Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35216404

RESUMEN

Tyrosine kinase inhibitors (TKIs) are associated with cardiac toxicity, which may be caused by mitochondrial toxicity. The underlying mechanisms are currently unclear and require further investigation. In the present study, we aimed to investigate in more detail the role of the enzyme complexes of the electron transfer system (ETS), mitochondrial oxidative stress, and mechanisms of cell death in cardiac toxicity associated with imatinib and sorafenib. Cardiac myoblast H9c2 cells were exposed to imatinib and sorafenib (1 to 100 µM) for 24 h. Permeabilized rat cardiac fibers were treated with both drugs for 15 min. H9c2 cells exposed to sorafenib for 24 h showed a higher membrane toxicity and ATP depletion in the presence of galactose (favoring mitochondrial metabolism) compared to glucose (favoring glycolysis) but not when exposed to imatinib. Both TKIs resulted in a higher dissipation of the mitochondrial membrane potential in galactose compared to glucose media. Imatinib inhibited Complex I (CI)- and CIII- linked respiration under both conditions. Sorafenib impaired CI-, CII-, and CIII-linked respiration in H9c2 cells cultured with glucose, whereas it inhibited all ETS complexes with galactose. In permeabilized rat cardiac myofibers, acute exposure to imatinib and sorafenib decreased CI- and CIV-linked respiration in the presence of the drugs. Electron microscopy showed enlarged mitochondria with disorganized cristae. In addition, both TKIs caused mitochondrial superoxide accumulation and decreased the cellular GSH pool. Both TKIs induced caspase 3/7 activation, suggesting apoptosis as a mechanism of cell death. Imatinib and sorafenib impaired the function of cardiac mitochondria in isolated rat cardiac fibers and in H9c2 cells at plasma concentrations reached in humans. Both imatinib and sorafenib impaired the function of enzyme complexes of the ETS, which was associated with mitochondrial ROS accumulation and cell death by apoptosis.


Asunto(s)
Cardiotoxicidad/etiología , Mesilato de Imatinib/efectos adversos , Mitocondrias Cardíacas/efectos de los fármacos , Mioblastos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Sorafenib/efectos adversos , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Transporte de Electrón/efectos de los fármacos , Glucólisis/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas
2.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36293168

RESUMEN

OCTN2 (SLC22A5) is a carnitine transporter whose main function is the active transport of carnitine into cells. In skeletal muscle and other organs, the regulation of the SLC22A5 gene transcription has been shown to depend on the nuclear transcription factor PPAR-α. Due to the observation that the muscle OCTN2 mRNA level is maintained in PPAR-α knock-out mice and that PGC-1α overexpression in C2C12 myoblasts increases OCTN2 mRNA expression, we suspected additional regulatory pathways for SLC22A5 gene transcription. Indeed, we detected several binding sites of the myocyte-enhancing factor MEF2 in the upstream region of the SLC22A5 gene, and MEF2C/MEF2D stimulated the activity of the OCTN2 promoter in gene reporter assays. This stimulation was increased by PGC-1α and was blunted for a SLC22A5 promoter fragment with a mutated MEF2 binding site. Further, we demonstrated the specific binding of MEF2 to the SLC22A5 gene promoter, and a supershift of the MEF2/DNA complex in electrophoretic mobility shift assays. In immunoprecipitation experiments, we could demonstrate the interaction between PGC-1α and MEF2. In addition, SB203580, a specific inhibitor of p38 MAPK, blocked and interferon-γ stimulated the transcriptional activity of the SLC22A5 gene promoter. Finally, mice with muscle-specific overexpression of OCTN2 showed an increase in OCTN2 mRNA and protein expression in skeletal muscle. In conclusion, we detected and characterized a second stimulatory pathway of SLC22A5 gene transcription in skeletal muscle, which involves the nuclear transcription factor MEF2 and co-stimulation by PGC-1α and which is controlled by the p38 MAPK signaling cascade.


Asunto(s)
Carnitina , Receptores Activados del Proliferador del Peroxisoma , Ratones , Animales , Carnitina/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Interferón gamma/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Músculo Esquelético/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo
3.
Int J Mol Sci ; 22(9)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34066911

RESUMEN

Previous studies suggest that statins may disturb skeletal muscle lipid metabolism potentially causing lipotoxicity with insulin resistance. We investigated this possibility in wild-type mice (WT) and mice with skeletal muscle PGC-1α overexpression (PGC-1α OE mice). In WT mice, simvastatin had only minor effects on skeletal muscle lipid metabolism but reduced glucose uptake, indicating impaired insulin sensitivity. Muscle PGC-1α overexpression caused lipid droplet accumulation in skeletal muscle with increased expression of the fatty acid transporter CD36, fatty acid binding protein 4, perilipin 5 and CPT1b but without significant impairment of muscle glucose uptake. Simvastatin further increased the lipid droplet accumulation in PGC-1α OE mice and stimulated muscle glucose uptake. In conclusion, the impaired muscle glucose uptake in WT mice treated with simvastatin cannot be explained by lipotoxicity. PGC-1α OE mice are protected from lipotoxicity of fatty acids and triglycerides by increased the expression of FABP4, formation of lipid droplets and increased expression of CPT1b.


Asunto(s)
Metabolismo de los Lípidos/efectos de los fármacos , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Simvastatina/farmacología , Animales , Transporte Biológico/efectos de los fármacos , Antígenos CD36/genética , Antígenos CD36/metabolismo , Carnitina O-Palmitoiltransferasa/metabolismo , Colesterol/sangre , Proteínas de Transporte de Ácidos Grasos/genética , Proteínas de Transporte de Ácidos Grasos/metabolismo , Ácidos Grasos/sangre , Glucosa/metabolismo , Gotas Lipídicas/efectos de los fármacos , Gotas Lipídicas/metabolismo , Lipoproteína Lipasa/metabolismo , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/ultraestructura , Tamaño de los Órganos/efectos de los fármacos , Perilipina-5/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Triglicéridos/sangre
4.
Pharmacol Res ; 154: 104201, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-30877064

RESUMEN

Statins lower the serum low-density lipoprotein cholesterol and prevent cardiovascular events by inhibiting 3-hydroxy-3-methyl-glutaryl-CoA reductase. Although the safety of statins is documented, many patients ingesting statins may suffer from skeletal muscle-associated symptoms (SAMS). Importantly, SAMS are a common reason for stopping the treatment with statins. Statin-associated muscular symptoms include fatigue, weakness and pain, possibly accompanied by elevated serum creatine kinase activity. The most severe muscular adverse reaction is the potentially fatal rhabdomyolysis. The frequency of SAMS is variable but in up to 30% of the patients ingesting statins, depending on the population treated and the statin used. The mechanisms leading to SAMS are currently not completely clarified. Over the last 15 years, several research articles focused on statin-induced mitochondrial dysfunction as a reason for SAMS. Statins can impair the function of the mitochondrial respiratory chain, thereby reducing ATP and increasing ROS production. This can induce mitochondrial membrane permeability transition, release of cytochrome c into the cytosol and induce apoptosis. In parallel, statins inhibit activation of Akt, mainly due to reduced function of mTORC2, which may be related to mitochondrial dysfunction. Mitochondrial dysfunction by statins is also responsible for activation of AMPK, which is associated with impaired activation of mTORC1. Reduced activation of mTORC1 leads to increased skeletal muscle protein degradation, impaired protein synthesis and stimulation of apoptosis. In this paper, we discuss some of the different hypotheses how statins affect skeletal muscle in more detail, focusing particularly on those related to mitochondrial dysfunction and the impairment of the Akt/mTOR pathway.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Músculo Esquelético/efectos de los fármacos , Enfermedades Musculares/inducido químicamente , Animales , Humanos , Músculo Esquelético/metabolismo , Enfermedades Musculares/metabolismo
5.
Int J Mol Sci ; 21(8)2020 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-32325754

RESUMEN

Halogenation of amphetamines and methcathinones has become a common method to obtain novel psychoactive substances (NPS) also called "legal highs". The para-halogenated derivatives of amphetamine and methcathinone are available over the internet and have entered the illicit drug market but studies on their potential neurotoxic effects are rare. The primary aim of this study was to explore the neurotoxicity of amphetamine, methcathinone and their para-halogenated derivatives 4-fluoroamphetamine (4-FA), 4-chloroamphetamine (PCA), 4-fluoromethcathinone (4-FMC), and 4-chloromethcathinone (4-CMC) in undifferentiated and differentiated SH-SY5Y cells. We found that 4-FA, PCA, and 4-CMC were cytotoxic (decrease in cellular ATP and plasma membrane damage) for both cell types, whereby differentiated cells were less sensitive. IC50 values for cellular ATP depletion were in the range of 1.4 mM for 4-FA, 0.4 mM for PCA and 1.4 mM for 4-CMC. The rank of cytotoxicity observed for the para-substituents was chloride > fluoride > hydrogen for both amphetamines and cathinones. Each of 4-FA, PCA and 4-CMC decreased the mitochondrial membrane potential in both cell types, and PCA and 4-CMC impaired the function of the electron transport chain of mitochondria in SH-SY5Y cells. 4-FA, PCA, and 4-CMC increased the ROS level and PCA and 4-CMC induced apoptosis by the endogenous pathway. In conclusion, para-halogenation of amphetamine and methcathinone increases their neurotoxic properties due to the impairment of mitochondrial function and induction of apoptosis. Although the cytotoxic concentrations were higher than those needed for pharmacological activity, the current findings may be important regarding the uncontrolled recreational use of these compounds.


Asunto(s)
Anfetamina/toxicidad , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Neuroblastoma/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Anfetamina/química , Anfetamina/metabolismo , Anfetaminas/metabolismo , Anfetaminas/toxicidad , Línea Celular Tumoral , Transporte de Electrón/efectos de los fármacos , Halogenación , Humanos , Concentración 50 Inhibidora , Metilaminas/metabolismo , Metilaminas/toxicidad , Mitocondrias/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Propiofenonas/metabolismo , Propiofenonas/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Superóxidos/metabolismo
6.
Arch Toxicol ; 93(2): 487-504, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30511338

RESUMEN

Statins inhibit cholesterol biosynthesis and lower serum LDL-cholesterol levels. Statins are generally well tolerated, but can be associated with potentially life-threatening myopathy of unknown mechanism. We have shown previously that statins impair PGC-1ß expression in human and rat skeletal muscle, suggesting that PGC-1ß may play a role in statin-induced myopathy. PGC-1ß is a transcriptional co-regulator controlling the expression of important genes in mitochondrial biogenesis, antioxidative capacity and energy metabolism. The principle aim of the current study was to investigate the interaction between atorvastatin and PGC-1ß in more detail. We therefore treated wild-type mice and mice with selective skeletal muscle knockout of PGC-1ß (PGC-1ß(i)skm-/- mice) with oral atorvastatin (5 mg/kg/day) for 2 weeks. At the end of treatment, we determined body parameters, muscle function, structure, and composition as well as the function of muscle mitochondria, mitochondrial biogenesis and activation of apoptotic pathways. In wild-type mice, atorvastatin selectively impaired mitochondrial function in glycolytic muscle and caused a conversion of oxidative type IIA to glycolytic type IIB myofibers. Conversely, in oxidative muscle of wild-type mice, atorvastatin enhanced mitochondrial function via activation of mitochondrial biogenesis pathways and decreased apoptosis. In PGC-1ß(i)skm-/- mice, atorvastatin induced a switch towards glycolytic fibers, caused mitochondrial dysfunction, increased mitochondrial ROS production, impaired mitochondrial proliferation and induced apoptosis in both glycolytic and oxidative skeletal muscle. Our work reveals that atorvastatin mainly affects glycolytic muscle in wild-type mice and demonstrates the importance of PGC-1ß for oxidative muscle integrity during long-term exposure to a myotoxic agent.


Asunto(s)
Atorvastatina/toxicidad , Inhibidores de Hidroximetilglutaril-CoA Reductasas/toxicidad , Músculo Esquelético/efectos de los fármacos , Miotoxicidad/etiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Atorvastatina/metabolismo , Femenino , Peróxido de Hidrógeno/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Cadenas Pesadas de Miosina/metabolismo , Miotoxicidad/patología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética
7.
Int J Mol Sci ; 20(19)2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31581457

RESUMEN

The synthetic peroxides OZ78 and MT04 recently emerged as fasciocidal drug candidates. However, the effect of iron on fasciocidal activity and hepatocellular toxicity of these compounds is unknown. We investigated the in vitro fasciocidal activity and hepatocellular toxicity of OZ78 and MT04 in absence and presence of Fe(II)chloride and hemin, and conducted a toxicological study in mice. Studies were performed in comparison with the antimalarial artesunate (AS), a semisynthetic peroxide. Fasciocidal effects of OZ78 and MT04 were confirmed and enhanced by Fe2+ or hemin. In HepG2 cells, AS reduced cellular ATP and impaired membrane integrity concentration-dependently. In comparison, OZ78 or MT04 were not toxic at 100 µM and reduced the cellular ATP by 13% and 19%, respectively, but were not membrane-toxic at 500 µM. The addition of Fe2+ or hemin increased the toxicity of OZ78 and MT04 significantly. AS inhibited complex I, II, and IV of the mitochondrial electron transport chain, and MT04 impaired complex I and II, whereas OZ78 was not toxic. All three compounds increased cellular reactive oxygen species (ROS) concentration-dependently, with a further increase by Fe2+ or hemin. Mice treated orally with up to 800 mg OZ78, or MT04 showed no relevant hepatotoxicity. In conclusion, we confirmed fasciocidal activity of OZ78 and MT04, which was increased by Fe2+ or hemin. OZ78 and MT04 were toxic to HepG2 cells, which was explained by mitochondrial damage associated with ROS generation in the presence of iron. No relevant hepatotoxicity was observed in mice in vivo, possibly due to limited exposure and/or high antioxidative hepatic capacity.


Asunto(s)
Adamantano/análogos & derivados , Fasciola hepatica/efectos de los fármacos , Fasciola hepatica/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hierro/metabolismo , Compuestos de Espiro/farmacología , Adamantano/síntesis química , Adamantano/química , Adamantano/farmacología , Adenosina Trifosfato/metabolismo , Animales , Cromatografía Liquida , Células Hep G2 , Humanos , Hierro/farmacología , Microsomas Hepáticos/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Espiro/síntesis química , Compuestos de Espiro/química , Espectrometría de Masas en Tándem
8.
Int J Mol Sci ; 20(7)2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30925718

RESUMEN

Synthetic cathinones are popular psychoactive substances that may cause skeletal muscle damage. In addition to indirect sympathomimetic myotoxicity, these substances could be directly myotoxic. Since studies in myocytes are currently lacking, the aim of the present study was to investigate potential toxicological effects by synthetic cathinones on C2C12 myoblasts (mouse skeletal muscle cell line). We exposed C2C12 myoblasts to 3-methylmethcathinone, 4-methylmethcathinone (mephedrone), 3,4-methylenedioxymethcathinone (methylone), 3,4-methylenedioxypyrovalerone (MDPV), alpha-pyrrolidinovalerophenone (α-PVP), and naphthylpyrovalerone (naphyrone) for 1 or 24 h before cell membrane integrity, ATP content, mitochondrial oxygen consumption, and mitochondrial superoxide production was measured. 3,4-Methylenedioxymethamphetamine (MDMA) was included as a reference compound. All investigated synthetic cathinones, as well as MDMA, impaired cell membrane integrity, depleted ATP levels, and increased mitochondrial superoxide concentrations in a concentration-dependent manner in the range of 50⁻2000 µM. The two pyrovalerone derivatives α-PVP and naphyrone, and MDMA, additionally impaired basal and maximal cellular respiration, suggesting mitochondrial dysfunction. Alpha-PVP inhibited complex I, naphyrone complex II, and MDMA complex I and III, whereas complex IV was not affected. We conclude that, in addition to sympathetic nervous system effects and strenuous muscle exercise, direct effects of some cathinones on skeletal muscle mitochondria may contribute to myotoxicity in susceptible synthetic cathinone drugs users.


Asunto(s)
Benzodioxoles/toxicidad , Metanfetamina/análogos & derivados , Mioblastos/efectos de los fármacos , Pentanonas/toxicidad , Psicotrópicos/toxicidad , Pirrolidinas/toxicidad , Adenosina Trifosfato/metabolismo , Animales , Línea Celular , Metanfetamina/toxicidad , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Mioblastos/metabolismo , Mioblastos/patología , Consumo de Oxígeno/efectos de los fármacos , Superóxidos/metabolismo , Cathinona Sintética
9.
J Appl Toxicol ; 38(3): 418-431, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29072336

RESUMEN

Tyrosine kinase inhibitors have revolutionized the treatment of certain cancers. They are usually well tolerated, but can cause adverse reactions including liver injury. Currently, mechanisms of hepatotoxicity associated with tyrosine kinase inhibitors are only partially clarified. We therefore aimed at investigating the toxicity of regorafenib, sorafenib, ponatinib, crizotinib, dasatinib and pazopanib on HepG2 and partially on HepaRG cells. Regorafenib and sorafenib strongly inhibited oxidative metabolism (measured by the Seahorse-XF24 analyzer) and glycolysis, decreased the mitochondrial membrane potential and induced apoptosis and/or necrosis of HepG2 cells at concentrations similar to steady-state plasma concentrations in humans. In HepaRG cells, pretreatment with rifampicin decreased membrane toxicity (measured as adenylate kinase release) and dissipation of adenosine triphosphate stores, indicating that toxicity was associated mainly with the parent drugs. Ponatinib strongly impaired oxidative metabolism but only weakly glycolysis, and induced apoptosis of HepG2 cells at concentrations higher than steady-state plasma concentrations in humans. Crizotinib and dasatinib did not significantly affect mitochondrial functions and inhibited glycolysis only weakly, but induced apoptosis of HepG2 cells. Pazopanib was associated with a weak increase in mitochondrial reactive oxygen species accumulation and inhibition of glycolysis without being cytotoxic. In conclusion, regorafenib and sorafenib are strong mitochondrial toxicants and inhibitors of glycolysis at clinically relevant concentrations. Ponatinib affects mitochondria and glycolysis at higher concentrations than reached in plasma (but possibly in liver), whereas crizotinib, dasatinib and pazopanib showed no relevant toxicity. Mitochondrial toxicity and inhibition of glycolysis most likely explain hepatotoxicity associated with regorafenib, sorafenib and possibly pazopanib, but not for the other compounds investigated.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Glucólisis/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/toxicidad , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Apoptosis/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/enzimología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Relación Dosis-Respuesta a Droga , Células Hep G2 , Hepatocitos/enzimología , Hepatocitos/patología , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Hepáticas/enzimología , Mitocondrias Hepáticas/patología , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Proteínas Tirosina Quinasas/metabolismo
10.
Arch Toxicol ; 91(5): 2223-2234, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27734117

RESUMEN

Statins are generally well tolerated, but treatment with these drugs may be associated with myopathy. The mechanisms of statin-associated myopathy are not completely understood. Statins inhibit AKT phosphorylation by an unclear mechanism, whereas insulin-like growth factor (IGF-1) activates the IGF-1/AKT signaling pathway and promotes muscle growth. The aims of the study were to investigate mechanisms of impaired AKT phosphorylation by simvastatin and to assess effects of IGF-1 on simvastatin-induced myotoxicity in C2C12 myotubes. C2C12 mouse myotubes were exposed to 10 µM simvastatin and/or 10 ng/mL IGF-1 for 18 h. Simvastatin inhibited the IGF-1/AKT signaling pathway, resulting in increased breakdown of myofibrillar proteins, impaired protein synthesis and increased apoptosis. Simvastatin inhibited AKT S473 phosphorylation, indicating reduced activity of mTORC2. In addition, simvastatin impaired stimulation of AKT T308 phosphorylation by IGF-1, indicating reduced activation of the IGF-1R/PI3K pathway by IGF-1. Nevertheless, simvastatin-induced myotoxicity could be at least partially prevented by IGF-1. The protective effects of IGF-1 were mediated by activation of the IGF-1R/AKT signaling cascade. Treatment with IGF-1 also suppressed muscle atrophy markers, restored protein synthesis and inhibited apoptosis. These results were confirmed by normalization of myotube morphology and protein content of C2C12 cells exposed to simvastatin and treated with IGF-1. In conclusion, impaired activity of AKT can be explained by reduced function of mTORC2 and of the IGF-1R/PI3K pathway. IGF-1 can prevent simvastatin-associated cytotoxicity and metabolic effects on C2C12 cells. The study gives insight into mechanisms of simvastatin-associated myotoxicity and provides potential targets for therapeutic intervention.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/farmacología , Fibras Musculares Esqueléticas/efectos de los fármacos , Simvastatina/efectos adversos , Adenosina Trifosfato/metabolismo , Animales , Apoptosis/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Proteína Forkhead Box O3/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/administración & dosificación , Ratones , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
11.
Biochim Biophys Acta ; 1853(8): 1841-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25913013

RESUMEN

Statins are drugs that lower blood cholesterol levels and reduce cardiovascular morbidity and mortality. They are generally well-tolerated, but myopathy is a potentially severe adverse reaction of these compounds. The mechanisms by which statins induce myotoxicity are not completely understood, but may be related to inhibition of the AKT signaling pathway. The current studies were performed to explore the down-stream effects of the statin-associated inhibition of AKT within the AKT signaling pathway and on myocyte biology and morphology in C2C12 myotubes and in mice in vivo. We exposed C2C12 myotubes to 10 µM or 50 µM simvastatin, atorvastatin or rosuvastatin for 24 h. Simvastatin and atorvastatin inhibited AKT phosphorylation and were cytotoxic starting at 10 µM, whereas similar effects were observed for rosuvastatin at 50 µM. Inhibition of AKT phosphorylation was associated with impaired phosphorylation of S6 kinase, ribosomal protein S6, 4E-binding protein 1 and FoxO3a, resulting in reduced protein synthesis, accelerated myofibrillar degradation and atrophy of C2C12 myotubes. Furthermore, impaired AKT phosphorylation was associated with activation of caspases and PARP, reflecting induction of apoptosis. Similar findings were detected in skeletal muscle of mice treated orally with 5 mg/kg/day simvastatin for 3 weeks. In conclusion, this study highlights the importance of the AKT/mTOR signaling pathway in statin-induced myotoxicity and reveals potential drug targets for treatment of patients with statin-associated myopathies.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Músculo Esquelético/efectos de los fármacos , Enfermedades Musculares/inducido químicamente , Proteínas Proto-Oncogénicas c-akt/fisiología , Serina-Treonina Quinasas TOR/fisiología , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/fisiología , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Transducción de Señal/fisiología , Simvastatina/efectos adversos
12.
Biochim Biophys Acta ; 1853(7): 1574-85, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25769432

RESUMEN

Even though oxidative stress damage from excessive production of ROS is a well known phenomenon, the impact of reductive stress remains poorly understood. This study tested the hypothesis that cellular reductive stress could lead to mitochondrial malfunction, triggering a mitochondrial hormesis (mitohormesis) phenomenon able to protect mitochondria from the deleterious effects of statins. We performed several in vitro experiments on L6 myoblasts and studied the effects of N-acetylcysteine (NAC) at different exposure times. Direct NAC exposure (1mM) led to reductive stress, impairing mitochondrial function by decreasing maximal mitochondrial respiration and increasing H2O2production. After 24h of incubation, the reactive oxygen species (ROS) production was increased. The resulting mitochondrial oxidation activated mitochondrial biogenesis pathways at the mRNA level. After one week of exposure, mitochondria were well-adapted as shown by the decrease of cellular ROS, the increase of mitochondrial content, as well as of the antioxidant capacities. Atorvastatin (ATO) exposure (100µM) for 24h increased ROS levels, reduced the percentage of live cells, and increased the total percentage of apoptotic cells. NAC exposure during 3days failed to protect cells from the deleterious effects of statins. On the other hand, NAC pretreatment during one week triggered mitochondrial hormesis and reduced the deleterious effect of statins. These results contribute to a better understanding of the redox-dependant pathways linked to mitochondria, showing that reductive stress could trigger mitochondrial hormesis phenomenon.


Asunto(s)
Hormesis , Mitocondrias/metabolismo , Mioblastos/metabolismo , Estrés Fisiológico , Acetilcisteína/farmacología , Animales , Respiración de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citoprotección/efectos de los fármacos , Hormesis/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Mitocondrias/efectos de los fármacos , Recambio Mitocondrial/efectos de los fármacos , Mioblastos/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Sustancias Protectoras/farmacología , Ratas , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/efectos de los fármacos , Factores de Tiempo
13.
Eur J Nutr ; 55(1): 207-17, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25612929

RESUMEN

PURPOSE: More than 95% of the body carnitine is located in skeletal muscle, where it is essential for energy metabolism. Vegetarians ingest less carnitine and carnitine precursors and have lower plasma carnitine concentrations than omnivores. Principle aims of the current study were to assess the plasma and skeletal muscle carnitine content and physical performance of male vegetarians and matched omnivores under basal conditions and after L-carnitine supplementation. RESULTS: Sixteen vegetarians and eight omnivores participated in this interventional study with oral supplementation of 2 g L-carnitine for 12 weeks. Before carnitine supplementation, vegetarians had a 10% lower plasma carnitine concentration, but maintained skeletal muscle carnitine stores compared to omnivores. Skeletal muscle phosphocreatine, ATP, glycogen and lactate contents were also not different from omnivores. Maximal oxygen uptake (VO2max) and workload (P max) per bodyweight (bicycle spiroergometry) were not significantly different between vegetarians and omnivores. Sub-maximal exercise (75% VO2max for 1 h) revealed no significant differences between vegetarians and omnivores (respiratory exchange ratio, blood lactate and muscle metabolites). Supplementation with L-carnitine significantly increased the total plasma carnitine concentration (24% in omnivores, 31% in vegetarians) and the muscle carnitine content in vegetarians (13%). Despite this increase, P max and VO2max as well as muscle phosphocreatine, lactate and glycogen were not significantly affected by carnitine administration. CONCLUSIONS: Vegetarians have lower plasma carnitine concentrations, but maintained muscle carnitine stores compared to omnivores. Oral L-carnitine supplementation normalizes the plasma carnitine stores and slightly increases the skeletal muscle carnitine content in vegetarians, but without affecting muscle function and energy metabolism.


Asunto(s)
Carnitina/administración & dosificación , Suplementos Dietéticos , Metabolismo Energético/efectos de los fármacos , Ejercicio Físico/fisiología , Músculo Esquelético/efectos de los fármacos , Administración Oral , Adolescente , Adulto , Índice de Masa Corporal , Peso Corporal , Carnitina/sangre , Carnitina/orina , Carbohidratos de la Dieta/administración & dosificación , Grasas de la Dieta/administración & dosificación , Proteínas en la Dieta/administración & dosificación , Ingestión de Energía , Glucógeno/metabolismo , Humanos , Masculino , Músculo Esquelético/metabolismo , Vegetarianos , Adulto Joven
14.
Arch Toxicol ; 90(1): 203-15, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25300705

RESUMEN

Simvastatin is effective and well tolerated, with adverse reactions mainly affecting skeletal muscle. Important mechanisms for skeletal muscle toxicity include mitochondrial impairment and increased expression of atrogin-1. The aim was to study the mechanisms of toxicity of simvastatin on H9c2 cells (a rodent cardiomyocyte cell line) and on the heart of male C57BL/6 mice. After, exposure to 10 µmol/L simvastatin for 24 h, H9c2 cells showed impaired oxygen consumption, a reduction in the mitochondrial membrane potential and a decreased activity of several enzyme complexes of the mitochondrial electron transport chain (ETC). The cellular ATP level was also decreased, which was associated with phosphorylation of AMPK, dephosphorylation and nuclear translocation of FoxO3a as well as increased mRNA expression of atrogin-1. Markers of apoptosis were increased in simvastatin-treated H9c2 cells. Treatment of mice with 5 mg/kg/day simvastatin for 21 days was associated with a 5 % drop in heart weight as well as impaired activity of several enzyme complexes of the ETC and increased mRNA expression of atrogin-1 and of markers of apoptosis in cardiac tissue. Cardiomyocytes exposed to simvastatin in vitro or in vivo sustain mitochondrial damage, which causes AMPK activation, dephosphorylation and nuclear transformation of FoxO3a as well as increased expression of atrogin-1. Mitochondrial damage and increased atrogin-1 expression are associated with apoptosis and increased protein breakdown, which may cause myocardial atrophy.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas/toxicidad , Mitocondrias Cardíacas/efectos de los fármacos , Proteínas Musculares/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Proteínas Ligasas SKP Cullina F-box/metabolismo , Simvastatina/toxicidad , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Apoptosis/efectos de los fármacos , Cardiotoxicidad , Línea Celular , Relación Dosis-Respuesta a Droga , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Metabolismo Energético/efectos de los fármacos , Activación Enzimática , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fosforilación , Ratas , Factores de Tiempo , Regulación hacia Arriba
15.
Am J Physiol Endocrinol Metab ; 309(3): E265-74, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26037247

RESUMEN

The consequences of carnitine depletion upon metabolic and contractile characteristics of skeletal muscle remain largely unexplored. Therefore, we investigated the effect of N-trimethyl-hydrazine-3-propionate (THP) administration, a carnitine analog inhibiting carnitine biosynthesis and renal reabsorption of carnitine, on skeletal muscle function and energy metabolism. Male Sprague-Dawley rats were fed a standard rat chow in the absence (CON; n = 8) or presence of THP (n = 8) for 3 wk. Following treatment, rats were fasted for 24 h prior to excision of their soleus and EDL muscles for biochemical characterization at rest and following 5 min of contraction in vitro. THP treatment reduced the carnitine pool by ∼80% in both soleus and EDL muscles compared with CON. Carnitine depletion was associated with a 30% decrease soleus muscle weight, whereas contractile function (expressed per gram of muscle), free coenzyme A, and water content remained unaltered from CON. Muscle fiber distribution and fiber area remained unaffected, whereas markers of apoptosis were increased in soleus muscle of THP-treated rats. In EDL muscle, carnitine depletion was associated with reduced free coenzyme A availability (-25%, P < 0.05), impaired peak tension development (-44%, P < 0.05), and increased glycogen hydrolysis (52%, P < 0.05) during muscle contraction, whereas PDC activation, muscle weight, and water content remained unaltered from CON. In conclusion, myopathy associated with carnitine deficiency can have different causes. Although muscle atrophy, most likely due to increased apoptosis, is predominant in muscle composed predominantly of type I fibers (soleus), disturbance of energy metabolism appears to be the major cause in muscle composed of type II fibers (EDL).


Asunto(s)
Carnitina/deficiencia , Enfermedades Carenciales/fisiopatología , Modelos Animales de Enfermedad , Metabolismo Energético , Contracción Muscular , Músculo Esquelético/fisiopatología , Atrofia Muscular/etiología , Animales , Apoptosis , Biomarcadores/metabolismo , Carnitina/antagonistas & inhibidores , Enfermedades Carenciales/inducido químicamente , Enfermedades Carenciales/metabolismo , Enfermedades Carenciales/patología , Glucogenólisis , Masculino , Metilhidrazinas , Desarrollo de Músculos , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Rápida/patología , Fibras Musculares de Contracción Lenta/metabolismo , Fibras Musculares de Contracción Lenta/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distribución Aleatoria , Ratas Sprague-Dawley
16.
J Vasc Surg ; 60(4): 1043-51.e5, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24095040

RESUMEN

OBJECTIVE: Lower limb ischemia-reperfusion results in skeletal muscle mitochondrial alterations, production of reactive oxygen species (ROS), and remote organ impairments that are largely involved in patient prognosis. However, whether ischemia without reperfusion increases ROS production and precedes mitochondrial alteration and whether mitochondrial dysfunction occurs early in remote organs is unknown. This study determined muscle mitochondrial function and ROS production after ischemia alone, or followed by two periods of reperfusion, and investigated heart, lung, liver, kidney, and brain mitochondrial functions after lower limb ischemia-reperfusion. METHODS: Wistar rats were randomized into four groups: sham (aortic exposure but no ischemia, n = 9), I3 (ischemia alone induced by aortic cross-clamping for 3 hours, n = 9), I3R10' and I3R2 (aortic cross-clamping, followed by reperfusion for 10 minutes [n = 8] or 2 hours [n = 9]). Blood lactate, alanine aminotransferase, aspartate aminotransferase, and creatinine were measured. Mitochondrial respiratory chain complexes I, II, III, and IV activities and mitochondrial coupling (acceptor control ratio) were analyzed using a Clark oxygen electrode in skeletal muscle, lung, heart, brain, liver, and kidney. ROS production was determined using dihydroethidium staining in muscle, heart, liver, and kidney. Inflammation was also investigated in remote organs (heart, liver, and kidney) using monocyte-macrophage-2 antibody staining. RESULTS: Lactate level increased after ischemia in all groups. In muscle, ROS increased significantly after ischemia alone (+324% ± 66%; P = .038), normalized after 10 minutes of reperfusion, and increased again at 2 hours of reperfusion (+349.2 ± 67%; P = .024). Interestingly, mitochondrial function was unaffected by ischemia alone or followed by 10 minutes of reperfusion, but maximal mitochondrial oxidative capacity (6.10 ± 0.51 vs. 4.24 ± 0.36 µmol/min/g, -30%; P < .05) and mitochondrial coupling decreased after 2 hours of reperfusion (1.93 ± 0.17 vs. 1.33 ± 0.07, -45%; P < .01), in sham and I3R2 rats, respectively. Despite increased serum aspartate aminotransferase (×13; P < .0001), alanine aminotransferase (×6; P = .0019), and creatinine (×3; P = .0004), remote organs did not show mitochondrial alteration, inflammation, or ROS production enhancement after 2 hours of reperfusion. CONCLUSIONS: Oxidative stress precedes skeletal muscle mitochondrial dysfunction during lower limb ischemia. Such a kinetic explains the efficacy of ischemic preconditioning and supports that therapy should be conducted even during ongoing ischemia, suggesting that ischemic preconditioning might be a successful approach.


Asunto(s)
Riñón/metabolismo , Hígado/metabolismo , Pulmón/metabolismo , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Estrés Oxidativo/fisiología , Daño por Reperfusión/metabolismo , Animales , Aorta Abdominal/cirugía , Modelos Animales de Enfermedad , Inmunohistoquímica , Precondicionamiento Isquémico , Riñón/patología , Hígado/patología , Extremidad Inferior/irrigación sanguínea , Pulmón/patología , Masculino , Mitocondrias Cardíacas/metabolismo , Mitocondrias Hepáticas/metabolismo , Enfermedades Mitocondriales/etiología , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/patología
17.
Muscle Nerve ; 50(5): 803-11, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24639213

RESUMEN

INTRODUCTION: The effect of eccentric (ECC) versus concentric (CON) training on metabolic properties in skeletal muscle is understood poorly. We determined the responses in oxidative capacity and mitochondrial H2 O2 production after eccentric (ECC) versus concentric (CON) training performed at similar mechanical power. METHODS: Forty-eight rats performed 5- or 20-day eccentric (ECC) or concentric (CON) training programs. Mitochondrial respiration, H2 O2 production, citrate synthase activity (CS), and skeletal muscle damage were assessed in gastrocnemius (GAS), soleus (SOL) and vastus intermedius (VI) muscles. RESULTS: Maximal mitochondrial respiration improved only after 20 days of concentric (CON) training in GAS and SOL. H2 O2 production increased specifically after 20 days of eccentric ECC training in VI. Skeletal muscle damage occurred transiently in VI after 5 days of ECC training. CONCLUSIONS: Twenty days of ECC versus CON training performed at similar mechanical power output do not increase skeletal muscle oxidative capacities, but it elevates mitochondrial H2 O2 production in VI, presumably linked to transient muscle damage.


Asunto(s)
Mitocondrias Musculares/fisiología , Músculo Esquelético/ultraestructura , Estrés Oxidativo/fisiología , Condicionamiento Físico Animal/fisiología , Adenosina Difosfato/metabolismo , Animales , Índice de Masa Corporal , Citrato (si)-Sintasa/metabolismo , Creatina Quinasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Ácido Láctico/sangre , Masculino , Ventilación Voluntaria Máxima , Músculo Esquelético/metabolismo , Ratas , Ratas Wistar , Ácido Succínico , Factores de Tiempo
18.
Eur J Nutr ; 53(6): 1313-25, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24337254

RESUMEN

PURPOSE: Pharmacokinetics and effects on skeletal muscle and physical performance of oral acetylcarnitine and propionylcarnitine are not well characterized. We therefore investigated the influence of oral acetylcarnitine, propionylcarnitine, and carnitine on body carnitine homeostasis, energy metabolism, and physical performance in mice and compared the findings to non-supplemented control animals. METHODS: Mice were supplemented orally with 2 mmol/kg/day carnitine, acetylcarnitine, or propionylcarnitine for 4 weeks and studied either at rest or after exhaustive exercise. RESULTS: In the supplemented groups, total plasma and urine carnitine concentrations were significantly higher than in the control group receiving no carnitine, whereas the skeletal muscle carnitine content remained unchanged. The supplemented acylcarnitines were hydrolyzed in intestine and liver and reached the systemic circulation as carnitine. Bioavailability of carnitine and acylcarnitines, determined as the urinary excretion of total carnitine, was in the range of 19 %. Skeletal muscle morphology, including fiber-type composition, was not affected, and oxygen consumption by soleus or gastrocnemius fibers was not different between the groups. Supplementation with carnitine or acylcarnitines had no significant impact on the running capacity, but was associated with lower plasma lactate levels and a higher glycogen content in white skeletal muscle after exhaustive exercise. CONCLUSIONS: Oral supplementation of carnitine, acetylcarnitine, or propionylcarnitine in mice is associated with increased plasma and urine total carnitine concentrations, but does not affect the skeletal muscle carnitine content. Despite better preservation of skeletal muscle glycogen and lower plasma lactate levels, physical performance was not improved by carnitine or acylcarnitine supplementation.


Asunto(s)
Acetilcarnitina/administración & dosificación , Carnitina/análogos & derivados , Suplementos Dietéticos , Músculo Esquelético/efectos de los fármacos , Condicionamiento Físico Animal , Acetilcarnitina/sangre , Acetilcarnitina/farmacocinética , Acetilcarnitina/orina , Administración Oral , Animales , Disponibilidad Biológica , Biomarcadores/sangre , Biomarcadores/orina , Carnitina/administración & dosificación , Carnitina/sangre , Carnitina/farmacocinética , Carnitina/orina , Metabolismo Energético , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Estrés Oxidativo/efectos de los fármacos , Consumo de Oxígeno
19.
Toxicol Lett ; 393: 1-13, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38219807

RESUMEN

St. John's Wort preparations are used for the treatment of mild to moderate depression. They are usually well tolerated but can cause adverse reactions including liver toxicity in rare cases. To date, the mechanism(s) underlying the hepatotoxicity of St. John's Wort extracts are poorly investigated. We studied the hepatocellular toxicity of hypericin and hyperforin as the two main ingredients of St. John's Wort extracts in HepG2 and HepaRG cells and compared the effects to citalopram (a synthetic serotonin uptake inhibitor) with a special focus on mitochondrial toxicity and oxidative stress. In HepG2 cells, hypericin was membrane-toxic at 100 µM and depleted ATP at 20 µM. In HepaRG cells, ATP depletion started at 5 µM. In comparison, hyperforin and citalopram were not toxic up to 100 µM. In HepG2 cells, hypericin decreased maximal respiration starting at 2 µM and mitochondrial ATP formation starting at 10 µM but did not affect glycolytic ATP production. Hypericin inhibited the activity of complex I, II and IV of the electron transfer system and caused mitochondrial superoxide accumulation in cells. The protein expression of mitochondrial superoxide dismutase 2 (SOD2) and thioredoxin 2 (TRX2) and total and reduced glutathione decreased in cells exposed to hypericin. Finally, hypericin diminished the mitochondrial DNA copy number and caused cell necrosis but not apoptosis. In conclusion, hypericin, but not hyperforin or citalopram, is a mitochondrial toxicant at low micromolar concentrations. This mechanism may contribute to the hepatotoxicity occasionally observed in susceptible patients treated with St. John's Wort preparations.


Asunto(s)
Antracenos , Carcinoma Hepatocelular , Enfermedad Hepática Inducida por Sustancias y Drogas , Hypericum , Neoplasias Hepáticas , Perileno/análogos & derivados , Floroglucinol/análogos & derivados , Terpenos , Humanos , Extractos Vegetales/toxicidad , Extractos Vegetales/uso terapéutico , Hypericum/toxicidad , Citalopram/toxicidad , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Adenosina Trifosfato
20.
Neurobiol Dis ; 58: 220-30, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23742762

RESUMEN

Mutations in the DYNC1H1 gene encoding for dynein heavy chain cause two closely related human motor neuropathies, dominant spinal muscular atrophy with lower extremity predominance (SMA-LED) and axonal Charcot-Marie-Tooth (CMT) disease, and lead to sensory neuropathy and striatal atrophy in mutant mice. Dynein is the molecular motor carrying mitochondria retrogradely on microtubules, yet the consequences of dynein mutations on mitochondrial physiology have not been explored. Here, we show that mouse fibroblasts bearing heterozygous or homozygous point mutation in Dync1h1, similar to human mutations, show profoundly abnormal mitochondrial morphology associated with the loss of mitofusin 1. Furthermore, heterozygous Dync1h1 mutant mice display progressive mitochondrial dysfunction in muscle and mitochondria progressively increase in size and invade sarcomeres. As a likely consequence of systemic mitochondrial dysfunction, Dync1h1 mutant mice develop hyperinsulinemia and hyperglycemia and progress to glucose intolerance with age. Similar defects in mitochondrial morphology and mitofusin levels are observed in fibroblasts from patients with SMA-LED. Last, we show that Dync1h1 mutant fibroblasts show impaired perinuclear clustering of mitochondria in response to mitochondrial uncoupling. Our results show that dynein function is required for the maintenance of mitochondrial morphology and function with aging and suggest that mitochondrial dysfunction contributes to dynein-dependent neurological diseases, such as SMA-LED.


Asunto(s)
Envejecimiento/patología , Dineínas Citoplasmáticas/genética , Mitocondrias/patología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Mutación/genética , Animales , Células Cultivadas , Embrión de Mamíferos , Femenino , Glucagón/sangre , Ácido Glutámico/genética , Humanos , Insulina/sangre , Lisina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/ultraestructura , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA