Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(9)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37175235

RESUMEN

Catalytic ozonation for the total mineralization of bisphenol-A (BPA) from aqueous solution was investigated in the presence of various silica-based catalysts such as mesoporous silica, acid-activated bentonite (HMt) and montmorillonite-rich materials (Mt) ion-exchanged with Na+ and Fe2+ cations (NaMt and Fe(II)Mt). The effects of the catalyst surface were studied by correlating the hydrophilic character and catalyst dispersion in the aqueous media to the silica content and BPA conversion. To the best of our knowledge, this approach has barely been tackled so far. Acid-activated and iron-free clay catalysts produced complete BPA degradation in short ozonation times. The catalytic activity was found to strongly depend on the hydrophilic character, which, in turn, depends on the Si content. Catalyst interactions with water and BPA appear to promote hydrophobic adsorption in high Si catalysts. These findings are of great importance because they allow tailoring silica-containing catalyst properties for specific features of the waters to be treated.

2.
Chemosphere ; 298: 134312, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35304212

RESUMEN

A promising route for thorough removal of 17α-ethinyl estradiol (EE2) from aqueous media was achieved through ozonation using mesoporous silicas such SBA-15, SBA-16, MCM-41 and MCM-48 as catalysts. Comparison with aluminosilicates along with Zeta potential and particle size measurements allowed demonstrating that EE2 interaction with silanols and hydrophobic -Si-O-Si- groups are essential requirements for the catalytic activity. Acid-base interactions, if any, should have minor contribution. EE2 hydroxylation appears to be an early step in the ozonation on all catalysts, but MCM-41 showed increased activity in phenolic ring cleavage. Confrontation of HPLC-UV and UV-Vis and HPLC-UV measurements revealed highest catalytic activity for MCM-41 and to a lesser extend of MCM-48 due to their higher specific surface area and weaker acid character. These results provide valuable findings for judiciously tailoring optimum [EE2-Silica:Water] interactions for thorough oxidative degradation of endocrine disrupting compounds (EDC).


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Catálisis , Estradiol/análisis , Etinilestradiol/análisis , Ozono/química , Dióxido de Silicio/química , Suelo , Agua/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
3.
Dalton Trans ; 49(46): 16693-16706, 2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33073818

RESUMEN

An original approach never tackled so far allowed correlating the basicity and hydrophilic character of clay catalysts to surface interaction with 17α-Ethinylestradiol (EE2) during ozonation in water. The clay catalysts were found to behave specifically according to their silica/alumina ratio like soils in natural oxidative processes. Acid-activated bentonites (HMt) and ion-exchanged montmorillonite (NaMt and Fe(ii)Mt) showed catalytic activity in the ozonation of 17α-ethinylestradiol (EE2) in aqueous media. In the absence of catalysts, the degradation of (EE2) reached 72% after one minute of ozonation and 99.5% after 60 minutes. In the presence of Fe(ii)Mt, EE2 degradation (96%) was achieved after only one minute of ozonation. Under similar conditions, almost total degradation to 99.99% was registered in 15 minutes of ozonation but without total mineralization of the intermediates. Moderately acid-activated bentonites exhibited higher activity affording total mineralization within a short period of ozonation. The catalytic activity of clay catalysts was found to correlate with their surface basicity and hydrophilic character. The results obtained herein allow understanding soil behavior in natural oxidative degradation of organic molecules and envisaging effective soil-based catalysts with surface properties judiciously tailored according to the nature of organic pollutants in solvent free media.

4.
J Hazard Mater ; 364: 356-366, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30384246

RESUMEN

Catalytic ozonation of Methylene Blue, Methyl Green, Methyl Orange and Methyl-thymol Blue was investigated in the presence of ion-exchanged montmorillonite (NaMt and Fe(II)Mt), crude bentonite and acid-activated counterparts. An original approach never tackled so far consisted in correlating the basicity and hydrophilic character to the dye-catalyst interactions occurring on the catalyst surface. This was achieved through CO2 and water thermal programmed desorption. Kinetics study revealed that ozonation starts in the bulk solution, and dye adsorption turns out to be an essential requirement for high catalytic effectiveness. On NaMt, dye molecules appear to adsorb mainly via hydrophobic interaction. On Fe(II)Mt, the contributions of hydrophobic interaction, cation-exchange and Fe2+ mobility to the catalytic activity prevail. Acid activated clay catalysts exhibited lowest hydrophilic character favoring adsorption through organophilic interaction and affording thorough and fast dye mineralization. This was explained in terms of increased number of silanols and -Si-O-Si- groups. For all catalysts, short ozonation of all dye molecules resulted in similar end-chain products, which were totally eliminated after prolonged reaction times. This result is of great importance because it provides valuable theoretical findings that allow envisaging total mineralization of organic molecules by recyclable metal-free clay catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA