Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Angew Chem Int Ed Engl ; 63(17): e202401872, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38400832

RESUMEN

Luminescence is observed in three novel macropolyhedral nineteen- and eighteen-vertex chalcogenaboranes: Se2B17H17 (1), SeB17H19 (3) and SeB18H20 (4). This led us to the recognition that previously published macropolyhedral heteroborane species might also exhibit luminescence. Thus, the known nineteen- and eighteen-vertex dithiaboranes S2B17H17 (2), n-S2B16H16 (5) and i-S2B16H16 (6) were synthesised and also found to exhibit a range of luminescent properties. These macropolyhedral species are very different from the previously unique fluorescent binary borane B18H22 in terms of their structural architectures, by the presence of borane cluster hetero atoms, and, as in the cases of 5 and 6, that their synthetic origins are not derived simply through the modification of B18H22 itself. They consequently greatly expand the possibilities of finding new luminescent inorganic borane species.

2.
J Am Chem Soc ; 145(32): 17975-17986, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37532522

RESUMEN

The chemistry and physics of macropolyhedral B18H22 clusters have attracted significant attention due to the interesting photophysical properties of anti-B18H22 (blue emission, laser properties) and related potential applications. We have focused our attention on the "forgotten" syn-B18H22 isomer, which has received very little attention since its discovery compared to its anti-B18H22 isomer, presumably because numerous studies have reported this isomer as nonluminescent. In our study, we show that in crystalline form, syn-B18H22 exhibits blue fluorescence and becomes phosphorescent when substituted at various positions on the cluster, associated with peculiar microstructural-dependent effects. This work is a combined theoretical and experimental investigation that includes the synthesis, separation, structural characterization, and first elucidation of the photophysical properties of three different monothiol-substituted cluster isomers, [1-HS-syn-B18H21] 1, [3-HS-syn-B18H21] 3, and [4-HS-syn-B18H21] 4, of which isomers 1 and 4 have been proved to exist in two different polymorphic forms. All of these newly substituted macropolyhedral cluster derivatives (1, 3, and 4) have been fully characterized by NMR spectroscopy, mass spectrometry, single-crystal X-ray diffraction, IR spectroscopy, and luminescence spectroscopy. This study also presents the first report on the mechanochromic shift in the luminescence of a borane cluster and generally enriches the area of rather rare boron-based luminescent materials. In addition, we present the first results proving that they are useful constituents of carbon-free self-assembled monolayers.

3.
Inorg Chem ; 62(36): 14568-14579, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37647567

RESUMEN

The 1,8-bis(dimethylamino)naphthalenium ([PSH]+) decaborane salt, [PSH][B10H13], has been found to react in ethanol to form [PSH][B9H14] (1), affording a simple route to the synthesis of the arachno-nonaborate anion. This new polyhedral salt is characterized by NMR spectroscopy and X-ray diffraction. The measurement of diffusion coefficients by NMR methods demonstrates that the [PSH]+ cation and the [B9H14]- anion form ion pairs in a non-coordinating solvent such as CH2Cl2, whereas in CD3CN the formation of ion pairs was not observed. Insights into the long-known low-energy dynamic behavior, which involves the bridging and endo-terminal hydrogen atoms, are elucidated using DFT calculations. Salts [PSH][B9H14] (1) and [PSH][B9H14]·0.5CHCl3 (solvated, 1·0.5CHCl3) have also been studied by X-ray diffraction analysis. A solid-state NMR study has demonstrated that K[B9H14] and [PSH][B9H14] (1) undergo significantly different motion regimes, being a low-energy, weakly temperature-dependent process for 1, which may be ascribed to some type of low-amplitude reorientation of the whole boron cages. This process may be the mechanism for the low- to-room-temperature order-disorder hidden transition found by X-ray analysis.

4.
Molecules ; 28(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37298983

RESUMEN

The action of AlCl3 on room-temperature tetrachloromethane solutions of anti-B18H22 (1) results in a mixture of fluorescent isomers, 3,3'-Cl2-B18H20 (2) and 3,4'-Cl2-B18H20 (3), together isolated in a 76% yield. Compounds 2 and 3 are capable of the stable emission of blue light under UV-excitation. In addition, small amounts of other dichlorinated isomers, 4,4'-Cl2-B18H20 (4), 3,1'-Cl2-B18H20 (5), and 7,3'-Cl2-B18H20 (6) were isolated, along with blue-fluorescent monochlorinated derivatives, 3-Cl-B18H21 (7) and 4-Cl-B18H21 (8), and trichlorinated species 3,4,3'-Cl3-B18H19 (9) and 3,4,4'-Cl3-B18H19 (10). The molecular structures of these new chlorinated derivatives of octadecaborane are delineated, and the photophysics of some of these species are discussed in the context of the influence that chlorination bears on the luminescence of anti-B18H22. In particular, this study produces important information on the effect that the cluster position of these substitutions has on luminescence quantum yields and excited-state lifetimes.


Asunto(s)
Halogenación , Luminiscencia , Isomerismo , Estructura Molecular
5.
J Org Chem ; 87(15): 10034-10043, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35839127

RESUMEN

As a preliminary step toward its condensation into the porous polymer Activated Borane, the thermolysis of nido-B10H14 (1) in benzene at 200 °C results in the generation of a number of phenylated borane molecular species. The principal product is the new monophenylated compound 5-Ph-nido-B10H13 (2), isolated in 48% yield (based on consumption of 1) and structurally characterized by single-crystal X-ray diffraction analysis, NMR, and mass spectrometry along with other minor products, such as 6-Ph-nido-B10H13 (3), for which we observe UV-light-driven conversion into 2 via a "vertex-flip" mechanism, and novel diphenylated 5,8-Ph2-nido-B10H12 (4). Together, the phenylated derivatives provide a valuable insight into the assembly of Activated Borane and ultimately inform on its structure. The new compounds also display strong blue fluorescence in both solid-state and in solution and are the first examples of the direct phenylation of nido-B10H14, thus opening the door to the straight-forward synthesis of highly luminescent organic-borane hybrid systems.


Asunto(s)
Boranos , Boranos/química , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética
6.
Inorg Chem ; 61(4): 1899-1917, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35049289

RESUMEN

High yields of novel macropolyhedral selenaboranes are reported. Reactions of the monoanions of the syn- and anti-isomers of B18H22 with powdered selenium in THF variously give new macropolyhedral selenaboranes: 19-vertex [SeB18H19]- anion 1, 19-vertex [SeB18H21]- anion 2, 20-vertex [Se2B18H19]- anion 3, and 19-vertex [Se2B17H18]- anion 4. Single-cluster [hypho-Se2B6H9]- anion 5 and neutral arachno-Se2B7H9 6 also result. All of the macropolyhedrals 1, 2, 3, and 4 are characterized by NMR spectroscopy and mass spectrometry, and by single-crystal X-ray diffraction analyses. Anions 1 and 2 each consist of an 11-vertex subcluster joined by a common two-boron edge to a 10-vertex subcluster. Anion 3 consists of an 11-vertex subcluster joined by a common boron atom and an interboron link to an arachno-type 10-vertex subcluster. Unusually, anion 3 incorporates a hexagonal pyramidal intracluster structural motif in its 11-vertex subcluster. Anion 4 entails two arachno-type 10-vertex subclusters joined by a common boron atom, and with an additional intercluster boron-boron link. NMR data for syn-B18H22 and its mono- and dianions 7 and 8 and single-crystal X-ray diffraction results for these anions and also the monoanion 9 of anti-B18H22 are also reported. The oxaborane [µ-(8,9)-O-syn-B18H20]2- dianion 10 was serendipitously formed during the work and also characterized by a single-crystal X-ray diffraction study. Experimental NMR and structural findings are supported by DFT calculations throughout.

7.
J Org Chem ; 86(5): 3871-3881, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33570946

RESUMEN

In contrast to the reaction of vinyl(alkynyl)silanes with 9-BBN-H, leading to the quantitative formation of 5-R-4-(9-BBN)-2,3-dihydro-1H-siloles, treatment of bis(alkynyl)silanes bearing one terminal alkynyl group with 2 equiv of 9-BBN-H followed by methanolysis afforded 5-R-4-(9-BBN)-2,5-dihydro-1H-siloles with yields of 85-90% (by NMR integration). The reaction proceeds via a double 1,2-hydroboration of the terminal triple bond with the formation of the geminal diborane followed by ring closure via intramolecular 1,1-carboboration of the remaining alkynyl fragment. Depending on the nature of the substituent R in position 5, the allylic BBN group locates in position 3 (R = Ph) or position 5 (R = SiHMe2, SiMe3) to give 2,3- or 2,5-dihydrosiloles, respectively. The protodeborylation of the allylic BBN group with MeOH of both 3,4-(9-BBN)2-2,3-dihydro- and 4,5-(9-BBN)2-2,5-dihydrosiloles results in the exclusive formation of 4-(9-BBN)-2,5-dihydrosiloles. In all cases, the formation of 10-12% of 2-R-2,4-(9-BBN)2-2,3-dihydrosilole minor isomers has been observed, which occurs from vicinal diboranes formed as side products by a second hydroboration of the terminal triple bond. Similarly, treatment of the tri- and tetraalkynes containing a terminal triple bond with 2 equiv of 9-BBN-H followed by treatment with methanol resulted in the high-yield formation of 1,2,6,6a-tetrahydro-1,6-disilapentalenes and 2,6,7,7a-tetrahydro-1,6,7-trisila-1H-cyclopenta[a]pentalenes, respectively.

8.
Inorg Chem ; 59(24): 17958-17969, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33275421

RESUMEN

The discovery of systems that interact with small molecules plays a vital facilitating role in the development of devices that show sensitivity to their surroundings and an ability to quickly relay chemical and physical information. Herein, we report on the reaction of [NiCl2(dppe)] with decaborane that produces in usable yield a new 11-vertex nickelaborane, [7,7-(dppe)-nido-7-NiB10H12] (1), which shows interesting reactivity and functionality toward carbon monoxide and ethylisonitrile. This contribution describes the synthesis and full structural characterization of 1 and its small-molecule EtNC and CO adducts, 2 and 3, and delineates the dynamic molecular behavior of all of these species in solution. This information sets a foundation from which more advanced work on this and related metallaborane systems can be conceived and provides a more general reference to how NMR spectroscopy, combined with DFT calculations, can be used to analyze the precise locomotion of labile ligands around a metal center held within a borane cluster.

9.
Inorg Chem ; 59(7): 5030-5040, 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32207620

RESUMEN

The dimetallic boron hydride cluster, (PMe2Ph)4Pt2B10H10 (1-Pt2), is known to reversibly sequester small molecules (e.g., O2, CO, and SO2) across its Pt-Pt cluster vector. Here, we report the very different effect of the addition of nitric oxide (NO) to solutions of (1-Pt2) that prompts the elimination of some of its phosphine ligands and the autofusion of the resultant {(PMe2Ph)xPt2B10H10} units to afford the metallaborane conglomerates (PMe2Ph)8Pt8B40H40 (2-Pt8, 38%) and (PMe2Ph)5Pt4B20H20 (3-Pt4, 34%). Single-crystal X-ray studies of these multicluster assemblies reveal the links between the clusters to be a combination of both Pt-Pt bonds and Pt-µH-B 2-electron, 3-center bonds in (2-Pt8) and Pt-µH-B 2-electron, 3-center bonds in (3-Pt4). For compound (2-Pt8), the cluster assemblage can be effectively reversed by the addition of ethyl isonitrile (EtNC) to afford (EtNC)3(PMe2Ph)2Pt2B10H10 4 in quantitative yield. The compounds were characterized by mass spectrometry, multielement NMR spectroscopy, and single-crystal X-ray diffraction studies.

10.
Inorg Chem ; 59(5): 2651-2654, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32045218

RESUMEN

Methylation of anti-B18H22 (1) affords the first example of alkyl substitution of terminal hydrogen atoms on the fluorescent octadecaborane-22 molecule to give highly methylated 2,2'-Cl2-1,1',3,3',4,4',7,7',8,8',10,10'-Me12-anti-B18H8 (2). This extensive chemical substitution leads to a swelling in the polyhedral volume of the 18-vertex boron atomic skeleton of the molecule and an enhancement of the absorption and solubility characteristics of this highly fluorescent molecule. We propose this "swollen polyhedral volume" to be the result of a marked increase in the relative positivity of the "cluster-only total charge" of the boron atomic skeleton caused by the combined electron-withdrawing capacity of the 12 methyl groups. Enhancement in the absorption and solubility properties may be crucial in the design of new borane-based laser materials.

11.
Inorg Chem ; 59(23): 17058-17070, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33166444

RESUMEN

We present the first examples of alkylated derivatives of the macropolyhedral boron hydride, anti-B18H22, which is the gain medium in the first borane laser. This new series of ten highly stable and colorless organic-inorganic hybrid clusters are capable of the conversion of UVA irradiation to blue light with fluorescence quantum yields of unity. This study gives a comprehensive description of their synthesis, isolation, and structural characterization together with a delineation of their photophysical properties using a combined theoretical and experimental approach. Treatment of anti-B18H22 1 with RI (where R = Me or Et) in the presence of AlCl3 gives a series of alkylated derivatives, Rx-anti-B18H22-x (where x = 2 to 6), compounds 2-6, in which the 18-vertex octadecaborane cluster architectures are preserved and yet undergo a linear "polyhedral swelling", depending on the number of cluster alkyl substituents. The use of dichloromethane solvent in the synthetic procedure leads to dichlorination of the borane cluster and increased alkylation to give Me11-anti-B18H9Cl2 11, Me12-anti-B18H8Cl2 12, and Me13-anti-B18H7Cl2 13. All new alkyl derivatives are highly stable, extremely efficient (ΦF = 0.76-1.0) blue fluorophores (λems = 423-427 nm) and are soluble in a wide range of organic solvents and also a polystyrene matrix. The Et4-anti-B18H18 derivative 4b crystallizes from pentane solution in two phases with consequent multiabsorption and multiemission photophysical properties. An ultrafast transient UV-vis absorption spectroscopic study of compounds 4a and 4b reveals that an efficient excited-state absorption at the emission wavelength inhibits the laser performance of these otherwise remarkable luminescent molecules. All these new compounds add to the growing portfolio of octadecaborane-based luminescent species, and in an effort to broaden the perspective on their highly emissive photophysical properties, we highlight emerging patterns that successive substitutions have on the molecular size of the 18-vertex borane cluster structure and the distribution of the electron density within.

12.
Inorg Chem ; 58(19): 13258-13267, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31497952

RESUMEN

The reaction of K[arachno-B9H14] with [NiCl2(dppe)] produces four new 19-vertex macropolyhedral metallaboranes that result from borane cluster fusion: [9'-(dppe)-9'-Ni-anti-B18H20] (1) and isomeric [11'-(dppe)-11'-Ni-syn-B18H20] (2), together with the chlorine-substituted derivative of 1, [5'-Cl-9'-(dppe)-9'-Ni-anti-B18H19] (3), and the 18-vertex cluster compound [7'-(dppe)-7'-anti-NiB17H21] (4). Two closo 10-vertex single-cluster species, [1-(dppe)-1-closo-NiB9H7Cl2] (5) and [1-(dppe)-1-closo-NiB9H7Cl(OH)] (6), were also isolated from the reaction. The production of the metalated syn-octadecaborane isomer 2 from the fusion of two arachno-nonaborate clusters is the first such case to be observed; in all other reported cases fusion has resulted in products with the anti-octadecaboranyl bis-nido configuration.

13.
Inorg Chem ; 58(15): 10248-10259, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31314499

RESUMEN

Treatment of the laser borane anti-B18H22 (compound 1) with iodine in ethanol gives the monoiodinated derivative 7-I-anti-B18H21 (compound 2) in 67% yield, or, by reaction with iodine or ICl in the presence of AlCl3 in dichloromethane, the diiodinated derivative 4,4'-I2-anti-B18H20 (compound 3) in 85% yield. On excitation with 360 nm light, both compounds 2 and 3 give strong green phosphorescent emissions (λmax = 525 nm, ΦL = 0.41 and λmax = 545 nm, ΦL = 0.71 respectively) that are quenched by dioxygen to produce O2(1Δg) singlet oxygen with quantum yields of ΦΔ = 0.52 and 0.36 respectively. Similarly strong emissions can be stimulated via the nonlinear process of two-photon absorption when exciting with 720 or 800 nm light. The high quantum yields of singlet-oxygen production, coupled with the option of two-photon excitation, make compounds 2 and 3 promising O2(1Δg) photosensitizers. The molecular structures of compounds 2 and 3 were determined by single-crystal X-ray crystallographic studies as well as multinuclear NMR spectroscopy and mass spectrometry. Time-resolved UV-vis spectroscopy was used to delineate their photophysical properties, and the electronic-structure properties of the emitting species were determined by means of multiconfigurational quantum-chemistry computations.

14.
Inorg Chem ; 52(16): 9266-74, 2013 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-23889339

RESUMEN

The tuning of the photophysical properties of the highly fluorescent boron hydride cluster anti-B18H22 (1), by straightforward chemical substitution to produce 4,4'-(HS)2-anti-B18H20 (2), facilitates intersystem crossing from excited singlet states to a triplet manifold. This subsequently enhances O2((1)Δg) singlet oxygen production from a quantum yield of ΦΔ âˆ¼ 0.008 in 1 to 0.59 in 2. This paper describes the synthesis and full structural characterization of the new compound 4,4'-(HS)2-anti-B18H20 (2) and uses UV-vis spectroscopy coupled with density functional theory (DFT) and ab initio computational studies to delineate and explain its photophysical properties.

15.
Inorg Chem ; 51(3): 1471-9, 2012 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-22224484

RESUMEN

The photophysics of the two isomers of octadecaborane(22), anti- and syn-B(18)H(22), have been studied by UV-vis spectroscopic techniques and theoretical computational methods. In air-saturated hexane, anti-B(18)H(22) shows fluorescence with a high quantum yield, Φ(F) = 0.97, and singlet oxygen O(2)((1)Δ(g)) production (Φ(Δ) ∼ 0.008). Conversely, isomer syn-B(18)H(22) shows no measurable fluorescence, instead displaying much faster, picosecond nonradiative decay of excited singlet states. Computed potential energy hypersurfaces (PEHs) for both isomers rationalize these data, pointing to a deep S(1) minimum for anti-B(18)H(22) and a conical intersection (CI) between its S(0) and S(1) states that lies 0.51 eV higher in energy. Such an energy barrier to nonradiative relaxation is not present in the PEH of syn-B(18)H(22), and the system therefore has sufficient initial energy on excitation to reach the (S(0)/S(1)) CI and to then decay to the ground state without fluorescence. The computational analysis of the geometries at stationary points along the PEH of both isomers shows that the determining factor for the dissimilar photophysics of anti- and syn-B(18)H(22) may be due to the significant differences in the geometrical rearrangements at their respective conical intersections. Thus, the syn isomer shows one very large, B-B elongation of 1.2 Å from 1.8 Å in the ground state to 3.0 Å at the CI, whereas the anti isomer shows smaller elongations (below 1 Å) in several B-B connectivities at its (S(0)/S(1))(CI). The absorbed energy in S(1) for the anti-B(18)H(22) is therefore redistributed vibrationally into several regions of the molecule rather than almost completely into a single vibrational mode as in the case for the syn isomer. The consequent prolonged S(1) lifetime for the anti isomer allows for relaxation via fluorescence.


Asunto(s)
Boranos/química , Fluorescencia , Isomerismo , Fotoquímica , Espectrofotometría Ultravioleta
16.
Inorg Chem ; 51(3): 1685-94, 2012 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-22229807

RESUMEN

Three nido-decaborane thiol cluster compounds, [1-(HS)-nido-B(10)H(13)] 1, [2-(HS)-nido-B(10)H(13)] 2, and [1,2-(HS)(2)-nido-B(10)H(12)] 3 have been characterized using NMR spectroscopy, single-crystal X-ray diffraction analysis, and quantum-chemical calculations. In the solid state, 1, 2, and 3 feature weak intermolecular hydrogen bonding between the sulfur atom and the relatively positive bridging hydrogen atoms on the open face of an adjacent cluster. Density functional theory (DFT) calculations show that the value of the interaction energy is approximately proportional to the number of hydrogen atoms involved in the interaction and that these values are consistent with a related bridging-hydrogen atom interaction calculated for a B(18)H(22)·C(6)H(6) solvate. Self-assembled monolayers (SAMs) of 1, 2, and 3 on gold and silver surfaces have been prepared and characterized using X-ray photoelectron spectroscopy. The variations in the measured sulfur binding energies, as thiolates on the surface, correlate with the (CC2) calculated atomic charge for the relevant boron vertices and for the associated sulfur substituents for the parent B(10)H(13)(SH) compounds. The calculated charges also correlate with the measured and DFT-calculated thiol (1)H chemical shifts. Wetting-angle measurements indicate that the hydrophilic open face of the cluster is directed upward from the substrate surface, allowing the bridging hydrogen atoms to exhibit a similar reactivity to that of the bulk compound. Thus, [PtMe(2)(PMe(2)Ph)(2)] reacts with the exposed and acidic B-H-B bridging hydrogen atoms of a SAM of 1 on a gold substrate, affording the addition of the metal moiety to the cluster. The XPS-derived stoichiometry is very similar to that for a SAM produced directly from the adsorption of [1-(HS)-7,7-(PMe(2)Ph)(2)-nido-7-PtB(10)H(11)] 4. The use of reactive boron hydride SAMs as templates on which further chemistry may be carried out is unprecedented, and the principle may be extended to other binary boron hydride clusters.

17.
Inorg Chem ; 50(16): 7511-23, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21776954

RESUMEN

Metallaborane compounds containing two adjacent metal atoms, [(PMe(2)Ph)(4)MM'B(10)H(10)] (where MM' = Pt(2), 1; PtPd, 7; Pd(2), 8), have been synthesized, and their propensity to sequester O(2), CO, and SO(2) and to then release them under pulsed and continuous irradiation are described. Only [(PMe(2)Ph)(4)Pt(2)B(10)H(10)], 1, undergoes reversible binding of O(2) to form [(PMe(2)Ph)(4)(O(2))Pt(2)B(10)H(10)] 3, but solutions of 1, 7, and 8 all quantitatively take up CO across their metal-metal vectors to form [(PMe(2)Ph)(4)(CO)Pt(2)B(10)H(10)] 4, [(PMe(2)Ph)(4)(CO)PtPdB(10)H(10)] 10, and [(PMe(2)Ph)(4)(CO)Pd(2)B(10)H(10)] 11, respectively. Crystallographically determined interatomic M-M distances and infrared CO stretching frequencies show that the CO molecule is bound progressively more weakly in the sequence {PtPt} > {PtPd} > {PdPd}. Similarly, SO(2) forms [(PMe(2)Ph)(4)(SO(2))Pt(2)B(10)H(10)] 5, [(PMe(2)Ph)(4)(SO(2))PtPdB(10)H(10)] 12, and [(PMe(2)Ph)(4)(SO(2))Pd(2)B(10)H(10)] 13 with progressively weaker binding of the SO(2) molecule. The uptake and release of gas molecules are accompanied by changes in their absorption spectra. Nanosecond transient absorption spectroscopy clearly shows that the O(2) and CO molecules are liberated from the bimetallic binding site with high quantum yields of about 0.6. For 3, in addition to dioxygen release in the triplet ground state, singlet oxygen O(2)((1)Δ(g)) was also detected with a quantum yield <0.01. In most cases, the release and rebinding of the gas molecules can be cycled with little photodegradation of the compounds. Femtosecond transient absorption spectroscopy further reveals that the photorelease of the O(2) and CO molecules, from 3 and 4 respectively, is an ultrafast process taking place on a time scale of tens of picoseconds. For SO(2), the release is even faster (<1 ps), but only in the case of mixed metal PtPd adducts, most probably because of the metal-metal bonding asymmetry in the mixed metal clusters; for the corresponding symmetric Pt(2) and Pd(2) adducts, 5 and 13, the release of SO(2) is significantly slower (>1 ns). All these compounds may have potential to serve as light-triggered local and instantaneous sources of the studied gases.


Asunto(s)
Boranos/síntesis química , Monóxido de Carbono/química , Oxígeno/química , Paladio/química , Fotoquímica , Platino (Metal)/química , Teoría Cuántica , Dióxido de Azufre/química , Boranos/química , Cristalografía por Rayos X , Difracción de Rayos X
18.
Dalton Trans ; 50(45): 16751-16764, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34762089

RESUMEN

We report a high-yield heterogeneous solid/liquid phase synthetic method to a series of nido-6-metalladecaboranes. The hydridoirida- and hydridorhoda-decaboranes, [6,6,6-H(PPh3)2-nido-6-MB9H13] [M = Ir (1), Rh (2)] are isolatable in 98% yields from the reaction of the square-planar M(I) complexes, [MCl(PPh3)3] (M = Rh, Ir), with K[B9H14]. The same synthetic procedure, but using [MCl(CO)H(PPh3)3] (M = Ru, Os) as metal starting reagents produces the CO-ligated clusters, [6,6,6-(CO)(PPh3)2-nido-6-MB9H13] [M = Ru (3), Os (4)], in yields of 83% and 95%, respectively. These highly convenient syntheses permit the investigation of the reaction chemistry of the new nido-6-metalladecaboranes. Thus, the CO-ligated compounds, 3 and 4, react with the square-planar platinum(II) complex, [PtCl2(PMe2Ph)2], in the presence of potassium triethylborohydride, to give the bimetallic clusters, [1,1,1-(CO)H(PPh3)-isocloso-1-RuB9H8-µ-(1,2)-{Pt(PMe2Ph)2}] (5) and [7,7-(PMe2Ph)2-9,9,9-(CO)(PPh3)2-nido-7,9-PtOsB9H11] (6), and the monometallic nido-5-osamadecaborane, [5,5,5-(PPh3)2(CO)-nido-5-OsB9H13] (7). This reactivity illustrates the potential of polyhedral boron-based clusters as molecular scaffolds ("B-frames") for the construction of multimetallic species. Single-crystal X-ray diffraction analyses have revealed the molecular structures of 3, 5, 6 and 7; the compounds are also studied by multielement NMR spectroscopy, mass spectrometry, IR spectroscopy, and in some cases computationally. Futhermore, the rotation of the {M(X)(PR3)2} moiety (X = H, CO), as PH3-ligated models, is studied by means of DFT-calculated relaxed potential energy surface scans, giving some insight into the lability of the metal-to-borane fragment interaction and of the exo-polyhedral ligands.

19.
Materials (Basel) ; 14(3)2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33513832

RESUMEN

In recent work, the boron hydride anti-B18H22 was announced in the literature as a new laser dye, and, along with several of its derivatives, its solutions are capable of delivering blue luminescence with quantum yields of unity. However, as a dopant in solid polymer films, its luminescent efficiencies reduce dramatically. Clarification of underlying detrimental effects is crucial for any application and, thus, this contribution makes the initial steps in the use of these inorganic compounds in electrooptical devices based on organic polymer thin films. The photoluminescence behavior of the highly luminescent boron hydrides, anti-B18H22 and 3,3',4,4'-Et4-anti-B18H18, were therefore investigated. The quantum yields of luminescence and photostabilities of both compounds were studied in different solvents and as polymer-solvent blends. The photophysical properties of both boranes are evaluated and discussed in terms of their solvent-solute interactions using photoluminescence (PL) and NMR spectroscopies. The UV degradability of prepared thin films was studied by fluorimetric measurement. The effect of the surrounding atmosphere, dopant concentration and the molecular structure were assessed.

20.
Inorg Chem ; 49(16): 7353-61, 2010 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-20690745

RESUMEN

The reaction between [IrCl(CO)(PMe(3))(2)] and the Cs[arachno-6-SB(9)H(12)] salt in CH(2)Cl(2) yields pale-yellow 11-vertex [8,8,8-(CO)(PMe(3))(2)-nido-8,7-IrSB(9)H(10)] (4). Reaction of this CO-ligated iridathiaborane with Me(3)N=O affords pale-yellow 11-vertex [1,1,1-(H)(PMe(3))(2)-isonido-1,2-IrSB(9)H(9)] (6), which is also formed from the thermal decarbonylation of 4. Compound 4 has a conventional cluster structure based on classical 11-vertex nido geometry, with the iridium center and the sulfur atom in the adjacent 8- and 7-positions on the pentagonal open face. Compound 6 exhibits an 11-vertex isonido structure based on an octadodecahedron with the {Ir(H)(PMe(3))(2)} occupying the apical position of connectivity six, but with one long non-bonding Ir-B distance generating the quadrilateral isonido open-face. Compound 6 reverts to 4 upon reaction with CO, and the Lewis acid character of 6 is further demonstrated in the reaction with EtNC to give [8,8,8-(EtNC)(PMe(3))(2)-nido-8,7-IrSB(9)H(10)] (7). The three new compounds 4, 6, and 7 have been characterized by single-crystal X-ray diffraction analyses and by NMR spectroscopy. Each of the nido iridathiaboranes 4 and 7 exhibits two different {Ir(L)(PMe(3))(2)}-to-{SB(9)H(10)} conformers in solution and in the solid state. Density functional theory (DFT) calculations reveal that the iridium atom inverts the nido-isonido-closo energy profile previously found for the rhodathiaborane congener [8,8-(PPh(3))(2)-nido-8,7-RhSB(9)H(10)] (3), demonstrating how the structure of these 11-vertex clusters can be controlled and fine-tuned by the tailoring of the metal center.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA