Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Comput Biol ; 17(6): e1009056, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34166363

RESUMEN

In October of 2020, in response to the Coronavirus Disease 2019 (COVID-19) pandemic, our team hosted our first fully online workshop teaching the QIIME 2 microbiome bioinformatics platform. We had 75 enrolled participants who joined from at least 25 different countries on 6 continents, and we had 22 instructors on 4 continents. In the 5-day workshop, participants worked hands-on with a cloud-based shared compute cluster that we deployed for this course. The event was well received, and participants provided feedback and suggestions in a postworkshop questionnaire. In January of 2021, we followed this workshop with a second fully online workshop, incorporating lessons from the first. Here, we present details on the technology and protocols that we used to run these workshops, focusing on the first workshop and then introducing changes made for the second workshop. We discuss what worked well, what didn't work well, and what we plan to do differently in future workshops.


Asunto(s)
COVID-19 , Biología Computacional , Microbiota , Biología Computacional/educación , Biología Computacional/organización & administración , Retroalimentación , Humanos , SARS-CoV-2
2.
Microbiol Spectr ; : e0345822, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36877047

RESUMEN

The gut microbiota-brain axis is suspected to contribute to the development of Alzheimer's disease (AD), a neurodegenerative disease characterized by amyloid-ß plaque deposition, neurofibrillary tangles, and neuroinflammation. To evaluate the role of the gut microbiota-brain axis in AD, we characterized the gut microbiota of female 3xTg-AD mice modeling amyloidosis and tauopathy and wild-type (WT) genetic controls. Fecal samples were collected fortnightly from 4 to 52 weeks, and the V4 region of the 16S rRNA gene was amplified and sequenced on an Illumina MiSeq. RNA was extracted from the colon and hippocampus, converted to cDNA, and used to measure immune gene expression using reverse transcriptase quantitative PCR (RT-qPCR). Diversity metrics were calculated using QIIME2, and a random forest classifier was applied to predict bacterial features that are important in predicting mouse genotype. Gene expression of glial fibrillary acidic protein (GFAP; indicating astrocytosis) was elevated in the colon at 24 weeks. Markers of Th1 inflammation (il6) and microgliosis (mrc1) were elevated in the hippocampus. Gut microbiota were compositionally distinct early in life between 3xTg-AD mice and WT mice (permutational multivariate analysis of variance [PERMANOVA], 8 weeks, P = 0.001, 24 weeks, P = 0.039, and 52 weeks, P = 0.058). Mouse genotypes were correctly predicted 90 to 100% of the time using fecal microbiome composition. Finally, we show that the relative abundance of Bacteroides species increased over time in 3xTg-AD mice. Taken together, we demonstrate that changes in bacterial gut microbiota composition at prepathology time points are predictive of the development of AD pathologies. IMPORTANCE Recent studies have demonstrated alterations in the gut microbiota composition in mice modeling Alzheimer's disease (AD) pathologies; however, these studies have only included up to 4 time points. Our study is the first of its kind to characterize the gut microbiota of a transgenic AD mouse model, fortnightly, from 4 weeks of age to 52 weeks of age, to quantify the temporal dynamics in the microbial composition that correlate with the development of disease pathologies and host immune gene expression. In this study, we observed temporal changes in the relative abundances of specific microbial taxa, including the genus Bacteroides, that may play a central role in disease progression and the severity of pathologies. The ability to use features of the microbiota to discriminate between mice modeling AD and wild-type mice at prepathology time points indicates a potential role of the gut microbiota as a risk or protective factor in AD.

3.
Brain Sci ; 10(11)2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33153085

RESUMEN

The human microbiota is composed of trillions of microbial cells inhabiting the oral cavity, skin, gastrointestinal (GI) tract, airways, and reproductive organs. The gut microbiota is composed of dynamic communities of microorganisms that communicate bidirectionally with the brain via cytokines, neurotransmitters, hormones, and secondary metabolites, known as the gut microbiota-brain axis. The gut microbiota-brain axis is suspected to be involved in the development of neurological diseases, including Alzheimer's disease (AD), Parkinson's disease, and Autism Spectrum Disorder. AD is an irreversible, neurodegenerative disease of the central nervous system (CNS), characterized by amyloid-ß plaques, neurofibrillary tangles, and neuroinflammation. Microglia and astrocytes, the resident immune cells of the CNS, play an integral role in AD development, as neuroinflammation is a driving factor of disease severity. The gut microbiota-brain axis is a novel target for Alzheimer's disease therapeutics to modulate critical neuroimmune and metabolic pathways. Potential therapeutics include probiotics, prebiotics, fecal microbiota transplantation, and dietary intervention. This review summarizes our current understanding of the role of the gut microbiota-brain axis and neuroinflammation in the onset and development of Alzheimer's disease, limitations of current research, and potential for gut microbiota-brain axis targeted therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA