Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(6): 067001, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38394602

RESUMEN

Electrically driven spin resonance is a powerful technique for controlling semiconductor spin qubits. However, it faces challenges in qubit addressability and off-resonance driving in larger systems. We demonstrate coherent bichromatic Rabi control of quantum dot hole spin qubits, offering a spatially selective approach for large qubit arrays. By applying simultaneous microwave bursts to different gate electrodes, we observe multichromatic resonance lines and resonance anticrossings that are caused by the ac Stark shift. Our theoretical framework aligns with experimental data, highlighting interdot motion as the dominant mechanism for bichromatic driving.

2.
Nano Lett ; 23(11): 4716-4722, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37212490

RESUMEN

Semiconducting nanowire Josephson junctions represent an attractive platform to investigate the anomalous Josephson effect and detect topological superconductivity. However, an external magnetic field generally suppresses the supercurrent through hybrid nanowire junctions and significantly limits the field range in which the supercurrent phenomena can be studied. In this work, we investigate the impact of the length of InSb-Al nanowire Josephson junctions on the supercurrent resilience against magnetic fields. We find that the critical parallel field of the supercurrent can be considerably enhanced by reducing the junction length. Particularly, in 30 nm long junctions supercurrent can persist up to 1.3 T parallel field─approaching the critical field of the superconducting film. Furthermore, we embed such short junctions into a superconducting loop and obtain the supercurrent interference at a parallel field of 1 T. Our findings are highly relevant for multiple experiments on hybrid nanowires requiring a magnetic-field-resilient supercurrent.

3.
Nano Lett ; 23(7): 2522-2529, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36975126

RESUMEN

Highly uniform quantum systems are essential for the practical implementation of scalable quantum processors. While quantum dot spin qubits based on semiconductor technology are a promising platform for large-scale quantum computing, their small size makes them particularly sensitive to their local environment. Here, we present a method to electrically obtain a high degree of uniformity in the intrinsic potential landscape using hysteretic shifts of the gate voltage characteristics. We demonstrate the tuning of pinch-off voltages in quantum dot devices over hundreds of millivolts that then remain stable at least for hours. Applying our method, we homogenize the pinch-off voltages of the plunger gates in a linear array for four quantum dots, reducing the spread in pinch-off voltages by one order of magnitude. This work provides a new tool for the tuning of quantum dot devices and offers new perspectives for the implementation of scalable spin qubit arrays.

4.
Nano Lett ; 19(6): 3575-3582, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31094527

RESUMEN

High aspect-ratio InSb nanowires (NWs) of high chemical purity are sought for implementing advanced quantum devices. The growth of InSb NWs is challenging, generally requiring a stem of a foreign material for nucleation. Such a stem tends to limit the length of InSb NWs and its material becomes incorporated in the InSb segment. Here, we report on the growth of chemically pure InSb NWs tens of microns long. Using a selective-area mask in combination with gold as a catalyst allows complete omission of the stem, thus demonstrating that InSb NWs can grow directly from the substrate. The introduction of the selective-area mask gives rise to novel growth kinetics, demonstrating high growth rates and complete suppression of layer deposition on the mask for Sb-rich conditions. The crystal quality and chemical purity of these NWs is reflected in the significant enhancement of low-temperature electron mobility, yielding an average of 4.4 × 104 cm2/(V s), compared to previously studied InSb NWs grown on stems.

5.
Nano Lett ; 19(1): 218-227, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30521341

RESUMEN

Selective-area growth is a promising technique for enabling of the fabrication of the scalable III-V nanowire networks required to test proposals for Majorana-based quantum computing devices. However, the contours of the growth parameter window resulting in selective growth remain undefined. Herein, we present a set of experimental techniques that unambiguously establish the parameter space window resulting in selective III-V nanowire networks growth by molecular beam epitaxy. Selectivity maps are constructed for both GaAs and InAs compounds based on in situ characterization of growth kinetics on GaAs(001) substrates, where the difference in group III adatom desorption rates between the III-V surface and the amorphous mask area is identified as the primary mechanism governing selectivity. The broad applicability of this method is demonstrated by the successful realization of high-quality InAs and GaAs nanowire networks on GaAs, InP, and InAs substrates of both (001) and (111)B orientations as well as homoepitaxial InSb nanowire networks. Finally, phase coherence in Aharonov-Bohm ring experiments validates the potential of these crystals for nanoelectronics and quantum transport applications. This work should enable faster and better nanoscale crystal engineering over a range of compound semiconductors for improved device performance.

6.
Nat Nanotechnol ; 19(1): 21-27, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37640909

RESUMEN

The efficient control of a large number of qubits is one of the most challenging aspects for practical quantum computing. Current approaches in solid-state quantum technology are based on brute-force methods, where each and every qubit requires at least one unique control line-an approach that will become unsustainable when scaling to the required millions of qubits. Here, inspired by random-access architectures in classical electronics, we introduce the shared control of semiconductor quantum dots to efficiently operate a two-dimensional crossbar array in planar germanium. We tune the entire array, comprising 16 quantum dots, to the few-hole regime. We then confine an odd number of holes in each site to isolate an unpaired spin per dot. Moving forward, we demonstrate on a vertical and a horizontal double quantum dot a method for the selective control of the interdot coupling and achieve a tunnel coupling tunability over more than 10 GHz. The operation of a quantum electronic device with fewer control terminals than tunable experimental parameters represents a compelling step forward in the construction of scalable quantum technology.

7.
Adv Mater ; 34(33): e2202034, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35680622

RESUMEN

In superconducting quantum circuits, aluminum is one of the most widely used materials. It is currently also the superconductor of choice for the development of topological qubits. However, aluminum-based devices suffer from poor magnetic field compatibility. Herein, this limitation is resolved by showing that adatoms of heavy elements (e.g., platinum) increase the critical field of thin aluminum films by more than a factor of two. Using tunnel junctions, it is shown that the increased field resilience originates from spin-orbit scattering introduced by Pt. This property is exploited in the context of the superconducting proximity effect in semiconductor-superconductor hybrids, where it is shown that InSb nanowires strongly coupled to Al/Pt films can maintain superconductivity up to 7 T. The two-electron charging effect is shown to be robust against the presence of heavy adatoms. Additionally, non-local spectroscopy is used in a three-terminal geometry to probe the bulk of hybrid devices, showing that it remains free of sub-gap states. Finally, it is demonstrated that proximitized semiconductor states maintain their ability to Zeeman-split in an applied magnetic field. Combined with the chemical stability and well-known fabrication routes of aluminum, Al/Pt emerges as the natural successor to Al-based systems and is a compelling alternative to other superconductors, whenever high-field resilience is required.

8.
Nat Commun ; 12(1): 4914, 2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34389705

RESUMEN

The realization of hybrid superconductor-semiconductor quantum devices, in particular a topological qubit, calls for advanced techniques to readily and reproducibly engineer induced superconductivity in semiconductor nanowires. Here, we introduce an on-chip fabrication paradigm based on shadow walls that offers substantial advances in device quality and reproducibility. It allows for the implementation of hybrid quantum devices and ultimately topological qubits while eliminating fabrication steps such as lithography and etching. This is critical to preserve the integrity and homogeneity of the fragile hybrid interfaces. The approach simplifies the reproducible fabrication of devices with a hard induced superconducting gap and ballistic normal-/superconductor junctions. Large gate-tunable supercurrents and high-order multiple Andreev reflections manifest the exceptional coherence of the resulting nanowire Josephson junctions. Our approach enables the realization of 3-terminal devices, where zero-bias conductance peaks emerge in a magnetic field concurrently at both boundaries of the one-dimensional hybrids.

9.
Nat Commun ; 11(1): 3666, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32699261

RESUMEN

Detecting the transmission phase of a quantum dot via interferometry can reveal the symmetry of the orbitals and details of electron transport. Crucially, interferometry will enable the read-out of topological qubits based on one-dimensional nanowires. However, measuring the transmission phase of a quantum dot in a nanowire has not yet been established. Here, we exploit recent breakthroughs in the growth of one-dimensional networks and demonstrate interferometric read-out in a nanowire-based architecture. In our two-path interferometer, we define a quantum dot in one branch and use the other path as a reference arm. We observe Fano resonances stemming from the interference between electrons that travel through the reference arm and undergo resonant tunnelling in the quantum dot. Between consecutive Fano peaks, the transmission phase exhibits phase lapses that are affected by the presence of multiple trajectories in the interferometer. These results provide critical insights for the design of future topological qubits.

10.
Nat Commun ; 9(1): 4801, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30442935

RESUMEN

The number of electrons in small metallic or semiconducting islands is quantised. When tunnelling is enabled via opaque barriers this number can change by an integer. In superconductors the addition is in units of two electron charges (2e), reflecting that the Cooper pair condensate must have an even parity. This ground state (GS) is foundational for all superconducting qubit devices. Here, we study a hybrid superconducting-semiconducting island and find three typical GS evolutions in a parallel magnetic field: a robust 2e-periodic even-parity GS, a transition to a 2e-periodic odd-parity GS, and a transition from a 2e- to a 1e-periodic GS. The 2e-periodic odd-parity GS persistent in gate-voltage occurs when a spin-resolved subgap state crosses zero energy. For our 1e-periodic GSs we explicitly show the origin being a single zero-energy state gapped from the continuum, i.e., compatible with an Andreev bound states stabilized at zero energy or the presence of Majorana zero modes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA