Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Rep ; 43(8): 114493, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39028622

RESUMEN

Severe malnutrition is associated with infections, namely lower respiratory tract infections (LRTIs), diarrhea, and sepsis, and underlies the high risk of morbidity and mortality in children under 5 years of age. Dysregulations in neutrophil responses in the acute phase of infection are speculated to underlie these severe adverse outcomes; however, very little is known about their biology in this context. Here, in a lipopolysaccharide-challenged low-protein diet (LPD) mouse model, as a model of malnutrition, we show that protein deficiency disrupts neutrophil mitochondrial dynamics and ATP generation to obstruct the neutrophil differentiation cascade. This promotes the accumulation of atypical immature neutrophils that are incapable of optimal antimicrobial response and, in turn, exacerbate systemic pathogen spread and the permeability of the alveolocapillary membrane with the resultant lung damage. Thus, this perturbed response may contribute to higher mortality risk in malnutrition. We also offer a nutritional therapeutic strategy, nicotinamide, to boost neutrophil-mediated immunity in LPD-fed mice.

2.
Nutr Rev ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38350491

RESUMEN

Undernutrition remains a global struggle and is associated with almost 45% of deaths in children younger than 5 years. Despite advances in management of severe wasting (though less so for nutritional edema), full and sustained recovery remains elusive. Children with severe wasting and/or nutritional edema (also commonly referred to as severe acute malnutrition and part of the umbrella term "severe malnutrition") continue to have a high mortality rate. This suggests a likely multifactorial etiology that may include micronutrient deficiency. Micronutrients are currently provided in therapeutic foods at levels based on expert opinion, with few supportive studies of high quality having been conducted. This narrative review looks at the knowledge base on micronutrient deficiencies in children aged 6-59 months who have severe wasting and/or nutritional edema, in addition to highlighting areas where further research is warranted (See "Future Directions" section).

3.
Sci Rep ; 14(1): 3613, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351162

RESUMEN

There is scarce data on energy expenditure in ill children with different degrees of malnutrition. This study aimed to determine resting energy expenditure (REE) trajectories in hospitalized malnourished children during and after hospitalization. We followed a cohort of children in Bangladesh and Malawi (2-23 months) with: no wasting (NW); moderate wasting (MW), severe wasting (SW), or edematous malnutrition (EM). REE was measured by indirect calorimetry at admission, discharge, 14-and-45-days post-discharge. 125 children (NW, n = 23; MW, n = 29; SW, n = 51; EM, n = 22), median age 9 (IQR 6, 14) months, provided 401 REE measurements. At admission, the REE of children with NW and MW was 67 (95% CI [58, 75]) and 70 (95% CI [63, 76]) kcal/kg/day, respectively, while REE in children with SW was higher, 79 kcal/kg/day (95% CI [74, 84], p = 0.018), than NW. REE in these groups was stable over time. In children with EM, REE increased from admission to discharge (65 kcal/kg/day, 95% CI [56, 73]) to 79 (95% CI [72, 86], p = 0.0014) and was stable hereafter. Predictive equations underestimated REE in 92% of participants at all time points. Recommended feeding targets during the acute phase of illness in severely malnourished children exceeded REE. Acutely ill malnourished children are at risk of being overfed when implementing current international guidelines.


Asunto(s)
Cuidados Posteriores , Desnutrición , Niño , Humanos , Estudios Longitudinales , Enfermedad Aguda , Alta del Paciente , Metabolismo Basal , Metabolismo Energético , Caquexia , Reproducibilidad de los Resultados
4.
EClinicalMedicine ; 70: 102530, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38510373

RESUMEN

Background: Growth faltering is well-recognized during acute childhood illness and growth acceleration during convalescence, with or without nutritional therapy, may occur. However, there are limited recent data on growth after hospitalization in low- and middle-income countries. Methods: We evaluated growth following hospitalization among children aged 2-23 months in sub-Saharan Africa and South Asia. Between November 2016 and January 2019, children were recruited at hospital admission and classified as: not-wasted (NW), moderately-wasted (MW), severely-wasted (SW), or having nutritional oedema (NO). We describe earlier (discharge to 45-days) and later (45- to 180-days) changes in length-for-age [LAZ], weight-for-age [WAZ], mid-upper arm circumference [MUACZ], weight-for-length [WLZ] z-scores, and clinical, nutritional, and socioeconomic correlates. Findings: We included 2472 children who survived to 180-days post-discharge: NW, 960 (39%); MW, 572 (23%); SW, 682 (28%); and NO, 258 (10%). During 180-days, LAZ decreased in NW (-0.27 [-0.36, -0.19]) and MW (-0.23 [-0.34, -0.11]). However, all groups increased WAZ (NW, 0.21 [95% CI: 0.11, 0.32]; MW, 0.57 [0.44, 0.71]; SW, 1.0 [0.88, 1.1] and NO, 1.3 [1.1, 1.5]) with greatest gains in the first 45-days. Of children underweight (<-2 WAZ) at discharge, 66% remained underweight at 180-days. Lower WAZ post-discharge was associated with age-inappropriate nutrition, adverse caregiver characteristics, small size at birth, severe or moderate anaemia, and chronic conditions, while lower LAZ was additionally associated with household-level exposures but not with chronic medical conditions. Interpretation: Underweight and poor linear growth mostly persisted after an acute illness. Beyond short-term nutritional supplementation, improving linear growth post-discharge may require broader individual and family support. Funding: Bill & Melinda Gates FoundationOPP1131320; National Institute for Health ResearchNIHR201813.

5.
Front Immunol ; 14: 1334205, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38259490

RESUMEN

Neutrophils are the most abundant innate immune cells. Multiple mechanisms allow them to engage a wide range of metabolic pathways for biosynthesis and bioenergetics for mediating biological processes such as development in the bone marrow and antimicrobial activity such as ROS production and NET formation, inflammation and tissue repair. We first discuss recent work on neutrophil development and functions and the metabolic processes to regulate granulopoiesis, neutrophil migration and trafficking as well as effector functions. We then discuss metabolic syndromes with impaired neutrophil functions that are influenced by genetic and environmental factors of nutrient availability and usage. Here, we particularly focus on the role of specific macronutrients, such as glucose, fatty acids, and protein, as well as micronutrients such as vitamin B3, in regulating neutrophil biology and how this regulation impacts host health. A special section of this review primarily discusses that the ways nutrient deficiencies could impact neutrophil biology and increase infection susceptibility. We emphasize biochemical approaches to explore neutrophil metabolism in relation to development and functions. Lastly, we discuss opportunities and challenges to neutrophil-centered therapeutic approaches in immune-driven diseases and highlight unanswered questions to guide future discoveries.


Asunto(s)
Ácidos Grasos , Neutrófilos , Animales , Movimiento Celular , Glucosa , Estadios del Ciclo de Vida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA