RESUMEN
Genome-wide association studies (GWASs) have uncovered susceptibility loci associated with psychiatric disorders such as bipolar disorder (BP) and schizophrenia (SCZ). However, most of these loci are in non-coding regions of the genome, and the causal mechanisms of the link between genetic variation and disease risk is unknown. Expression quantitative trait locus (eQTL) analysis of bulk tissue is a common approach used for deciphering underlying mechanisms, although this can obscure cell-type-specific signals and thus mask trait-relevant mechanisms. Although single-cell sequencing can be prohibitively expensive in large cohorts, computationally inferred cell-type proportions and cell-type gene expression estimates have the potential to overcome these problems and advance mechanistic studies. Using bulk RNA-seq from 1,730 samples derived from whole blood in a cohort ascertained from individuals with BP and SCZ, this study estimated cell-type proportions and their relation with disease status and medication. For each cell type, we found between 2,875 and 4,629 eGenes (genes with an associated eQTL), including 1,211 that are not found on the basis of bulk expression alone. We performed a colocalization test between cell-type eQTLs and various traits and identified hundreds of associations that occur between cell-type eQTLs and GWASs but that are not detected in bulk eQTLs. Finally, we investigated the effects of lithium use on the regulation of cell-type expression loci and found examples of genes that are differentially regulated according to lithium use. Our study suggests that applying computational methods to large bulk RNA-seq datasets of non-brain tissue can identify disease-relevant, cell-type-specific biology of psychiatric disorders and psychiatric medication.
Asunto(s)
Estudio de Asociación del Genoma Completo , Litio , Humanos , Estudio de Asociación del Genoma Completo/métodos , RNA-Seq , Sitios de Carácter Cuantitativo/genética , Fenotipo , Polimorfismo de Nucleótido Simple , Predisposición Genética a la EnfermedadRESUMEN
Bipolar disorder (BD) is a heritable disorder characterized by shifts in mood that manifest in manic or depressive episodes. Clinical studies have identified abnormalities of the circadian system in BD patients as a hallmark of underlying pathophysiology. Fibroblasts are a well-established in vitro model for measuring circadian patterns. We set out to examine the underlying genetic architecture of circadian rhythm in fibroblasts, with the goal to assess its contribution to the polygenic nature of BD disease risk. We collected, from primary cell lines of 6 healthy individuals, temporal genomic features over a 48 h period from transcriptomic data (RNA-seq) and open chromatin data (ATAC-seq). The RNA-seq data showed that only a limited number of genes, primarily the known core clock genes such as ARNTL, CRY1, PER3, NR1D2 and TEF display circadian patterns of expression consistently across cell cultures. The ATAC-seq data identified that distinct transcription factor families, like those with the basic helix-loop-helix motif, were associated with regions that were increasing in accessibility over time. Whereas known glucocorticoid receptor target motifs were identified in those regions that were decreasing in accessibility. Further evaluation of these regions using stratified linkage disequilibrium score regression analysis failed to identify a significant presence of them in the known genetic architecture of BD, and other psychiatric disorders or neurobehavioral traits in which the circadian rhythm is affected. In this study, we characterize the biological pathways that are activated in this in vitro circadian model, evaluating the relevance of these processes in the context of the genetic architecture of BD and other disorders, highlighting its limitations and future applications for circadian genomic studies.
Asunto(s)
Trastorno Bipolar , Ritmo Circadiano , Fibroblastos , Humanos , Ritmo Circadiano/genética , Fibroblastos/metabolismo , Trastorno Bipolar/genética , Genómica/métodos , Transcriptoma , Cromatina/genéticaRESUMEN
Bipolar disorder (BD) is a heritable disorder characterized by shifts in mood that manifest in manic or depressive episodes. Clinical studies have identified abnormalities of the circadian system in BD patients as a hallmark of underlying pathophysiology. Fibroblasts are a well-established in vitro model for measuring circadian patterns. We set out to examine the underlying genetic architecture of circadian rhythm in fibroblasts, with the goal to assess its contribution to the polygenic nature of BD disease risk. We collected, from primary cell lines of 6 healthy individuals, temporal genomic features over a 48 hour period from transcriptomic data (RNA-seq) and open chromatin data (ATAC-seq). The RNA-seq data showed that only a limited number of genes, primarily the known core clock genes such as ARNTL, CRY1, PER3, NR1D2 and TEF display circadian patterns of expression consistently across cell cultures. The ATAC-seq data identified that distinct transcription factor families, like those with the basic helix-loop-helix motif, were associated with regions that were increasing in accessibility over time. Whereas known glucocorticoid receptor target motifs were identified in those regions that were decreasing in accessibility. Further evaluation of these regions using stratified linkage disequilibrium score regression (sLDSC) analysis failed to identify a significant presence of them in the known genetic architecture of BD, and other psychiatric disorders or neurobehavioral traits in which the circadian rhythm is affected. In this study, we characterize the biological pathways that are activated in this in vitro circadian model, evaluating the relevance of these processes in the context of the genetic architecture of BD and other disorders, highlighting its limitations and future applications for circadian genomic studies.
RESUMEN
Genome-wide association studies (GWAS) have uncovered susceptibility loci associated with psychiatric disorders like bipolar disorder (BP) and schizophrenia (SCZ). However, most of these loci are in non-coding regions of the genome with unknown causal mechanisms of the link between genetic variation and disease risk. Expression quantitative trait loci (eQTL) analysis of bulk tissue is a common approach to decipher underlying mechanisms, though this can obscure cell-type specific signals thus masking trait-relevant mechanisms. While single-cell sequencing can be prohibitively expensive in large cohorts, computationally inferred cell type proportions and cell type gene expression estimates have the potential to overcome these problems and advance mechanistic studies. Using bulk RNA-Seq from 1,730 samples derived from whole blood in a cohort ascertained for individuals with BP and SCZ this study estimated cell type proportions and their relation with disease status and medication. We found between 2,875 and 4,629 eGenes for each cell type, including 1,211 eGenes that are not found using bulk expression alone. We performed a colocalization test between cell type eQTLs and various traits and identified hundreds of associations between cell type eQTLs and GWAS loci that are not detected in bulk eQTLs. Finally, we investigated the effects of lithium use on cell type expression regulation and found examples of genes that are differentially regulated dependent on lithium use. Our study suggests that computational methods can be applied to large bulk RNA-Seq datasets of non-brain tissue to identify disease-relevant, cell type specific biology of psychiatric disorders and psychiatric medication.
RESUMEN
Genomic studies of molecular traits have provided mechanistic insights into complex disease, though these lag behind for brain-related traits due to the inaccessibility of brain tissue. We leveraged cerebrospinal fluid (CSF) to study neurobiological mechanisms in vivo , measuring 5,543 CSF metabolites, the largest panel in CSF to date, in 977 individuals of European ancestry. Individuals originated from two separate cohorts including cognitively healthy subjects (n=490) and a well-characterized memory clinic sample, the Amsterdam Dementia Cohort (ADC, n=487). We performed metabolite quantitative trait loci (mQTL) mapping on CSF metabolomics and found 126 significant mQTLs, representing 65 unique CSF metabolites across 51 independent loci. To better understand the role of CSF mQTLs in brain-related disorders, we performed a metabolome-wide association study (MWAS), identifying 40 associations between CSF metabolites and brain traits. Similarly, over 90% of significant mQTLs demonstrated colocalized associations with brain-specific gene expression, unveiling potential neurobiological pathways.
RESUMEN
Mapping genetic variants that regulate gene expression (eQTL mapping) in large-scale RNA sequencing (RNA-seq) studies is often employed to understand functional consequences of regulatory variants. However, the high cost of RNA-seq limits sample size, sequencing depth, and, therefore, discovery power in eQTL studies. In this work, we demonstrate that, given a fixed budget, eQTL discovery power can be increased by lowering the sequencing depth per sample and increasing the number of individuals sequenced in the assay. We perform RNA-seq of whole-blood tissue across 1,490 individuals at low coverage (5.9 million reads/sample) and show that the effective power is higher than that of an RNA-seq study of 570 individuals at moderate coverage (13.9 million reads/sample). Next, we leverage synthetic datasets derived from real RNA-seq data (50 million reads/sample) to explore the interplay of coverage and number individuals in eQTL studies, and show that a 10-fold reduction in coverage leads to only a 2.5-fold reduction in statistical power to identify eQTLs. Our work suggests that lowering coverage while increasing the number of individuals in RNA-seq is an effective approach to increase discovery power in eQTL studies.
RESUMEN
BACKGROUND: Common psychiatric disorders are characterized by complex disease architectures with many small genetic effects that contribute and complicate biological understanding of their etiology. There is therefore a pressing need for in vitro experimental systems that allow for interrogation of polygenic psychiatric disease risk to study the underlying biological mechanisms. METHODS: We have developed an analytical framework that integrates genome-wide disease risk from genome-wide association studies with longitudinal in vitro gene expression profiles of human neuronal differentiation. RESULTS: We demonstrate that the cumulative impact of risk loci of specific psychiatric disorders is significantly associated with genes that are differentially expressed and upregulated during differentiation. We find the strongest evidence for schizophrenia, a finding that we replicate in an independent dataset. A longitudinal gene cluster involved in synaptic function primarily drives the association with schizophrenia risk. CONCLUSIONS: These findings reveal that in vitro human neuronal differentiation can be used to translate the polygenic architecture of schizophrenia to biologically relevant pathways that can be modeled in an experimental system. Overall, this work emphasizes the use of longitudinal in vitro transcriptomic signatures as a cellular readout and the application to the genetics of complex traits.