMPORTANCE This report evaluates predicted cyclic di-GMP binding and metabolic proteins from Burkholderia pseudomallei 1026b, a tier 1 select agent and the etiologic agent of melioidosis. Transposon insertion mutants with disruptions in each of the genes encoding these predicted proteins were characterized in order to identify key components of the B. pseudomallei cyclic di-GMP-signaling network. A predicted hydrolase and a phosphodiesterase that modulate swimming motility were identified, in addition to a diguanylate cyclase that modulates biofilm formation and motility in response to temperature. These studies warrant further evaluation of the contribution of cyclic di-GMP to melioidosis in the context of pathogen acquisition from environmental reservoirs and subsequent colonization, dissemination, and persistence within the host.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Burkholderia pseudomallei/fisiología , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Liasas de Fósforo-Oxígeno/metabolismo , Temperatura , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Biología Computacional , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Elementos Transponibles de ADN , Bases de Datos Factuales , Proteínas de Escherichia coli/genética , Evolución Molecular , Regulación Enzimológica de la Expresión Génica/fisiología , Mutación , Liasas de Fósforo-Oxígeno/genética
8.
Infect Immun ; 85(12)2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28970274

RESUMEN

Bacteria in a biofilm community have increased tolerance to antimicrobial therapy. To characterize the role of biofilms in equine endometritis, six mares were inoculated with lux-engineered Pseudomonas aeruginosa strains isolated from equine uterine infections. Following establishment of infection, the horses were euthanized and the endometrial surfaces were imaged for luminescence to localize adherent lux-labeled bacteria. Samples from the endometrium were collected for cytology, histopathology, carbohydrate analysis, and expression of inflammatory cytokine genes. Tissue-adherent bacteria were present in focal areas between endometrial folds (6/6 mares). The Pel exopolysaccharide (biofilm matrix component) and cyclic di-GMP (biofilm-regulatory molecule) were detected in 6/6 mares and 5/6 mares, respectively, from endometrial samples with tissue-adherent bacteria (P < 0.05). A greater incidence (P < 0.05) of Pel exopolysaccharide was present in samples fixed with Bouin's solution (18/18) than in buffered formalin (0/18), indicating that Bouin's solution is more appropriate for detecting bacteria adherent to the endometrium. There were no differences (P > 0.05) in the number of inflammatory cells in the endometrium between areas with and without tissue-adherent bacteria. Neutrophils were decreased (P < 0.05) in areas surrounding tissue-adherent bacteria compared to those in areas free of adherent bacteria. Gene expression of interleukin-10, an immune-modulatory cytokine, was significantly (P < 0.05) increased in areas of tissue-adherent bacteria compared to that in endometrium absent of biofilm. These findings indicate that P. aeruginosa produces a biofilm in the uterus and that the host immune response is modulated focally around areas with biofilm, but inflammation within the tissue is similar in areas with and without biofilm matrix. Future studies will focus on therapeutic options for elimination of bacterial biofilm in the equine uterus.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Endometritis/patología , Enfermedades de los Caballos/patología , Infecciones por Pseudomonas/patología , Pseudomonas aeruginosa/fisiología , Animales , Endometritis/microbiología , Endometrio/microbiología , Endometrio/patología , Femenino , Genes Reporteros , Enfermedades de los Caballos/microbiología , Caballos , Luciferasas/análisis , Luciferasas/genética , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética
9.
Microbiology (Reading) ; 163(11): 1613-1625, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29034850

RESUMEN

Overuse of antibiotics is contributing to an emerging antimicrobial resistance crisis. To better understand how bacteria adapt tolerance and resist antibiotic treatment, Pseudomonas aeruginosa isolates obtained from infection sites sampled from companion animals were collected and evaluated for phenotypic differences. Selected pairs of clonal isolates were obtained from individual infection samples and were assessed for antibiotic susceptibility, cyclic di-GMP levels, biofilm production, motility and genetic-relatedness. A total of 18 samples from equine, feline and canine origin were characterized. A sample from canine otitis media produced a phenotypically heterogeneous pair of P. aeruginosa isolates, 42121A and 42121B, which during growth on culture medium respectively exhibited hyper dye-binding small colony morphology and wild-type phenotypes. Antibiotic susceptibility to gentamicin and ciprofloxacin also differed between this pair of clonal isolates. Sequence analysis of gyrA, a gene known to be involved in ciprofloxacin resistance, indicated that 42121A and 42121B both contained mutations that confer ciprofloxacin resistance, but this did not explain the differences in ciprofloxacin resistance that were observed. Cyclic di-GMP levels also varied between this pair of isolates and were shown to contribute to the observed colony morphology variation and ability to form a biofilm. Our results demonstrate the role of cyclic di-GMP in generating the observed morphological phenotypes that are known to contribute to biofilm-mediated antibiotic tolerance. The generation of phenotypic diversity may go unnoticed during standard diagnostic evaluation, which potentially impacts the therapeutic strategy chosen to treat the corresponding infection and may contribute to the spread of antibiotic resistance.


Asunto(s)
Biopelículas/crecimiento & desarrollo , GMP Cíclico/análogos & derivados , Farmacorresistencia Bacteriana/genética , Pseudomonas aeruginosa/fisiología , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Biopelículas/efectos de los fármacos , Gatos , Ciprofloxacina/farmacología , GMP Cíclico/metabolismo , Girasa de ADN/genética , Perros , Proteínas de Escherichia coli/genética , Expresión Génica , Genoma Bacteriano/genética , Gentamicinas/farmacología , Caballos , Pruebas de Sensibilidad Microbiana , Mutación , Fenotipo , Hidrolasas Diéster Fosfóricas/genética , Liasas de Fósforo-Oxígeno/genética , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética
10.
J Bacteriol ; 198(1): 66-76, 2016 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26100041

RESUMEN

UNLABELLED: We previously identified a second-messenger-regulated signaling system in the environmental bacterium Pseudomonas fluorescens which controls biofilm formation in response to levels of environmental inorganic phosphate. This system contains the transmembrane cyclic di-GMP (c-di-GMP) receptor LapD and the periplasmic protease LapG. LapD regulates LapG and controls the ability of this protease to process a large cell surface adhesin protein, LapA. While LapDG orthologs can be identified in diverse bacteria, predictions of LapG substrates are sparse. Notably, the opportunistic pathogen Pseudomonas aeruginosa harbors LapDG orthologs, but neither the substrate of LapG nor any associated secretion machinery has been identified to date. Here, we identified P. aeruginosa CdrA, a protein known to mediate cell-cell aggregation and biofilm maturation, as a substrate of LapG. We also demonstrated LapDG to be a minimal system sufficient to control CdrA localization in response to changes in the intracellular concentration of c-di-GMP. Our work establishes this biofilm signaling node as a regulator of a type Vb secretion system substrate in a clinically important pathogen. IMPORTANCE: Here, the biological relevance of a conserved yet orphan signaling system in the opportunistic pathogen Pseudomonas aeruginosa is revealed. In particular, we identified the adhesin CdrA, the cargo of a two-partner secretion system, as a substrate of a periplasmic protease whose activity is controlled by intracellular c-di-GMP levels and a corresponding transmembrane receptor via an inside-out signaling mechanism. The data indicate a posttranslational control mechanism of CdrA via c-di-GMP, in addition to its established transcriptional regulation via the same second messenger.


Asunto(s)
GMP Cíclico/análogos & derivados , Periplasma/fisiología , Pseudomonas aeruginosa/fisiología , Sistemas de Secreción Tipo V/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , GMP Cíclico/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Conformación Proteica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreción Tipo V/genética
11.
Microbiology (Reading) ; 162(9): 1651-1661, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27450520

RESUMEN

The second messenger, bis-(3',5')-cyclic dimeric guanosine monophosphate (cyclic di-GMP), is involved in the control of multiple bacterial phenotypes, including those that impact host-pathogen interactions. Bioinformatics analyses predicted that Mycobacterium leprae, an obligate intracellular bacterium and the causative agent of leprosy, encodes three active diguanylate cyclases. In contrast, the related pathogen Mycobacterium tuberculosis encodes only a single diguanylate cyclase. One of the M. leprae unique diguanylate cyclases (ML1419c) was previously shown to be produced early during the course of leprosy. Thus, functional analysis of ML1419c was performed. The gene encoding ML1419c was cloned and expressed in Pseudomonas aeruginosa PAO1 to allow for assessment of cyclic di-GMP production and cyclic di-GMP-mediated phenotypes. Phenotypic studies revealed that ml1419c expression altered colony morphology, motility and biofilm formation of P. aeruginosa PAO1 in a manner consistent with increased cyclic di-GMP production. Direct measurement of cyclic di-GMP levels by liquid chromatography-mass spectrometry confirmed that ml1419c expression increased cyclic di-GMP production in P. aeruginosa PAO1 cultures in comparison to the vector control. The observed phenotypes and increased levels of cyclic di-GMP detected in P. aeruginosa expressing ml1419c could be abrogated by mutation of the active site in ML1419c. These studies demonstrated that ML1419c of M. leprae functions as diguanylate cyclase to synthesize cyclic di-GMP. Thus, this protein was renamed DgcA (Diguanylate cyclase A). These results also demonstrated the ability to use P. aeruginosa as a heterologous host for characterizing the function of proteins involved in the cyclic di-GMP pathway of a pathogen refractory to in vitro growth, M. leprae.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Mycobacterium leprae/enzimología , Liasas de Fósforo-Oxígeno/metabolismo , Proteínas Bacterianas/genética , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Mutación , Mycobacterium leprae/genética , Liasas de Fósforo-Oxígeno/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
12.
J Clin Microbiol ; 54(3): 631-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26719448

RESUMEN

In this study, we evaluated the ability of the equine clinical treatments N-acetylcysteine, EDTA, and hydrogen peroxide to disrupt in vitro biofilms and kill equine reproductive pathogens (Escherichia coli, Pseudomonas aeruginosa, or Klebsiella pneumoniae) isolated from clinical cases. N-acetylcysteine (3.3%) decreased biofilm biomass and killed bacteria within the biofilms of E. coli isolates. The CFU of recoverable P. aeruginosa and K. pneumoniae isolates were decreased, but the biofilm biomass was unchanged. Exposure to hydrogen peroxide (1%) decreased the biofilm biomass and reduced the CFU of E. coli isolates, K. pneumoniae isolates were observed to have a reduction in CFU, and minimal effects were observed for P. aeruginosa isolates. Chelating agents (EDTA formulations) reduced E. coli CFU but were ineffective at disrupting preformed biofilms or decreasing the CFU of P. aeruginosa and K. pneumoniae within a biofilm. No single nonantibiotic treatment commonly used in equine veterinary practice was able to reduce the CFU and biofilm biomass of all three Gram-negative species of bacteria evaluated. An in vivo equine model of infectious endometritis was also developed to monitor biofilm formation, utilizing bioluminescence imaging with equine P. aeruginosa isolates from this study. Following infection, the endometrial surface contained focal areas of bacterial growth encased in a strongly adherent "biofilm-like" matrix, suggesting that biofilms are present during clinical cases of infectious equine endometritis. Our results indicate that Gram-negative bacteria isolated from the equine uterus are capable of producing a biofilm in vitro, and P. aeruginosa is capable of producing biofilm-like material in vivo.


Asunto(s)
Antiinfecciosos/farmacología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Modelos Animales de Enfermedad , Endometritis/tratamiento farmacológico , Endometritis/microbiología , Bacterias Gramnegativas/fisiología , Acetilcisteína/farmacología , Animales , Biomasa , Ácido Edético/farmacología , Femenino , Bacterias Gramnegativas/aislamiento & purificación , Caballos , Peróxido de Hidrógeno/farmacología , Mediciones Luminiscentes , Viabilidad Microbiana/efectos de los fármacos , Coloración y Etiquetado/métodos , Útero/microbiología
13.
Proc Natl Acad Sci U S A ; 109(50): 20632-6, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23175784

RESUMEN

Bacteria have a tendency to attach to surfaces and grow as structured communities called biofilms. Chronic biofilm infections are a problem because they tend to resist antibiotic treatment and are difficult to eradicate. Bacterial biofilms have an extracellular matrix that is usually composed of a mixture of polysaccharides, proteins, and nucleic acids. This matrix has long been assumed to play a passive structural and protective role for resident biofilm cells. Here we show that this view is an oversimplification and that the biofilm matrix can play an active role in stimulating its own synthesis. Working with the model biofilm bacterium Pseudomonas aeruginosa, we found that Psl, a major biofilm matrix polysaccharide for this species, acts as a signal to stimulate two diguanylate cyclases, SiaD and SadC, to produce the intracellular secondary messenger molecule c-di-GMP. Elevated intracellular concentrations of c-di-GMP then lead to the increased production of Psl and other components of the biofilm. This mechanism represents a unique positive feedback regulatory circuit, where the expression of an extracellular polysaccharide promotes biofilm growth in a manner analogous to autocrine signaling in eukaryotes.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Polisacáridos Bacterianos/fisiología , Pseudomonas aeruginosa/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , ADN Bacteriano/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Matriz Extracelular/fisiología , Retroalimentación Fisiológica , Genes Bacterianos , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Pseudomonas aeruginosa/genética , Sistemas de Mensajero Secundario , Transducción de Señal
14.
J Microbiol Biol Educ ; 25(1): e0014023, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38661401

RESUMEN

Course-based undergraduate research experiences (CUREs) provide opportunities for undergraduate students to engage in authentic research and generally increase the participation rate of students in research. Students' participation in research has a positive impact on their science identity and self-efficacy, both of which can predict integration of students in Science, Technology, Engineering, and Math (STEM), especially for underrepresented students. The main goal of this study was to investigate instructor-initiated CUREs implemented as upper-level elective courses in the Biomedical Sciences major. We hypothesized that these CUREs would (i) have a positive impact on students' scientific identity and self-efficacy and (ii) result in gains in students' self-assessed skills in laboratory science, research, and science communication. We used Likert-type surveys developed by Estrada et al. (14) under the Tripartite Integration Model of Social Influence to measure scientific identity, self-efficacy, and scientific value orientation. When data from all CUREs were combined, our results indicate that students' self-efficacy and science identity significantly increased after completion. Students' self-assessment of research and lab-related skills was significantly higher after completion of the CUREs. We also observed that prior to participation in the CUREs, students' self-assessment of molecular and bioinformatic skills was low, when compared with microbiological skills. This may indicate strengths and gaps in our curriculum that could be explored further.

15.
PLoS Pathog ; 7(1): e1001264, 2011 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-21298031

RESUMEN

Bacterial extracellular polysaccharides are a key constituent of the extracellular matrix material of biofilms. Pseudomonas aeruginosa is a model organism for biofilm studies and produces three extracellular polysaccharides that have been implicated in biofilm development, alginate, Psl and Pel. Significant work has been conducted on the roles of alginate and Psl in biofilm development, however we know little regarding Pel. In this study, we demonstrate that Pel can serve two functions in biofilms. Using a novel assay involving optical tweezers, we demonstrate that Pel is crucial for maintaining cell-to-cell interactions in a PA14 biofilm, serving as a primary structural scaffold for the community. Deletion of pelB resulted in a severe biofilm deficiency. Interestingly, this effect is strain-specific. Loss of Pel production in the laboratory strain PAO1 resulted in no difference in attachment or biofilm development; instead Psl proved to be the primary structural polysaccharide for biofilm maturity. Furthermore, we demonstrate that Pel plays a second role by enhancing resistance to aminoglycoside antibiotics. This protection occurs only in biofilm populations. We show that expression of the pel gene cluster and PelF protein levels are enhanced during biofilm growth compared to liquid cultures. Thus, we propose that Pel is capable of playing both a structural and a protective role in P. aeruginosa biofilms.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Polisacáridos Bacterianos/metabolismo , Pseudomonas aeruginosa/fisiología , Alginatos , Antibacterianos/farmacología , Adhesión Bacteriana , Proteínas Bacterianas/genética , Matriz Extracelular/fisiología , Regulación Bacteriana de la Expresión Génica , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Polisacáridos Bacterianos/genética , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Tobramicina/farmacología
17.
Pathogens ; 12(4)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37111508

RESUMEN

Anthrax is a disease that affects livestock, wildlife, and humans worldwide; however, its relative impacts on these populations remain underappreciated. Feral swine (Sus scrofa) are relatively resistant to developing anthrax, and past serosurveys have alluded to their utility as sentinels, yet empirical data to support this are lacking. Moreover, whether feral swine may assist in the dissemination of infectious spores is unknown. To address these knowledge gaps, we intranasally inoculated 15 feral swine with varying quantities of Bacillus anthracis Sterne 34F2 spores and measured the seroconversion and bacterial shedding over time. The animals also were inoculated either one or three times. The sera were evaluated by enzyme-linked immunosorbent assay (ELISA) for antibodies against B. anthracis, and nasal swabs were cultured to detect bacterial shedding from the nasal passages. We report that the feral swine developed antibody responses to B. anthracis and that the strength of the response correlated with the inoculum dose and the number of exposure events experienced. Isolation of viable bacteria from the nasal passages of the animals throughout the study period suggests that feral swine may assist in the spread of infectious spores on the landscape and have implications for the identification of environments contaminated with B. anthracis as well as the exposure risk to more susceptible hosts.

18.
Appl Environ Microbiol ; 78(15): 5060-9, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22582064

RESUMEN

The increased tolerance toward the host immune system and antibiotics displayed by biofilm-forming Pseudomonas aeruginosa and other bacteria in chronic infections such as cystic fibrosis bronchopneumonia is of major concern. Targeting of biofilm formation is believed to be a key aspect in the development of novel antipathogenic drugs that can augment the effect of classic antibiotics by decreasing antimicrobial tolerance. The second messenger cyclic di-GMP is a positive regulator of biofilm formation, and cyclic di-GMP signaling is now regarded as a potential target for the development of antipathogenic compounds. Here we describe the development of fluorescent monitors that can gauge the cellular level of cyclic di-GMP in P. aeruginosa. We have created cyclic di-GMP level reporters by transcriptionally fusing the cyclic di-GMP-responsive cdrA promoter to genes encoding green fluorescent protein. We show that the reporter constructs give a fluorescent readout of the intracellular level of cyclic di-GMP in P. aeruginosa strains with different levels of cyclic di-GMP. Furthermore, we show that the reporters are able to detect increased turnover of cyclic di-GMP mediated by treatment of P. aeruginosa with the phosphodiesterase inducer nitric oxide. Considering that biofilm formation is a necessity for the subsequent development of a chronic infection and therefore a pathogenicity trait, the reporters display a significant potential for use in the identification of novel antipathogenic compounds targeting cyclic di-GMP signaling, as well as for use in research aiming at understanding the biofilm biology of P. aeruginosa.


Asunto(s)
Biopelículas , GMP Cíclico/análisis , Fluorescencia , Genes Reporteros/genética , Pseudomonas aeruginosa/química , Adhesinas Bacterianas/genética , Proteínas Fluorescentes Verdes/genética , Plásmidos/genética , Regiones Promotoras Genéticas/genética
19.
Sci Rep ; 12(1): 203, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997073

RESUMEN

Burkholderia pseudomallei is a saprophytic bacterium endemic throughout the tropics causing severe disease in humans and animals. Environmental signals such as the accumulation of inorganic ions mediates the biofilm forming capabilities and survival of B. pseudomallei. We have previously shown that B. pseudomallei responds to nitrate and nitrite by inhibiting biofilm formation and altering cyclic di-GMP signaling. To better understand the roles of nitrate-sensing in the biofilm inhibitory phenotype of B. pseudomallei, we created in-frame deletions of narX (Bp1026b_I1014) and narL (Bp1026b_I1013), which are adjacent components of a conserved nitrate-sensing two-component system. We observed transcriptional downregulation in key components of the biofilm matrix in response to nitrate and nitrite. Some of the most differentially expressed genes were nonribosomal peptide synthases (NRPS) and/or polyketide synthases (PKS) encoding the proteins for the biosynthesis of bactobolin, malleilactone, and syrbactin, and an uncharacterized cryptic NRPS biosynthetic cluster. RNA expression patterns were reversed in ∆narX and ∆narL mutants, suggesting that nitrate sensing is an important checkpoint for regulating the diverse metabolic changes occurring in the biofilm inhibitory phenotype. Moreover, in a macrophage model of infection, ∆narX and ∆narL mutants were attenuated in intracellular replication, suggesting that nitrate sensing contributes to survival in the host.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Productos Biológicos/metabolismo , Burkholderia pseudomallei/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Proteínas Bacterianas/genética , Benzopiranos/metabolismo , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno , Lactonas/metabolismo , Viabilidad Microbiana , Mutación , Transcripción Genética
20.
Mol Microbiol ; 75(4): 827-42, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20088866

RESUMEN

Pseudomonas aeruginosa, the principal pathogen of cystic fibrosis patients, forms antibiotic-resistant biofilms promoting chronic colonization of the airways. The extracellular (EPS) matrix is a crucial component of biofilms that provides the community multiple benefits. Recent work suggests that the secondary messenger, cyclic-di-GMP, promotes biofilm formation. An analysis of factors specifically expressed in P. aeruginosa under conditions of elevated c-di-GMP, revealed functions involved in the production and maintenance of the biofilm extracellular matrix. We have characterized one of these components, encoded by the PA4625 gene, as a putative adhesin and designated it cdrA. CdrA shares structural similarities to extracellular adhesins that belong to two-partner secretion systems. The cdrA gene is in a two gene operon that also encodes a putative outer membrane transporter, CdrB. The cdrA gene encodes a 220 KDa protein that is predicted to be rod-shaped protein harbouring a beta-helix structural motif. Western analysis indicates that the CdrA is produced as a 220 kDa proprotein and processed to 150 kDa before secretion into the extracellular medium. We demonstrated that cdrAB expression is minimal in liquid culture, but is elevated in biofilm cultures. CdrAB expression was found to promote biofilm formation and auto-aggregation in liquid culture. Aggregation mediated by CdrA is dependent on the Psl polysaccharide and can be disrupted by adding mannose, a key structural component of Psl. Immunoprecipitation of Psl present in culture supernatants resulted in co-immunoprecipitation of CdrA, providing additional evidence that CdrA directly binds to Psl. A mutation in cdrA caused a decrease in biofilm biomass and resulted in the formation of biofilms exhibiting decreased structural integrity. Psl-specific lectin staining suggests that CdrA either cross-links Psl polysaccharide polymers and/or tethers Psl to the cells, resulting in increased biofilm structural stability. Thus, this study identifies a key protein structural component of the P. aeruginosa EPS matrix.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Biopelículas , Pseudomonas aeruginosa/patogenicidad , Adhesinas Bacterianas/química , Adhesinas Bacterianas/genética , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica , Humanos , Mutación , Operón , Polisacáridos Bacterianos/metabolismo , Pseudomonas aeruginosa/citología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA