Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
PLoS Pathog ; 19(8): e1011559, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37619220

RESUMEN

Mycobacterium abscessus (Mabs) drives life-shortening mortality in cystic fibrosis (CF) patients, primarily because of its resistance to chemotherapeutic agents. To date, our knowledge on the host and bacterial determinants driving Mabs pathology in CF patient lung remains rudimentary. Here, we used human airway organoids (AOs) microinjected with smooth (S) or rough (R-)Mabs to evaluate bacteria fitness, host responses to infection, and new treatment efficacy. We show that S Mabs formed biofilm, and R Mabs formed cord serpentines and displayed a higher virulence. While Mabs infection triggers enhanced oxidative stress, pharmacological activation of antioxidant pathways resulted in better control of Mabs growth and reduced virulence. Genetic and pharmacological inhibition of the CFTR is associated with better growth and higher virulence of S and R Mabs. Finally, pharmacological activation of antioxidant pathways inhibited Mabs growth, at least in part through the quinone oxidoreductase NQO1, and improved efficacy in combination with cefoxitin, a first line antibiotic. In conclusion, we have established AOs as a suitable human system to decipher mechanisms of CF-driven respiratory infection by Mabs and propose boosting of the NRF2-NQO1 axis as a potential host-directed strategy to improve Mabs infection control.


Asunto(s)
Fibrosis Quística , Mycobacterium abscessus , Humanos , Fibrosis Quística/tratamiento farmacológico , Antioxidantes , Oxidación-Reducción , Estrés Oxidativo
2.
Proc Natl Acad Sci U S A ; 119(15): e2116826119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35377789

RESUMEN

During spermatogenesis, spermatogonia undergo a series of mitotic and meiotic divisions on their path to spermatozoa. To achieve this, a succession of processes requiring high proteolytic activity are in part orchestrated by the proteasome. The spermatoproteasome (s20S) is specific to the developing gametes, in which the gamete-specific α4s subunit replaces the α4 isoform found in the constitutive proteasome (c20S). Although the s20S is conserved across species and was shown to be crucial for germ cell development, its mechanism, function, and structure remain incompletely characterized. Here, we used advanced mass spectrometry (MS) methods to map the composition of proteasome complexes and their interactomes throughout spermatogenesis. We observed that the s20S becomes highly activated as germ cells enter meiosis, mainly through a particularly extensive 19S activation and, to a lesser extent, PA200 binding. Additionally, the proteasome population shifts from c20S (98%) to s20S (>82 to 92%) during differentiation, presumably due to the shift from α4 to α4s expression. We demonstrated that s20S, but not c20S, interacts with components of the meiotic synaptonemal complex, where it may localize via association with the PI31 adaptor protein. In vitro, s20S preferentially binds to 19S and displays higher trypsin- and chymotrypsin-like activities, both with and without PA200 activation. Moreover, using MS methods to monitor protein dynamics, we identified significant differences in domain flexibility between α4 and α4s. We propose that these differences induced by α4s incorporation result in significant changes in the way the s20S interacts with its partners and dictate its role in germ cell differentiation.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Espermatogénesis , Espermatogonias , Humanos , Masculino , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Espermatogonias/enzimología
3.
Traffic ; 23(5): 287-304, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35466519

RESUMEN

Proteasomes are major non-lysosomal proteolytic complexes localized in the cytoplasm and in the nucleus of eukaryotic cells. Strikingly, high levels of extracellular proteasome have also been evidenced in the plasma (p-proteasome) of patients with specific diseases. Here, we examined the process by which proteasomes are secreted, as well as their structural and functional features once in the extracellular space. We demonstrate that assembled 20S core particles are secreted by cells within microvesicles budding from the plasma membrane. Part of the extracellular proteasome pool is also free of membranes in the supernatant of cultured cells, and likely originates from microvesicles leakage. We further demonstrate that this free proteasome released by cells (cc-proteasome for cell culture proteasome) possesses latent proteolytic activity and can degrade various extracellular proteins. Both standard (no immune-subunits) and intermediate (containing some immune-subunits) forms of 20S are observed. Moreover, we show that galectin-3, which displays a highly disordered N-terminal region, is efficiently cleaved by purified cc-proteasome, without SDS activation, likely after its binding to PSMA3 (α7) subunit through its intrinsically disordered region. As a consequence, galectin-3 is unable to induce red blood cells agglutination when preincubated with cc-proteasome. These results highlight potential novel physio- and pathologic functions for the extracellular proteasome.


Asunto(s)
Galectina 3 , Complejo de la Endopetidasa Proteasomal , Aglutinación , Citoplasma/metabolismo , Galectina 3/metabolismo , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis
4.
Mol Cell Proteomics ; 18(4): 744-759, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30700495

RESUMEN

The proteasome controls a multitude of cellular processes through protein degradation and has been identified as a therapeutic target in oncology. However, our understanding of its function and the development of specific modulators are hampered by the lack of a straightforward method to determine the overall proteasome status in biological samples. Here, we present a method to determine the absolute quantity and stoichiometry of ubiquitous and tissue-specific human 20S proteasome subtypes based on a robust, absolute SILAC-based multiplexed LC-Selected Reaction Monitoring (SRM) quantitative mass spectrometry assay with high precision, accuracy, and sensitivity. The method was initially optimized and validated by comparison with a reference ELISA assay and by analyzing the dynamics of catalytic subunits in HeLa cells following IFNγ-treatment and in range of human tissues. It was then successfully applied to reveal IFNγ- and O2-dependent variations of proteasome status during primary culture of Adipose-derived-mesenchymal Stromal/Stem Cells (ADSCs). The results show the critical importance of controlling the culture conditions during cell expansion for future therapeutic use in humans. We hypothesize that a shift from the standard proteasome to the immunoproteasome could serve as a predictor of immunosuppressive and differentiation capacities of ADSCs and, consequently, that quality control should include proteasomal quantification in addition to examining other essential cell parameters. The method presented also provides a new powerful tool to conduct more individualized protocols in cancer or inflammatory diseases where selective inhibition of the immunoproteasome has been shown to reduce side effects.


Asunto(s)
Espectrometría de Masas/métodos , Células Madre Mesenquimatosas/citología , Complejo de la Endopetidasa Proteasomal/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Humanos , Interferón gamma/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Oxígeno/farmacología , Reproducibilidad de los Resultados
5.
Proc Natl Acad Sci U S A ; 115(28): E6477-E6486, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29934401

RESUMEN

PA28γ is a nuclear activator of the 20S proteasome involved in the regulation of several essential cellular processes, such as cell proliferation, apoptosis, nuclear dynamics, and cellular stress response. Unlike the 19S regulator of the proteasome, which specifically recognizes ubiquitylated proteins, PA28γ promotes the degradation of several substrates by the proteasome in an ATP- and ubiquitin-independent manner. However, its exact mechanisms of action are unclear and likely involve additional partners that remain to be identified. Here we report the identification of a cofactor of PA28γ, PIP30/FAM192A. PIP30 binds directly and specifically via its C-terminal end and in an interaction stabilized by casein kinase 2 phosphorylation to both free and 20S proteasome-associated PA28γ. Its recruitment to proteasome-containing complexes depends on PA28γ and its expression increases the association of PA28γ with the 20S proteasome in cells. Further dissection of its possible roles shows that PIP30 alters PA28γ-dependent activation of peptide degradation by the 20S proteasome in vitro and negatively controls in cells the presence of PA28γ in Cajal bodies by inhibition of its association with the key Cajal body component coilin. Taken together, our data show that PIP30 deeply affects PA28γ interactions with cellular proteins, including the 20S proteasome, demonstrating that it is an important regulator of PA28γ in cells and thus a new player in the control of the multiple functions of the proteasome within the nucleus.


Asunto(s)
Autoantígenos/metabolismo , Núcleo Celular/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas/metabolismo , Autoantígenos/genética , Núcleo Celular/genética , Células HeLa , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Unión Proteica , Dominios Proteicos , Proteínas/genética
6.
J Proteome Res ; 19(7): 2807-2820, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32338910

RESUMEN

Protein-protein interactions play a major role in the molecular machinery of life, and various techniques such as AP-MS are dedicated to their identification. However, those techniques return lists of proteins devoid of organizational structure, not detailing which proteins interact with which others. Proposing a hierarchical view of the interactions between the members of the flat list becomes highly tedious for large data sets when done by hand. To help hierarchize this data, we introduce a new bioinformatics protocol that integrates information of the multimeric protein 3D structures available in the Protein Data Bank using remote homology detection, as well as information related to Short Linear Motifs and interaction data from the BioGRID. We illustrate on two unrelated use-cases of different complexity how our approach can be useful to decipher the network of interactions hidden in the list of input proteins, and how it provides added value compared to state-of-the-art resources such as Interactome3D or STRING. Particularly, we show the added value of using homology detection to distinguish between orthologs and paralogs, and to distinguish between core obligate and more facultative interactions. We also demonstrate the potential of considering interactions occurring through Short Linear Motifs.


Asunto(s)
Mapas de Interacción de Proteínas , Proteómica , Biología Computacional , Bases de Datos de Proteínas , Mapeo de Interacción de Proteínas , Proteínas/genética , Proteínas/metabolismo
7.
Am J Physiol Endocrinol Metab ; 318(6): E892-E900, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32255680

RESUMEN

Proinsulin is a misfolding-prone protein, and its efficient breakdown is critical when ß-cells are confronted with high-insulin biosynthetic demands, to prevent endoplasmic reticulum stress, a key trigger of secretory dysfunction and, if uncompensated, apoptosis. Proinsulin degradation is thought to be performed by the constitutively expressed standard proteasome, while the roles of other proteasomes are unknown. We recently demonstrated that deficiency of the proinsulin chaperone glucose-regulated protein 94 (GRP94) causes impaired proinsulin handling and defective insulin secretion associated with a compensated endoplasmic reticulum stress response. Taking advantage of this model of restricted folding capacity, we investigated the role of different proteasomes in proinsulin degradation, reasoning that insulin secretory dynamics require an inducible protein degradation system. We show that the expression of only one enzymatically active proteasome subunit, namely, the inducible ß5i-subunit, was increased in GRP94 CRISPR/Cas9 knockout (KO) cells. Additionally, the level of ß5i-containing intermediate proteasomes was significantly increased in these cells, as was ß5i-related chymotrypsin-like activity. Moreover, proinsulin levels were restored in GRP94 KO upon ß5i small interfering RNA-mediated knockdown. Finally, the fraction of ß-cells expressing the ß5i-subunit is increased in human islets from type 2 diabetes patients. We conclude that ß5i is an inducible proteasome subunit dedicated to the degradation of mishandled proinsulin.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Estrés del Retículo Endoplásmico/genética , Degradación Asociada con el Retículo Endoplásmico/genética , Secreción de Insulina/genética , Células Secretoras de Insulina/metabolismo , Proinsulina/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Animales , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Técnicas de Inactivación de Genes , Humanos , Islotes Pancreáticos/metabolismo , Glicoproteínas de Membrana/genética , Persona de Mediana Edad , Complejo de la Endopetidasa Proteasomal/metabolismo , Pliegue de Proteína , Ratas
8.
Cells ; 12(6)2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36980185

RESUMEN

The mammalian 20S catalytic core of the proteasome is made of 14 different subunits (α1-7 and ß1-7) but exists as different subtypes depending on the cell type. In immune cells, for instance, constitutive catalytic proteasome subunits can be replaced by the so-called immuno-catalytic subunits, giving rise to the immunoproteasome. Proteasome activity is also altered by post-translational modifications (PTMs) and by genetic variants. Immunochemical methods are commonly used to investigate these PTMs whereby protein-tagging is necessary to monitor their effect on 20S assembly. Here, we present a new miniaturized workflow combining top-down and bottom-up mass spectrometry of immunopurified 20S proteasomes that analyze the proteasome assembly status as well as the full proteoform footprint, revealing PTMs, mutations, single nucleotide polymorphisms (SNPs) and induction of immune-subunits in different biological samples, including organoids, biopsies and B-lymphoblastoid cell lines derived from patients with proteasome-associated autoinflammatory syndromes (PRAAS). We emphasize the benefits of using top-down mass spectrometry in preserving the endogenous conformation of protein modifications, while enabling a rapid turnaround (1 h run) and ensuring high sensitivity (1-2 pmol) and demonstrate its capacity to semi-quantify constitutive and immune proteasome subunits.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Procesamiento Proteico-Postraduccional , Animales , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Citoplasma/metabolismo , Espectrometría de Masas/métodos , Línea Celular , Mamíferos/metabolismo
9.
Mol Cancer Ther ; 20(12): 2433-2445, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34552006

RESUMEN

The PI3K pathway is highly active in human cancers. The four class I isoforms of PI3K are activated by distinct mechanisms leading to a common downstream signaling. Their downstream redundancy is thought to be responsible for treatment failures of PI3K inhibitors. We challenged this concept, by mapping the differential phosphoproteome evolution in response to PI3K inhibitors with different isoform-selectivity patterns in pancreatic cancer, a disease currently without effective therapy. In this cancer, the PI3K signal was shown to control cell proliferation. We compared the effects of LY294002 that inhibit with equal potency all class I isoenzymes and downstream mTOR with the action of inhibitors with higher isoform selectivity toward PI3Kα, PI3Kß, or PI3Kγ (namely, A66, TGX-221 and AS-252424). A bioinformatics global pathway analysis of phosphoproteomics data allowed us to identify common and specific signals activated by PI3K inhibitors supported by the biological data. AS-252424 was the most effective treatment and induced apoptotic pathway activation as well as the highest changes in global phosphorylation-regulated cell signal. However, AS-252424 treatment induced reactivation of Akt, therefore decreasing the treatment outcome on cell survival. Reversely, AS-252424 and A66 combination treatment prevented p-Akt reactivation and led to synergistic action in cell lines and patient organoids. The combination of clinically approved α-selective BYL-719 with γ-selective IPI-549 was more efficient than single-molecule treatment on xenograft growth. Mapping unique adaptive signaling responses to isoform-selective PI3K inhibition will help to design better combinative treatments that prevent the induction of selective compensatory signals.


Asunto(s)
Neoplasias Pancreáticas/tratamiento farmacológico , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Proteómica/métodos , Animales , Línea Celular Tumoral , Resistencia a Medicamentos , Humanos , Ratones , Neoplasias Pancreáticas/patología , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología
10.
Cell Mol Gastroenterol Hepatol ; 11(5): 1405-1436, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33482394

RESUMEN

BACKGROUND & AIMS: Cancer-associated fibroblasts (CAFs) from pancreatic adenocarcinoma (PDA) present high protein synthesis rates. CAFs express the G-protein-coupled somatostatin receptor sst1. The sst1 agonist SOM230 blocks CAF protumoral features in vitro and in immunocompromised mice. We have explored here the therapeutic potential of SOM230, and underlying mechanisms, in immunocompetent models of murine PDA mimicking the heavy fibrotic and immunosuppressive stroma observed in patient tumors. METHODS: Large-scale mass spectrometry analyses were performed on media conditioned from 9 patient PDA-derived CAF primary cultures. Spontaneous transgenic and experimental (orthotopic co-graft of tumor cells plus CAFs) PDA-bearing mice were longitudinally ultrasound-monitored for tumor and metastatic progression. Histopathology and flow cytometry analyses were performed on primary tumors and metastases. Stromal signatures were functionally validated through bioinformatics using several published, and 1 original, PDA database. RESULTS: Proteomics on the CAF secretome showed that SOM230 controls stromal activities including inflammatory responses. Among the identified secreted proteins, we validated that colony-stimulating factor 1 (CSF-1) (a macrophage growth factor) was reduced by SOM230 in the tumor and plasma of PDA-harboring mice, alongside intratumor stromal normalization (reduced CAF and macrophage activities), and dramatic metastasis reduction. In transgenic mice, these SOM230 benefits alleviate the chemotherapy-induced (gemcitabine) immunosuppressive stroma reshaping. Mechanistically, SOM230 acts in vivo on CAFs through sst1 to disrupt prometastatic CAF production of CSF-1 and cross-talk with macrophages. We found that in patients, stromal CSF-1 was associated with aggressive PDA forms. CONCLUSIONS: We propose SOM230 as an antimetastatic therapy in PDA for its capacity to remodel the fibrotic and immunosuppressive myeloid stroma. This pharmacotherapy should benefit PDA patients treated with chemotherapies.


Asunto(s)
Fibroblastos Asociados al Cáncer/efectos de los fármacos , Carcinoma Ductal Pancreático/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Neoplasias Pancreáticas/tratamiento farmacológico , Secretoma/efectos de los fármacos , Somatostatina/análogos & derivados , Anciano , Anciano de 80 o más Años , Animales , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/secundario , Femenino , Hormonas/farmacología , Humanos , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Somatostatina/farmacología
11.
Nat Commun ; 11(1): 6140, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33262340

RESUMEN

Hydrogen-Deuterium eXchange coupled to Mass Spectrometry (HDX-MS) is now common practice in structural biology. However, it is most of the time applied to rather small oligomeric complexes. Here, we report on the use of HDX-MS to investigate conformational differences between the human standard 20S (std20S) and immuno 20S (i20s) proteasomes alone or in complex with PA28αß or PA28γ activators. Their solvent accessibility is analyzed through a dedicated bioinformatic pipeline including stringent statistical analysis and 3D visualization. These data confirm the existence of allosteric differences between the std20S and i20S at the surface of the α-ring triggered from inside the catalytic ß-ring. Additionally, binding of the PA28 regulators to the 20S proteasomes modify solvent accessibility due to conformational changes of the ß-rings. This work is not only a proof-of-concept that HDX-MS can be used to get structural insights on large multi-protein complexes in solution, it also demonstrates that the binding of the std20S or i20S subtype to any of its PA28 activator triggers allosteric changes that are specific to this 20S/PA28 pair.


Asunto(s)
Autoantígenos/metabolismo , Proteínas Musculares/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Regulación Alostérica , Autoantígenos/química , Autoantígenos/genética , Humanos , Espectrometría de Masas , Proteínas Musculares/química , Proteínas Musculares/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica
12.
Sci Rep ; 10(1): 15765, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32978409

RESUMEN

The proteasome is responsible for selective degradation of proteins. It exists in mammalian cells under four main subtypes, which differ by the combination of their catalytic subunits: the standard proteasome (ß1-ß2-ß5), the immunoproteasome (ß1i-ß2i-ß5i) and the two intermediate proteasomes (ß1-ß2-ß5i and ß1i-ß2-ß5i). The efficiency of the four proteasome subtypes to degrade ubiquitinated or oxidized proteins remains unclear. Using cells expressing exclusively one proteasome subtype, we observed that ubiquitinated p21 and c--myc were degraded at similar rates, indicating that the four 26S proteasomes degrade ubiquitinated proteins equally well. Under oxidative stress, we observed a partial dissociation of 26S into 20S proteasomes, which can degrade non-ubiquitinated oxidized proteins. Oxidized calmodulin and hemoglobin were best degraded in vitro by the three ß5i-containing 20S proteasomes, while their native forms were not degraded. Circular dichroism analyses indicated that ubiquitin-independent recognition of oxidized proteins by 20S proteasomes was triggered by the disruption of their structure. Accordingly, ß5i-containing 20S proteasomes degraded unoxidized naturally disordered protein tau, while 26S proteasomes did not. Our results suggest that the three ß5i-containing 20S proteasomes, namely the immunoproteasome and the two intermediate proteasomes, might help cells to eliminate proteins containing disordered domains, including those induced by oxidative stress.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ubiquitinación , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Células HEK293 , Humanos , Oxidación-Reducción , Proteínas Proto-Oncogénicas c-myc/metabolismo
13.
Bioinform Biol Insights ; 13: 1177932219868223, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31452600

RESUMEN

The rise of intact protein analysis by mass spectrometry (MS) was accompanied by an increasing need for flexible tools allowing data visualization and analysis. These include inspection of the deconvoluted molecular weights of the proteoforms eluted alongside liquid chromatography (LC) through their representation in three-dimensional (3D) liquid chromatography coupled to mass spectrometry (LC-MS) maps (plots of deconvoluted molecular weights, retention times, and intensity of the MS signal). With this aim, we developed a free and open-source web application named VisioProt-MS (https://masstools.ipbs.fr/mstools/visioprot-ms/). VisioProt-MS is highly compatible with many algorithms and software developed by the community to integrate and deconvolute top-down and intact protein MS data. Its dynamic and user-friendly features greatly facilitate analysis through several graphical representations dedicated to MS and tandem mass spectrometry (MS/MS) analysis of proteoforms in complex samples. Here, we will illustrate the importance of LC-MS map visualization to optimize top-down acquisition/search parameters and analyze intact protein MS data. We will go through the main features of VisioProt-MS using the human proteasomal 20S core particle as a user-case.

14.
Sci Rep ; 8(1): 6034, 2018 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-29662082

RESUMEN

Mycolic acids (MAs) have a strategic location within the mycobacterial envelope, deeply influencing its architecture and permeability, and play a determinant role in the pathogenicity of mycobacteria. The fatty acid synthase type II (FAS-II) multienzyme system is involved in their biosynthesis. A combination of pull-downs and proteomics analyses led to the discovery of a mycobacterial protein, HadD, displaying highly specific interactions with the dehydratase HadAB of FAS-II. In vitro activity assays and homology modeling showed that HadD is, like HadAB, a hot dog folded (R)-specific hydratase/dehydratase. A hadD knockout mutant of Mycobacterium smegmatis produced only the medium-size alpha'-MAs. Data strongly suggest that HadD is involved in building the third meromycolic segment during the late FAS-II elongation cycles, leading to the synthesis of the full-size alpha- and epoxy-MAs. The change in the envelope composition induced by hadD inactivation strongly altered the bacterial fitness and capacities to aggregate, assemble into colonies or biofilms and spread by sliding motility, and conferred a hypersensitivity to the firstline antimycobacterial drug rifampicin. This showed that the cell surface properties and the envelope integrity were greatly affected. With the alarmingly increasing case number of nontuberculous mycobacterial diseases, HadD appears as an attractive target for drug development.


Asunto(s)
Proteínas Bacterianas/metabolismo , Acido Graso Sintasa Tipo II/metabolismo , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium smegmatis/fisiología , Ácidos Micólicos/metabolismo , Proteínas Bacterianas/genética , Biopelículas , Vías Biosintéticas , Acido Graso Sintasa Tipo II/genética , Eliminación de Gen , Genes Esenciales , Humanos , Mycobacterium smegmatis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA