Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Psychiatry ; 28(2): 601-610, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36289300

RESUMEN

The impact of diet on the microbiota composition and the role of diet in supporting optimal mental health have received much attention in the last decade. However, whether whole dietary approaches can exert psychobiotic effects is largely understudied. Thus, we investigated the influence of a psychobiotic diet (high in prebiotic and fermented foods) on the microbial profile and function as well as on mental health outcomes in a healthy human population. Forty-five adults were randomized into either a psychobiotic (n = 24) or control (n = 21) diet for 4 weeks. Fecal microbiota composition and function was characterized using shotgun sequencing. Stress, overall health and diet were assessed using validated questionnaires. Metabolic profiling of plasma, urine and fecal samples was performed. Intervention with a psychobiotic diet resulted in reductions of perceived stress (32% in diet vs. 17% in control group), but not between groups. Similarly, biological marker of stress were not affected. Additionally, higher adherence to the diet resulted in stronger decreases in perceived stress. While the dietary intervention elicited only subtle changes in microbial composition and function, significant changes in the level of 40 specific fecal lipids and urinary tryptophan metabolites were observed. Lastly, microbial volatility was linked to greater changes in perceived stress scores in those on the psychobiotic diet. These results highlight that dietary approaches can be used to reduce perceived stress in a human cohort. Using microbiota-targeted diets to positively modulate gut-brain communication holds possibilities for the reduction of stress and stress-associated disorders, but additional research is warranted to investigate underlying mechanisms, including the role of the microbiota.


Asunto(s)
Dieta , Microbiota , Humanos , Adulto , Heces , Estrés Psicológico/psicología
2.
Brain Behav Immun ; 110: 119-124, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36791892

RESUMEN

Aging is associated with remodelling of immune and central nervous system responses resulting in behavioural impairments including social deficits. Growing evidence suggests that the gut microbiome is also impacted by aging, and we propose that strategies to reshape the aged gut microbiome may ameliorate some age-related effects on host physiology. Thus, we assessed the impact of gut microbiota depletion, using an antibiotic cocktail, on aging and its impact on social behavior and the immune system. Indeed, microbiota depletion in aged mice eliminated the age-dependent deficits in social recognition. We further demonstrate that although age and gut microbiota depletion differently shape the peripheral immune response, aging induces an accumulation of T cells in the choroid plexus, that is partially blunted following microbiota depletion. Moreover, an untargeted metabolomic analysis revealed age-dependent alterations of cecal metabolites that are reshaped by gut microbiota depletion. Together, our results suggest that the aged gut microbiota can be specifically targeted to affect social deficits. These studies propel the need for future investigations of other non-antibiotic microbiota targeted interventions on age-related social deficits both in animal models and humans.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Ratones , Animales , Anciano , Conducta Social , Microbioma Gastrointestinal/fisiología , Reconocimiento en Psicología , Envejecimiento
3.
Br J Nutr ; 121(10): 1097-1107, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30834845

RESUMEN

Recently there has been a considerable rise in the frequency of metabolic diseases, such as obesity, due to changes in lifestyle and resultant imbalances between energy intake and expenditure. Whey proteins are considered as potentially important components of a dietary solution to the obesity problem. However, the roles of individual whey proteins in energy balance remain poorly understood. This study investigated the effects of a high-fat diet (HFD) containing α-lactalbumin (LAB), a specific whey protein, or the non-whey protein casein (CAS), on energy balance, nutrient transporters expression and enteric microbial populations. C57BL/6J mice (n 8) were given an HFD containing either 20 % CAS or LAB as protein sources or a low-fat diet containing CAS for 10 weeks. HFD-LAB-fed mice showed a significant increase in cumulative energy intake (P=0·043), without differences in body weight, energy expenditure, locomotor activity, RER or subcutaneous and epididymal white adipose tissue weight. HFD-LAB intake led to a decrease in the expression of glut2 in the ileum (P=0·05) and in the fatty acid transporter cd36 (P<0·001) in both ileum and jejunum. This suggests a reduction in absorption efficiency within the small intestine in the HFD-LAB group. DNA from faecal samples was used for 16S rRNA-based assessment of intestinal microbiota populations; the genera Lactobacillus, Parabacteroides and Bifidobacterium were present in significantly higher proportions in the HFD-LAB group. These data indicate a possible functional relationship between gut microbiota, intestinal nutrient transporters and energy balance, with no impact on weight gain.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Metabolismo Energético/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Lactalbúmina/efectos adversos , Proteínas de Transporte de Membrana/metabolismo , Adiposidad/efectos de los fármacos , Animales , Antígenos CD36/metabolismo , Caseínas/efectos adversos , Dieta con Restricción de Grasas/efectos adversos , Ingestión de Energía/efectos de los fármacos , Heces/microbiología , Transportador de Glucosa de Tipo 2/metabolismo , Íleon/metabolismo , Yeyuno/metabolismo , Ratones , Ratones Endogámicos C57BL , ARN Ribosómico 16S/análisis , Aumento de Peso/efectos de los fármacos
4.
Am J Physiol Endocrinol Metab ; 313(1): E1-E11, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28325732

RESUMEN

We tested the hypothesis that dietary whey protein isolate (WPI) affects the intestinal mechanisms related to energy absorption and that the resulting energy deficit is compensated by changes in energy balance to support growth. C57BL/6 mice were provided a diet enriched with WPI with varied sucrose content, and the impact on energy balance-related parameters was investigated. As part of a high-sucrose diet, WPI reduced the hypothalamic expression of pro-opiomelanocortin gene expression and increased energy intake. The energy expenditure was unaffected, but epididymal weight was reduced, indicating an energy loss. Notably, there was a reduction in the ileum gene expression for amino acid transporter SLC6a19, glucose transporter 2, and fatty acid transporter 4. The composition of the gut microbiota also changed, where Firmicutes were reduced. The above changes indicated reduced energy absorption through the intestine. We propose that this mobilized energy in the adipose tissue and caused hypothalamic changes that increased energy intake, acting to counteract the energy deficit arising in the intestine. Lowering the sucrose content in the WPI diet increased energy expenditure. This further reduced epididymal weight and plasma leptin, whereupon hypothalamic ghrelin gene expression and the intestinal weight were both increased. These data suggest that when the intestine-adipose-hypothalamic pathway is subjected to an additional energy loss (now in the adipose tissue), compensatory changes attempt to assimilate more energy. Notably, WPI and sucrose content interact to enable the component mechanisms of this pathway.


Asunto(s)
Adiposidad/fisiología , Proteínas en la Dieta/farmacología , Metabolismo Energético/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Absorción Intestinal/efectos de los fármacos , Neuropéptidos/genética , Proteína de Suero de Leche/farmacología , Administración Oral , Animales , Proteínas en la Dieta/metabolismo , Ingestión de Energía/efectos de los fármacos , Metabolismo Energético/fisiología , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Absorción Intestinal/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuropéptidos/metabolismo
5.
EBioMedicine ; 89: 104442, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36739238

RESUMEN

BACKGROUND: Binge drinking is the consumption of an excessive amount of alcohol in a short period of time. This pattern of consumption is highly prevalent during the crucial developmental period of adolescence. Recently, the severity of alcohol use disorders (AUDs) has been linked with microbiome alterations suggesting a role for the gut microbiome in its development. Furthermore, a strong link has emerged too between microbiome composition and socio-emotional functioning across different disorders including AUD. The aim of this study was to investigate the potential link (and its predictive value) between alcohol-related altered microbial profile, social cognition, impulsivity and craving. METHODS: Young people (N = 71) aged 18-25 reported their alcohol use and underwent a neuropsychological evaluation. Craving was measured at baseline and three months later. Diet was controlled for. Blood, saliva and hair samples were taken for inflammatory, kynurenine and cortisol analysis. Stool samples were provided for shotgun metagenomic sequencing and short-chain fatty acids (SCFAs) were measured. FINDINGS: Binge drinking was associated with distinct microbiome alterations and emotional recognition difficulties. Associations were found for several microbiome species with emotional processing and impulsivity. Craving showed a strong link with alterations in microbiome composition and neuroactive potential over time. INTERPRETATION: In conclusion, this research demonstrates alterations in the gut microbiome of young binge drinkers (BDs) and identifies early biomarkers of craving. Associations between emotional processing and microbiome composition further support the growing literature on the gut microbiome as a regulator of social cognition. These findings are of relevance for new gut-derived interventions directed at improving early alcohol-related alterations during the vulnerability period of adolescence. FUNDING: C.C. and R.G-C. received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 754535. APC Microbiome Ireland is a research centre funded by Science Foundation Ireland (SFI), through the Irish Government's National Development Plan [grant no. SFI/12/RC/2273_P2]. J.F.C has research support from Cremo, Pharmavite, DuPont and Nutricia. He has spoken at meetings sponsored by food and pharmaceutical companies. G.C. has received honoraria from Janssen, Probi, and Apsen as an invited speaker; is in receipt of research funding from Pharmavite, Fonterra, Nestle and Reckitt; and is a paid consultant for Yakult, Zentiva and Heel pharmaceuticals. All the authors declare no competing interests.


Asunto(s)
Alcoholismo , Consumo Excesivo de Bebidas Alcohólicas , Humanos , Masculino , Adolescente , Adulto Joven , Adulto , Ansia/fisiología , Consumo Excesivo de Bebidas Alcohólicas/psicología , Eje Cerebro-Intestino , Cognición Social , Consumo de Bebidas Alcohólicas/psicología , Etanol
6.
Mol Metab ; 57: 101427, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34973469

RESUMEN

BACKGROUND: Despite several decades of research, managing body weight remains an unsolved clinical problem. Health problems associated with dysregulated body weight, such as obesity and cachexia, exhibit several gut microbiota alterations. There is an increased interest in utilising the gut microbiota for body weight control, as it responds to intervention and plays an important role in energy extraction from food, as well as biotransformation of nutrients. SCOPE OF THE REVIEW: This review provides an overview of the role of the gut microbiota in the physiological and metabolic alterations observed in two body weight dysregulation-related disorders, namely obesity and cachexia. Second, we assess the available evidence for different strategies, including caloric restriction, intermittent fasting, ketogenic diet, bariatric surgery, probiotics, prebiotics, synbiotics, high-fibre diet, and fermented foods - effects on body weight and gut microbiota composition. This approach was used to give insights into the possible link between body weight control and gut microbiota configuration. MAJOR CONCLUSIONS: Despite extensive associations between body weight and gut microbiota composition, limited success could be achieved in the translation of microbiota-related interventions for body weight control in humans. Manipulation of the gut microbiota alone is insufficient to alter body weight and future research is needed with a combination of strategies to enhance the effects of lifestyle interventions.


Asunto(s)
Microbiota , Probióticos , Simbióticos , Humanos , Obesidad/metabolismo , Prebióticos
7.
Neurobiol Stress ; 21: 100501, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36532371

RESUMEN

Aging has a significant impact on physiology with implications for central nervous system function coincident with increased vulnerability to stress exposures. A number of stress-sensitive molecular mechanisms are hypothesized to underpin age-related changes in brain function. Recent cumulative evidence also suggests that aging impacts gut microbiota composition. However, the impact of such effects on the ability of mammals to respond to stress in aging is still relatively unexplored. Therefore, in this study we assessed the ability of a microbiota-targeted intervention (the prebiotic FOS-Inulin) to alleviate age-related responses to stress. Exposure of aged C57BL/6 mice to social defeat led to an altered social interaction phenotype in the social interaction test, which was reversed by FOS-Inulin supplementation. Interestingly, this occured independent of affecting social defeat-induced elevations in the stress hormone corticosterone. Additionally, the behavioral modifications following FOS-Inulin supplementation were also not coincident with improvement of pro-inflammatory markers. Metabolomics analysis was performed and intriguingly, age associated metabolites were shown to be reduced in the prefrontal cortex of stressed aged mice and this deficit was recovered by FOS-Inulin supplementation. Taken together these results suggest that prebiotic dietary intervention rescued the behavioral response to stress in aged mice, not through amelioration of the inflammatory response, but by restoring the levels of key metabolites in the prefrontal cortex of aged animals. Therefore, dietary interventions could be a compelling avenue to improve the molecular and behavioral manifestations of chronic stress exposures in aging via targeting the microbiota-gut brain axis.

8.
Physiol Rep ; 9(11): e14867, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34057306

RESUMEN

Whey protein isolate (WPI) is considered a dietary solution to obesity. However, the exact mechanism of WPI action is still poorly understood but is probably connected to its beneficial effect on energy balance, adiposity, and metabolism. More recently its ability to modulate the gut microbiota has received increasing attention. Here, we used a microbiota depletion, by antibiotic cocktail (ABX) administration, to investigate if the gut microbiota mediates the physiological and metabolic changes observed during high-fat diet (HFD)-WPI consumption. C57BL/6J mice received a HFD containing WPI (HFD-WPI) or the control non-whey milk protein casein (HFD-CAS) for 5 or 10 weeks. HFD-fed mice supplemented with WPI showed reduced body weight gain, adiposity, Ob gene expression level in the epidydimal adipose tissue (eWAT) and plasma leptin relative to HFD-CAS-fed mice, after 5- or 10-weeks intervention both with or without ABX treatment. Following 10-weeks intervention, ABX and WPI had an additive effect in lowering adiposity and leptin availability. HFD-WPI-fed mice showed a decrease in the expression of genes encoding pro-inflammatory markers (MCP-1, TNFα and CD68) within the ileum and eWAT, compared to HFD-CAS-fed mice, without showing alterations following microbiota depletion. Additionally, WPI supplementation decreased HFD-induced intestinal permeability disruption in the distal ileum; an effect that was reversed by chronic ABX treatment. In summary, WPI reverses the effects of HFD on metabolic and physiological functions through mainly microbiota-independent mechanisms. Moreover, we demonstrate a protective effect of WPI on HFD-induced inflammation and ileal permeability disruption, with the latter being reversed by gut microbiota depletion.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal , Obesidad/microbiología , Proteína de Suero de Leche/uso terapéutico , Animales , Ciego/metabolismo , Quimiocina CCL2/sangre , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Insulina/sangre , Interleucina-6/sangre , Absorción Intestinal/efectos de los fármacos , Absorción Intestinal/fisiología , Leptina/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/dietoterapia , Obesidad/metabolismo , ARN Ribosómico 16S , Factor de Necrosis Tumoral alfa/sangre , Proteína de Suero de Leche/metabolismo
9.
Cell Rep ; 35(6): 109093, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33979605

RESUMEN

We investigated how protein quantity (10%-30%) and quality (casein and whey) interact with dietary fat (20%-55%) to affect metabolic health in adult mice. Although dietary fat was the main driver of body weight gain and individual tissue weight, high (30%) casein intake accentuated and high whey intake reduced the negative metabolic aspects of high fat. Jejunum and liver transcriptomics revealed increased intestinal permeability, low-grade inflammation, altered lipid metabolism, and liver dysfunction in casein-fed but not whey-fed animals. These differential effects were accompanied by altered gut size and microbial functions related to amino acid degradation and lipid metabolism. Fecal microbiota transfer confirmed that the casein microbiota increases and the whey microbiota impedes weight gain. These data show that the effects of dietary fat on weight gain and tissue partitioning are further influenced by the quantity and quality of the associated protein, primarily via effects on the microbiota.


Asunto(s)
Grasas de la Dieta/efectos adversos , Metabolismo Energético/efectos de los fármacos , Microbiota/fisiología , Obesidad/metabolismo , Proteínas/metabolismo , Aumento de Peso/fisiología , Animales , Humanos , Masculino , Ratones
10.
Physiol Rep ; 8(15): e14523, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32748559

RESUMEN

Bovine whey protein has been demonstrated to exert a positive effect on energy balance, lipid metabolism, and nutrient absorption. Additionally, it affects gut microbiota configuration. Thus, whey protein is considered as good dietary candidate to prevent or ameliorate metabolic diseases, such as obesity. However, the relationship that links energy balance, metabolism, and intestinal microbial population mediated by whey protein intake remains poorly understood. In this study, we investigated the beneficial effects attributed to whey protein in the context of high-fat diet (HFD) in mice at two different ages, with short or longer durations of whey protein supplementation. Here, a 5-week dietary intervention with HFD in combination with either whey protein isolate (WPI) or the control nonwhey milk protein casein (CAS) was performed using 5-week or 10-week-old C57BL/6J mice. Notably, the younger mice had no prior history of ingestion of WPI, while older mice did. 5-week-old HFD-WPI-fed mice showed a decrease in weight gain and changes in the expression of genes within the epidydimal white adipose tissue including those encoding leptin, inflammatory marker CD68, fasting-induced adipose factor FIAF and enzymes involved in fatty acids catabolism, relative to HFD-CAS-fed mice. Differences in ß-diversity and higher proportions of Lactobacillus murinus, and related functions, were evident within the gut microbiota of HFD-WPI mice. However, none of these changes were observed in mice that started the HFD dietary intervention at 10-weeks-old, with an extended period of WPI supplementation. These results suggest that the effect of whey protein on mouse body weight, adipose tissue, and intestinal parameters depends on diet duration and stage of life during which the diet is provided. In some instances, WPI influences gut microbiota composition and functional potential, which might orchestrate observed metabolic and physiological modifications.


Asunto(s)
Envejecimiento/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Aumento de Peso/efectos de los fármacos , Proteína de Suero de Leche/farmacología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Envejecimiento/patología , Animales , Dieta Alta en Grasa/efectos adversos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína de Suero de Leche/administración & dosificación
11.
J Cell Biol ; 216(12): 4041-4052, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29051266

RESUMEN

Septins are cytoskeletal proteins that assemble into nonpolar filaments. They are critical in diverse cellular functions, acting as scaffolds for protein recruitment and as diffusion barriers for subcellular compartmentalization. Human septins are encoded by 13 different genes and are classified into four groups based on sequence homology (SEPT2, SEPT3, SEPT6, and SEPT7 groups). In yeast, septins were among the first proteins reported to be modified by SUMOylation, a ubiquitin-like posttranslational modification. However, whether human septins could be modified by small ubiquitin-like modifiers (SUMOs) and what roles this modification may have in septin function remains unknown. In this study, we first show that septins from all four human septin groups can be covalently modified by SUMOs. We show in particular that endogenous SEPT7 is constitutively SUMOylated during the cell cycle. We then map SUMOylation sites to the C-terminal domain of septins belonging to the SEPT6 and SEPT7 groups and to the N-terminal domain of septins from the SEPT3 group. We finally demonstrate that expression of non-SUMOylatable septin variants from the SEPT6 and SEPT7 groups leads to aberrant septin bundle formation and defects in cytokinesis after furrow ingression. Altogether, our results demonstrate a pivotal role for SUMOylation in septin filament bundling and cell division.


Asunto(s)
Proteínas de Ciclo Celular/genética , Citocinesis/genética , Procesamiento Proteico-Postraduccional , Septinas/genética , Compartimento Celular , Proteínas de Ciclo Celular/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Recuperación de Fluorescencia tras Fotoblanqueo , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Microscopía por Video , Osteoblastos/citología , Osteoblastos/metabolismo , Filogenia , Septinas/metabolismo , Sumoilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA