Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chembiochem ; 24(17): e202300178, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37345897

RESUMEN

During recent years, accumulating evidence suggested that metal-based candidate drugs are promising modulators of cytoskeletal and cytoskeleton-associated proteins. This was substantiated by the identification and validation of actin, vimentin and plectin as targets of distinct ruthenium(II)- and platinum(II)-based modulators. Despite this, structural information about molecular interaction is scarcely available. Here, we compile the scattered reports about metal-based candidate molecules that influence the cytoskeleton, its associated proteins and explore their potential to interfere in cancer-related processes, including proliferation, invasion and the epithelial-to-mesenchymal transition. Advances in this field depend crucially on determining binding sites and on gaining comprehensive insight into molecular drug-target interactions. These are key steps towards establishing yet elusive structure-activity relationships.


Asunto(s)
Citoesqueleto , Microtúbulos , Citoesqueleto/metabolismo , Filamentos Intermedios/química , Filamentos Intermedios/metabolismo , Actinas
2.
Angew Chem Int Ed Engl ; 61(43): e202209136, 2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36004624

RESUMEN

Target identification remains a critical challenge in inorganic drug discovery to deconvolute potential polypharmacology. Herein, we describe an improved approach to prioritize candidate protein targets based on a combination of dose-dependent chemoproteomics and treatment effects in living cancer cells for the rhenium tricarbonyl compound TRIP. Chemoproteomics revealed 89 distinct dose-dependent targets with concentrations of competitive saturation between 0.1 and 32 µM despite the broad proteotoxic effects of TRIP. Target-response networks revealed two highly probable targets of which the Fe-S cluster biogenesis factor NUBP2 was competitively saturated by free TRIP at nanomolar concentrations. Importantly, TRIP treatment led to a down-regulation of Fe-S cluster containing proteins and upregulated ferritin. Fe-S cluster depletion was further verified by assessing mitochondrial bioenergetics. Consequently, TRIP emerges as a first-in-class modulator of the scaffold protein NUBP2, which disturbs Fe-S cluster biogenesis at sub-cytotoxic concentrations in ovarian cancer cells.


Asunto(s)
Proteínas Hierro-Azufre , Neoplasias Ováricas , Renio , Humanos , Femenino , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Ferritinas/metabolismo
3.
Curr Opin Chem Biol ; 73: 102257, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36599256

RESUMEN

Metal-based anticancer agents occupy a distinct chemical space due to their particular coordination geometry and reactivity. Despite the initial DNA-targeting paradigm for this class of compounds, it is now clear that they can also be tuned to target proteins in cells, depending on the metal and ligand scaffold. Since metallodrug discovery is dominated by phenotypic screenings, tailored proteomics strategies were crucial to identify and validate protein targets of several investigative and clinically advanced metal-based drugs. Here, such experimental approaches are discussed, which showed that metallodrugs based on ruthenium, gold, rhenium and even platinum, can selectively and specifically target proteins with clear-cut down-stream effects. Target identification strategies are expected to support significantly the mechanism-driven clinical translation of metal-based drugs.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Rutenio , Antineoplásicos/farmacología , Antineoplásicos/química , Platino (Metal)/química , Rutenio/farmacología , Rutenio/química , Oro , ADN , Complejos de Coordinación/química
4.
Cells ; 12(11)2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37296582

RESUMEN

The ABC transporter ABCA7 has been found to be aberrantly expressed in a variety of cancer types, including breast cancer. We searched for specific epigenetic and genetic alterations and alternative splicing variants of ABCA7 in breast cancer and investigated whether these alterations are associated with ABCA7 expression. By analyzing tumor tissues from breast cancer patients, we found CpGs at the exon 5-intron 5 boundary aberrantly methylated in a molecular subtype-specific manner. The detection of altered DNA methylation in tumor-adjacent tissues suggests epigenetic field cancerization. In breast cancer cell lines, DNA methylation levels of CpGs in promoter-exon 1, intron 1, and at the exon 5-intron 5 boundary were not correlated with ABCA7 mRNA levels. By qPCR involving intron-specific and intron-flanking primers, we identified intron-containing ABCA7 mRNA transcripts. The occurrence of intron-containing transcripts was neither molecular subtype-specific nor directly correlated with DNA methylation at the respective exon-intron boundaries. Treatment of breast cancer cell lines MCF-7, BT-474, SK-BR3, and MDA-MB-231 with doxorubicin or paclitaxel for 72 h resulted in altered ABCA7 intron levels. Shotgun proteomics revealed that an increase in intron-containing transcripts was associated with significant dysregulation of splicing factors linked to alternative splicing.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Metilación de ADN/genética , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Empalme Alternativo/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA