Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Am Chem Soc ; 145(23): 12920-12927, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37267070

RESUMEN

Magnetic interactions in combination with nontrivial band structures can give rise to several exotic physical properties such as a large anomalous Hall effect, the anomalous Nernst effect, and the topological Hall effect (THE). Antiferromagnetic (AFM) materials exhibit the THE due to the presence of nontrivial spin structures. EuCuAs crystallizes in a hexagonal structure with an AFM ground state (Néel temperature ∼ 16 K). In this work, we observe a large topological Hall resistivity of ∼7.4 µΩ-cm at 13 K which is significantly higher than the giant topological Hall effect of Gd2PdSi3 (∼3 µΩ-cm). Neutron diffraction experiments reveal that the spins form a transverse conical structure during the metamagnetic transition, resulting in the large THE. In addition, by controlling the magnetic ordering structure of EuCuAs with an external magnetic field, several fascinating topological states such as Dirac and Weyl semimetals have been revealed. These results suggest the possibility of spintronic devices based on antiferromagnets with tailored noncoplanar spin configurations.

2.
Phys Rev Lett ; 130(6): 066402, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36827563

RESUMEN

Novel topological phases of matter are fruitful platforms for the discovery of unconventional electromagnetic phenomena. Higher-fold topology is one example, where the low-energy description goes beyond standard model analogs. Despite intensive experimental studies, conclusive evidence remains elusive for the multigap topological nature of higher-fold chiral fermions. In this Letter, we leverage a combination of fine-tuned chemical engineering and photoemission spectroscopy with photon energy contrast to discover the higher-fold topology of a chiral crystal. We identify all bulk branches of a higher-fold chiral fermion for the first time, critically important for allowing us to explore unique Fermi arc surface states in multiple interband gaps, which exhibit an emergent ladder structure. Through designer chemical gating of the samples in combination with our measurements, we uncover an unprecedented multigap bulk boundary correspondence. Our demonstration of multigap electronic topology will propel future research on unconventional topological responses.

3.
Phys Rev Lett ; 127(15): 157405, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34678039

RESUMEN

Despite the fundamental nature of the edge state in topological physics, direct measurement of electronic and optical properties of the Fermi arcs of topological semimetals has posed a significant experimental challenge, as their response is often overwhelmed by the metallic bulk. However, laser-driven currents carried by surface and bulk states can propagate in different directions in nonsymmorphic crystals, allowing for the two components to be easily separated. Motivated by a recent theoretical prediction G. Chang et al., Phys. Rev. Lett. 124, 166404 (2020)PRLTAO0031-900710.1103/PhysRevLett.124.166404, we have measured the linear and circular photogalvanic effect currents deriving from the Fermi arcs of the nonsymmorphic, chiral Weyl semimetal RhSi over the 0.45-1.1 eV incident photon energy range. Our data are in good agreement with the predicted spectral shape of the circular photogalvanic effect as a function of photon energy, although the direction of the surface photocurrent departed from the theoretical expectation over the energy range studied. Surface currents arising from the linear photogalvanic effect were observed as well, with the unexpected result that only two of the six allowed tensor element were required to describe the measurements, suggesting an approximate emergent mirror symmetry inconsistent with the space group of the crystal.

4.
Chemistry ; 27(57): 14209-14216, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33930206

RESUMEN

In a joint effort utilizing modified sample preparation, microscopy, X-ray diffraction and micro-fabrication, it became possible to prepare single crystals of the "hidden" phase AlCr2 . High-resolution X-ray diffraction analysis is described in detail for two crystals with the similar overall composition, but different degree of disorder, which seems to be the main cause for the differing unit cell parameters. Chemical bonding analysis of AlCr2 in comparison to prototypical MoSi2 shows pronounced differences reflecting the interchange of main group element vs. transition metal as majority component.


Asunto(s)
Cristalografía por Rayos X , Difracción de Rayos X
5.
Angew Chem Int Ed Engl ; 57(36): 11579-11583, 2018 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-29897653

RESUMEN

Two new calcium nitridomanganates, Ca12 [Mn19 N23 ] (P3, a=11.81341(3) Å, c=5.58975(2) Å, Z=1) and Ca133 [Mn216 N260 ] (P3‾ , a=39.477(1) Å, c=5.5974(2) Å, Z=1), were obtained by a gas-solid reaction of Ca3 N2 and Mn with N2 at 1273 K and 1223 K, respectively. The crystal structure of Ca12 [Mn19 N23 ] was determined from high-resolution X-ray synchrotron powder diffraction data, whereas single-crystal X-ray diffraction was employed to establish the crystal structure of the Ca133 [Mn216 N260 ] phase, which classifies as a complex metallic alloy (CMA). Both crystal structures have 2D nitridomanganate layers containing similar building blocks but of different levels of structural complexity. Bonding analysis as well as magnetic susceptibility and electron spin resonance measurements revealed that only a fraction of the Mn atoms in both structures carries a localized magnetic moment, while for most Mn species the magnetism is quenched as a result of metal-metal bond formation.

6.
Angew Chem Int Ed Engl ; 57(21): 6130-6135, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29577533

RESUMEN

Boron carbide, the simple chemical combination of boron and carbon, is one of the best-known binary ceramic materials. Despite that, a coherent description of its crystal structure and physical properties resembles one of the most challenging problems in materials science. By combining ab initio computational studies, precise crystal structure determination from diffraction experiments, and state-of-the-art high-resolution transmission electron microscopy imaging, this concerted investigation reveals hitherto unknown local structure modifications together with the known structural alterations. The mixture of different local atomic arrangements within the real crystal structure reduces the electron deficiency of the pristine structure CBC+B12 , answering the question about electron precise character of boron carbide and introducing new electronic states within the band gap, which allow a better understanding of physical properties.

7.
Chemistry ; 23(63): 15869-15873, 2017 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-28700097

RESUMEN

This study gives an account of an innovative, crucible-free technique for the synthesis of single-phase borides at relatively moderate temperatures. A metal wire heated by an electrical current reacts with a chosen gaseous boron halide in a gas/solid reaction yielding a single-phase, oxygen- and carbon-free product, as evidenced by X-ray powder diffraction and chemical analysis. This method is demonstrated using the example of hafnium reacting with boron tribromide. Preliminary thermodynamic considerations show that this kind of crucible-free synthesis specifically enables the preparation of borides of transition metals and similar elements.

8.
Inorg Chem ; 56(12): 7217-7229, 2017 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-28586201

RESUMEN

We present the synthesis and characterization of novel cyclometalated ruthenium N-heterocyclic carbene (NHC) complexes of the general formula [Ru(C^C*)(bpy)2]PF6 (bpy = 2,2'-bipyridine), with the C^C* ligand being based on different 1-phenylimidazoles. They were synthesized in a one-pot procedure starting from the corresponding p-cymene NHC complexes [Ru(C^C*)(p-cymene)Cl]. Their structural, spectroscopic, and electrochemical properties were investigated by NMR, X-ray, UV/vis, and CV, as well as density functional theory methods. Because of the stronger electron-donating carbene ligands, these complexes represent a new class of bisheteroleptic dyes with improved photophysical and electrochemical properties.

9.
Chemistry ; 22(13): 4626-31, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26879367

RESUMEN

The novel host-guest compound [Cs6Cl][Fe24Se26] (I4/mmm; a=11.0991(9), c=22.143(2) Å) was obtained by reacting Cs2Se,CsCl, Fe, and Se in closed ampoules. This is the first member of a family of compounds with unique Fe-Se topology, which consists of edge-sharing, extended fused cubane [Fe8Se6Se8/3] blocks that host a guest complex ion, [Cs6Cl](5+). Thus Fe is tetrahedrally coordinated and divalent with strong exchange couplings, which results in an ordered antiferromagnetic state below TN =221 K. At low temperatures, a distribution of hyperfine fields in the Mössbauer spectra suggests a structural distortion or a complex spin structure. With its strong Fe-Se covalency, the compound is close to electronic itinerancy and is, therefore, prone to exhibit tunable properties.


Asunto(s)
Cesio/química , Cloruros/química , Compuestos Ferrosos/química , Compuestos Organometálicos/química , Cristalografía por Rayos X , Modelos Moleculares , Análisis Espectral
10.
Inorg Chem ; 54(13): 6338-46, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-26102602

RESUMEN

ThPt2 crystallizes with unique type of structure (space group I4/mmm, a = 4.1565(1) Å, c = 14.3663(7) Å, Pearson symbol tI12), which belongs to the group of the close packed tetragonal structures. An analysis of the chemical bonding by the electron localizability approach reveals the formation of two-dimensional layered platinum anionic substructures interlinked by strongly polar bonds to Th. Measurements of magnetic susceptibility, electrical resistivity, and specific heat show ThPt2 to be diamagnetic with metallic type of electrical conductivity in good agreement with the calculated electronic structure (N(EF) = 0.9 states eV(-1) f.u.(-1)).

11.
Inorg Chem ; 53(20): 11173-84, 2014 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-25265469

RESUMEN

Two new ternary arsenides, namely, Eu7Cu44As23 and Sr7Cu44As23, were synthesized from elements at 800 °C. Their crystal structure represents a new filled version of the BaHg11 motif with cubic voids alternately occupied by Eu(Sr) and As atoms, resulting in a 2 × 2 × 2 superstructure of the aristotype: space group Fm3̅m, a = 16.6707(2) Å and 16.7467(2) Å, respectively. The Eu derivative exhibits ferromagnetic ordering below 17.5 K. In agreement with band structure calculations both compounds are metals, exhibiting relatively low thermopower, but high electrical and low thermal conductivity.

12.
Phys Chem Chem Phys ; 16(48): 27119-33, 2014 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-25388502

RESUMEN

We report on the inelastic response of AV2Al20 (with A = Sc, La and Ce) probed by high-resolution inelastic neutron scattering experiments. Intense signals associated with the dynamics of Sc, La and Ce are identified in the low-energy range at 6-14 meV in ScV2Al20 and at 8-16 meV in LaV2Al20 and CeV2Al20. Their response to temperature changes between 2 and 300 K reveals a very weak softening of the modes upon heating in LaV2Al20 and CeV2Al20 and a distinguished blue shift by about 2 meV in ScV2Al20. By means of density functional theory (DFT) and lattice dynamics calculations (LDC) we show that the unusual anharmonicity of the Sc-dominated modes is due to the local potential of Sc featured by a strong quartic term. The vibrational dynamics of ScV2Al20 as well as of LaV2Al20 and CeV2Al20 is reproduced by a set of eigenmodes. To screen the validity of the DFT and LDC results they are confronted with data from X-ray diffraction measurements. The effect of the strong phonon renormalization in ScV2Al20 on thermodynamic observables is computed on grounds of the LDC derived inelastic response. To set the data in a general context of AV2Al20 compounds and their physical properties we report in addition computer and experimental results of the binary V2Al20 compound.

13.
Adv Sci (Weinh) ; : e2404495, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38889302

RESUMEN

Heusler compounds belong to a large family of materials and exhibit numerous physical phenomena with promising applications, particularly ferromagnetic Weyl semimetals for their use in spintronics and memory devices. Here, anomalous Hall transport is reported in the room-temperature ferromagnets NiMnSb (half-metal with a Curie temperature (TC) of 660 K) and PtMnSb (pseudo half-metal with a TC of 560 K). They exhibit 4 µB/f.u. magnetic moments and non-trivial topological states. Moreover, NiMnSb and PtMnSb are the first half-Heusler ferromagnets to be reported as Weyl semimetals, and they exhibit anomalous Hall conductivity (AHC) due to the extended tail of the Berry curvature in these systems. The experimentally measured AHC values at 2 K are 1.8 × 102 Ω-1 cm-1 for NiMnSb and 2.2 × 103 Ω-1 cm-1 for PtMnSb. The comparatively large value between them can be explained in terms of the spin-orbit coupling strength. The combined approach of using ab initio calculations and a simple model shows that the Weyl nodes located far from the Fermi energy act as the driving mechanism for the intrinsic AHC. This contribution of topological features at higher energies can be generalized.

14.
Nat Commun ; 15(1): 3720, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38697958

RESUMEN

Spin-orbit coupling in noncentrosymmetric crystals leads to spin-momentum locking - a directional relationship between an electron's spin angular momentum and its linear momentum. Isotropic orthogonal Rashba spin-momentum locking has been studied for decades, while its counterpart, isotropic parallel Weyl spin-momentum locking has remained elusive in experiments. Theory predicts that Weyl spin-momentum locking can only be realized in structurally chiral cubic crystals in the vicinity of Kramers-Weyl or multifold fermions. Here, we use spin- and angle-resolved photoemission spectroscopy to evidence Weyl spin-momentum locking of multifold fermions in the chiral topological semimetal PtGa. We find that the electron spin of the Fermi arc surface states is orthogonal to their Fermi surface contour for momenta close to the projection of the bulk multifold fermion at the Γ point, which is consistent with Weyl spin-momentum locking of the latter. The direct measurement of the bulk spin texture of the multifold fermion at the R point also displays Weyl spin-momentum locking. The discovery of Weyl spin-momentum locking may lead to energy-efficient memory devices and Josephson diodes based on chiral topological semimetals.

15.
Adv Sci (Weinh) ; 10(13): e2207121, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36828783

RESUMEN

Weyl semimetal is a unique topological phase with topologically protected band crossings in the bulk and robust surface states called Fermi arcs. Weyl nodes always appear in pairs with opposite chiralities, and they need to have either time-reversal or inversion symmetry broken. When the time-reversal symmetry is broken the minimum number of Weyl points (WPs) is two. If these WPs are located at the Fermi level, they form an ideal Weyl semimetal (WSM). In this study, intrinsic ferromagnetic (FM) EuCd2 As2 are grown, predicted to be an ideal WSM and studied its electronic structure by angle-resolved photoemission spectroscopy, and scanning tunneling microscopy which agrees closely with the first principles calculations. Moreover, anomalous Hall conductivity and Nernst effect are observed, resulting from the non-zero Berry curvature, and the topological Hall effect arising from changes in the band structure caused by spin canting produced by magnetic fields. These findings can help realize several exotic quantum phenomena in inorganic topological materials that are otherwise difficult to assess because of the presence of multiple pairs of Weyl nodes.

16.
Inorg Chem ; 51(14): 7472-83, 2012 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-22725845

RESUMEN

The ternary boron compounds TM(7)TM'(6)B(8) (TM = Ta, Nb; TM' = Ru, Rh, Ir) were prepared by high-temperature thermal treatment of mixtures of the elements. An analysis of the chemical bonding by the electron density/electron localizability approach reveals formation of covalently bonded polyanions [B(6)] and [TM'(6)B(2)]. The cationic part of the structure contains separated TM cations. In agreement with the chemical bonding analysis and band structure calculations, all TM(7)TM'(6)B(8) compounds are metallic Pauli-paramagnets (TM' = Ru, Rh) or diamagnets (TM' = Ir).

17.
ACS Appl Mater Interfaces ; 14(50): 55587-55593, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36484529

RESUMEN

Transition metal phosphide alloying is an effective approach for optimizing the electronic structure and improving the intrinsic performance of the hydrogen evolution reaction (HER). However, obtaining 3d transition metal phosphides alloyed with noble metals is still a challenge owing to their difference in electronegativity, and the influence of their electronic structure modulated by noble metals on the HER reaction also remains unclear. In this study, we successfully incorporated Ru into an Fe2P single crystal via the Bridgeman method and used it as a model catalyst, which effectively promoted HER. Hall transport measurements combined with first-principles calculations revealed that Ru acted as an electron dopant in the structure and increased the Fermi level, leading to a decreased water dissociation barrier and an improved electron-transfer Volmer step at low overpotentials. Additionally, the (21̅1) facet of Ru-Fe2P was found to be more active than its (001) facet, mainly due to the lower H desorption barrier at high overpotentials. The synergistic effect of Ru and Fe sites was also revealed to facilitate H* and OH* desorption compared with Fe2P. Therefore, this study elucidates the boosting effect of Ru-alloyed iron phosphides and offers new understanding about the relationship between their electronic structure and HER performance.

18.
Inorg Chem ; 50(4): 1250-7, 2011 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-21250680

RESUMEN

Single crystals of Ba(8)Au(5.3)Ge(40.7) [space group Pm(3)n (No. 223), a = 10.79891(8) Å] were prepared by a Bridgman technique. The crystal structure refinement based on single-crystal X-ray diffraction data does not reveal any vacancies in the Au/Ge framework or in the cages. In addition to the ionic bonding between Ba and the anionic framework, a direct interaction between Ba and Au atoms was identified in Ba(8)Au(5.3)Ge(40.7) by applying the electron localizability indicator. As expected by the chemical-bonding picture, Ba(8)Au(5.3)Ge(40.7) is a diamagnet and shows p-type electrical conductivity with a hole carrier concentration of 7.14 × 10(19) cm(-3) at 300 K and very low lattice thermal conductivity of ≈0.6 W m(-1) K(-1) at 500 K. The thermoelectric figure of merit ZT of single crystals of Ba(8)Au(5.3)Ge(40.7) attains 0.3 at 511 K and reaches 0.9 at 680 K in a polycrystalline sample of closely similar composition. This opens up an opportunity for tuning of the thermoelectric properties of materials in the Ba-Au-Ge clathrate system by changing the chemical composition.

19.
Sci Adv ; 7(20)2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33990329

RESUMEN

The assignment of enantiomorphs by diffraction methods shows fundamental differences for x-rays and electrons. This is particularly evident for the chiral allotrope of ß-Mn. While it is not possible to determine the sense of chirality of ß-Mn with established x-ray diffraction methods, Kikuchi pattern simulation of the enantiomorphs reveals differences, if dynamical electron diffraction is considered. Quantitative comparison between experimental and simulated Kikuchi patterns allows the spatially resolved assignment of the enantiomorph in polycrystalline materials of ß-Mn, as well as the structurally strongly related phase Pt2Cu3B. On the basis of enantiomorph distribution maps, crystals were extracted from enantiopure domains by micropreparation techniques. The x-ray diffraction analyses confirm the assignment of the Kikuchi pattern evaluations for Pt2Cu3B and do not allow to distinguish between the enantiomorphs of ß-Mn.

20.
Chem Mater ; 33(21): 8343-8350, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34776612

RESUMEN

Magnetic topological insulators provide an important platform for realizing several exotic quantum phenomena, such as the axion insulating state and the quantum anomalous Hall effect, owing to the interplay between topology and magnetism. MnBi4Te7 is a two-dimensional Z2 antiferromagnetic (AFM) topological insulator with a Néel temperature of ∼13 K. In AFM materials, the topological Hall effect (THE) is observed owing to the existence of nontrivial spin structures. A material with noncollinearity that develops in the AFM phase rather than at the onset of the AFM order is particularly important. In this study, we observed that such an unanticipated THE starts to develop in a MnBi4Te7 single crystal when the magnetic field is rotated away from the easy axis (c-axis) of the system. Furthermore, the THE resistivity reaches a giant value of ∼7 µΩ-cm at 2 K when the angle between the magnetic field and the c-axis is 75°. This value is significantly higher than the values for previously reported systems with noncoplanar structures. The THE can be ascribed to the noncoplanar spin structure resulting from the canted state during the spin-flip transition in the ground AFM state of MnBi4Te7. The large THE at a relatively low applied field makes the MnBi4Te7 system a potential candidate for spintronic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA