Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
BMC Genomics ; 20(1): 882, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31752679

RESUMEN

BACKGROUND: Lipids are important for the cell and organism life since they are major components of membranes, energy reserves and are also signal molecules. The main organs for the energy synthesis and storage are the liver and adipose tissue, both in humans and in more distant species such as chicken. Long noncoding RNAs (lncRNAs) are known to be involved in many biological processes including lipid metabolism. RESULTS: In this context, this paper provides the most exhaustive list of lncRNAs involved in lipid metabolism with 60 genes identified after an in-depth analysis of the bibliography, while all "review" type articles list a total of 27 genes. These 60 lncRNAs are mainly described in human or mice and only a few of them have a precise described mode-of-action. Because these genes are still named in a non-standard way making such a study tedious, we propose a standard name for this list according to the rules dictated by the HUGO consortium. Moreover, we identified about 10% of lncRNAs which are conserved between mammals and chicken and 2% between mammals and fishes. Finally, we demonstrated that two lncRNA were wrongly considered as lncRNAs in the literature since they are 3' extensions of the closest coding gene. CONCLUSIONS: Such a lncRNAs catalogue can participate to the understanding of the lipid metabolism regulators; it can be useful to better understand the genetic regulation of some human diseases (obesity, hepatic steatosis) or traits of economic interest in livestock species (meat quality, carcass composition). We have no doubt that this first set will be rapidly enriched in coming years.


Asunto(s)
Metabolismo de los Lípidos/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Animales , Pollos/genética , Humanos , Mamíferos/genética , Ratones , Filogenia , Terminología como Asunto
2.
Genet Sel Evol ; 49(1): 6, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28073357

RESUMEN

BACKGROUND: Improving functional annotation of the chicken genome is a key challenge in bridging the gap between genotype and phenotype. Among all transcribed regions, long noncoding RNAs (lncRNAs) are a major component of the transcriptome and its regulation, and whole-transcriptome sequencing (RNA-Seq) has greatly improved their identification and characterization. We performed an extensive profiling of the lncRNA transcriptome in the chicken liver and adipose tissue by RNA-Seq. We focused on these two tissues because of their importance in various economical traits for which energy storage and mobilization play key roles and also because of their high cell homogeneity. To predict lncRNAs, we used a recently developed tool called FEELnc, which also classifies them with respect to their distance and strand orientation to the closest protein-coding genes. Moreover, to confidently identify the genes/transcripts expressed in each tissue (a complex task for weakly expressed molecules such as lncRNAs), we probed a particularly large number of biological replicates (16 per tissue) compared to common multi-tissue studies with a larger set of tissues but less sampling. RESULTS: We predicted 2193 lncRNA genes, among which 1670 were robustly expressed across replicates in the liver and/or adipose tissue and which were classified into 1493 intergenic and 177 intragenic lncRNAs located between and within protein-coding genes, respectively. We observed similar structural features between chickens and mammals, with strong synteny conservation but without sequence conservation. As previously reported, we confirm that lncRNAs have a lower and more tissue-specific expression than mRNAs. Finally, we showed that adjacent lncRNA-mRNA genes in divergent orientation have a higher co-expression level when separated by less than 1 kb compared to more distant divergent pairs. Among these, we highlighted for the first time a novel lncRNA candidate involved in lipid metabolism, lnc_DHCR24, which is highly correlated with the DHCR24 gene that encodes a key enzyme of cholesterol biosynthesis. CONCLUSIONS: We provide a comprehensive lncRNA repertoire in the chicken liver and adipose tissue, which shows interesting patterns of co-expression between mRNAs and lncRNAs. It contributes to improving the structural and functional annotation of the chicken genome and provides a basis for further studies on energy storage and mobilization traits in the chicken.


Asunto(s)
Tejido Adiposo/metabolismo , Pollos/genética , Hígado/metabolismo , ARN Largo no Codificante/genética , Transcriptoma , Animales , Pollos/metabolismo , Secuencia Conservada , Evolución Molecular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genoma , Genotipo , Humanos , Metabolismo de los Lípidos/genética , Sistemas de Lectura Abierta , Especificidad de Órganos , Fenotipo , Sitios de Carácter Cuantitativo , ARN sin Sentido , ARN Largo no Codificante/química , ARN Mensajero/genética
3.
Fungal Genet Biol ; 61: 80-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24120452

RESUMEN

The soilborne fungus Gaeumannomyces graminis var. tritici (Ggt) causes take-all, a wheat root disease. In an original strain-specific way, a previous study indicates that inside the Ggt species, some strains grow preferentially at acidic pH and other strains at neutral/alkaline pH. The most important mechanism for a fungal response to the environmental pH is the Pal pathway which integrates the products of the six pal genes and the transcription factor PacC. To evaluate whether the Ggt strain-specific growth in function of the ambient pH is mediated via the Pal pathway, a transcriptional study of the genes encoding this pathway was carried out. This study provided the first evidence that the pH signalling pathway similar to those described in other fungi operated in Ggt. The pacC gene was induced at neutral pH whatever the strain. In an original way, the expression of Ggt genes coding for the different Pal proteins depended on the strain and on the ambient pH. In the strain growing better at acidic pH, few pal genes were pH-regulated, and some were overexpressed at neutral pH when regulated. In the strain growing better at neutral pH, underexpression of most of the pal genes at neutral pH occurred. The strains displayed higher gene expression in the ambient pH that unfavoured their growth as if it was a compensation system. All pH taken together, a globally weaker Pal transcript level occurred in the strains that were less sensitive to acidic pH, and on the contrary, the strain growing better on neutral pH showed higher Pal mRNA levels. The expression of genes involved in pathogenesis and saprophytic growth was also regulated by the ambient pH and the strain: each gene displayed a specific pH-regulation that was similar between strains. But all pH taken together, the global transcript levels of four out of six genes were higher in the strain growing better on neutral pH. Altogether, for the first time, the results show that inside a species, conditions affecting environmental pH modulate the expression of genes in an original strain-specific way.


Asunto(s)
Ascomicetos/efectos de los fármacos , Ascomicetos/fisiología , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Transducción de Señal , Estrés Fisiológico , Ascomicetos/genética , Ascomicetos/crecimiento & desarrollo , Perfilación de la Expresión Génica , Concentración de Iones de Hidrógeno , Triticum/microbiología
4.
Sci Rep ; 10(1): 20457, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33235280

RESUMEN

Long non-coding RNAs (LNC) regulate numerous biological processes. In contrast to human, the identification of LNC in farm species, like chicken, is still lacunar. We propose a catalogue of 52,075 chicken genes enriched in LNC ( http://www.fragencode.org/ ), built from the Ensembl reference extended using novel LNC modelled here from 364 RNA-seq and LNC from four public databases. The Ensembl reference grew from 4,643 to 30,084 LNC, of which 59% and 41% with expression ≥ 0.5 and ≥ 1 TPM respectively. Characterization of these LNC relatively to the closest protein coding genes (PCG) revealed that 79% of LNC are in intergenic regions, as in other species. Expression analysis across 25 tissues revealed an enrichment of co-expressed LNC:PCG pairs, suggesting co-regulation and/or co-function. As expected LNC were more tissue-specific than PCG (25% vs. 10%). Similarly to human, 16% of chicken LNC hosted one or more miRNA. We highlighted a new chicken LNC, hosting miR155, conserved in human, highly expressed in immune tissues like miR155, and correlated with immunity-related PCG in both species. Among LNC:PCG pairs tissue-specific in the same tissue, we revealed an enrichment of divergent pairs with the PCG coding transcription factors, as for example LHX5, HXD3 and TBX4, in both human and chicken.


Asunto(s)
Pollos/genética , Biología Computacional/métodos , Anotación de Secuencia Molecular/métodos , ARN Largo no Codificante/genética , Animales , Atlas como Asunto , Proteínas Aviares/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , MicroARNs/genética , Especificidad de Órganos , Análisis de Secuencia de ARN , Distribución Tisular
5.
Mol Plant Microbe Interact ; 22(12): 1611-23, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19888826

RESUMEN

Traits contributing to the competence of biocontrol bacteria to colonize plant roots are often induced in the rhizosphere in response to plant components. These interactions have been studied using the two partners in gnotobiotic systems. However, in nature, beneficial or pathogenic fungi often colonize roots. Influence of these plant-fungus interactions on bacterial behavior remains to be investigated. Here, we have examined the influence of colonization of wheat roots by the take-all fungus Gaeumannomyces graminis var. tritici on gene expression of the biocontrol bacterium Pseudomonas fluorescens Pf29Arp. Bacteria were inoculated onto healthy, early G. graminis var. tritici-colonized and necrotic roots and transcriptomes were compared by shotgun DNA microarray. Pf29Arp decreased disease severity when inoculated before the onset of necrosis. Necrotic roots exerted a broader effect on gene expression compared with early G. graminis var. tritici-colonized and healthy roots. A gene encoding a putative type VI secretion system effector was only induced in necrotic conditions. A common pool of Pf29Arp genes differentially expressed on G. graminis var. tritici-colonized roots was related to carbon metabolism and oxidative stress, with a highest fold-change with necrosis. Overall, the data showed that the association of the pathogenic fungus with the roots strongly altered Pf29Arp adaptation with differences between early and late G. graminis var. tritici infection steps.


Asunto(s)
Ascomicetos/fisiología , Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología , Pseudomonas fluorescens/fisiología , Triticum/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Expresión Génica , Regulación Bacteriana de la Expresión Génica/fisiología , Interacciones Huésped-Patógeno/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Control Biológico de Vectores , Pseudomonas fluorescens/clasificación , Factores de Tiempo
7.
G3 (Bethesda) ; 6(2): 321-35, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26637431

RESUMEN

RNA editing is a posttranscriptional process leading to differences between genomic DNA and transcript sequences, potentially enhancing transcriptome diversity. With recent advances in high-throughput sequencing, many efforts have been made to describe mRNA editing at the transcriptome scale, especially in mammals, yielding contradictory conclusions regarding the extent of this phenomenon. We show, by detailed description of the 25 studies focusing so far on mRNA editing at the whole-transcriptome scale, that systematic sequencing artifacts are considered in most studies whereas biological replication is often neglected and multi-alignment not properly evaluated, which ultimately impairs the legitimacy of results. We recently developed a rigorous strategy to identify mRNA editing using mRNA and genomic DNA sequencing, taking into account sequencing and mapping artifacts, and biological replicates. We applied this method to screen for mRNA editing in liver and white adipose tissue from eight chickens and confirm the small extent of mRNA recoding in this species. Among the 25 unique edited sites identified, three events were previously described in mammals, attesting that this phenomenon is conserved throughout evolution. Deeper investigations on five sites revealed the impact of tissular context, genotype, age, feeding conditions, and sex on mRNA editing levels. More specifically, this analysis highlighted that the editing level at the site located on COG3 was strongly regulated by four of these factors. By comprehensively characterizing the mRNA editing landscape in chickens, our results highlight how this phenomenon is limited and suggest regulation of editing levels by various genetic and environmental factors.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/genética , Tejido Adiposo/metabolismo , Pollos/genética , Genotipo , Hígado/metabolismo , Edición de ARN , ARN Mensajero/genética , Proteínas Adaptadoras del Transporte Vesicular/química , Factores de Edad , Secuencia de Aminoácidos , Alimentación Animal , Animales , Biología Computacional/métodos , Femenino , Antecedentes Genéticos , Genoma , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Datos de Secuencia Molecular , ARN Mensajero/química , Reproducibilidad de los Resultados , Alineación de Secuencia , Factores Sexuales
8.
G3 (Bethesda) ; 5(4): 517-29, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25653314

RESUMEN

Very few causal genes have been identified by quantitative trait loci (QTL) mapping because of the large size of QTL, and most of them were identified thanks to functional links already known with the targeted phenotype. Here, we propose to combine selection signature detection, coding SNP annotation, and cis-expression QTL analyses to identify potential causal genes underlying QTL identified in divergent line designs. As a model, we chose experimental chicken lines divergently selected for only one trait, the abdominal fat weight, in which several QTL were previously mapped. Using new haplotype-based statistics exploiting the very high SNP density generated through whole-genome resequencing, we found 129 significant selective sweeps. Most of the QTL colocalized with at least one sweep, which markedly narrowed candidate region size. Some of those sweeps contained only one gene, therefore making them strong positional causal candidates with no presupposed function. We then focused on two of these QTL/sweeps. The absence of nonsynonymous SNPs in their coding regions strongly suggests the existence of causal mutations acting in cis on their expression, confirmed by cis-eQTL identification using either allele-specific expression or genetic mapping analyses. Additional expression analyses of those two genes in the chicken and mice contrasted for adiposity reinforces their link with this phenotype. This study shows for the first time the interest of combining selective sweeps mapping, coding SNP annotation and cis-eQTL analyses for identifying causative genes for a complex trait, in the context of divergent lines selected for this specific trait. Moreover, it highlights two genes, JAG2 and PARK2, as new potential negative and positive key regulators of adiposity in chicken and mice.


Asunto(s)
Adiposidad/genética , Proteínas de la Membrana/genética , Sitios de Carácter Cuantitativo , Ubiquitina-Proteína Ligasas/genética , Tejido Adiposo Blanco/metabolismo , Alelos , Animales , Línea Celular , Pollos , Mapeo Cromosómico , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Proteína Jagged-2 , Proteínas de la Membrana/metabolismo , Ratones , Anotación de Secuencia Molecular , Miosinas/genética , Miosinas/metabolismo , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
9.
PLoS One ; 9(10): e111299, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25333370

RESUMEN

In this study, we propose an approach aiming at fine-mapping adiposity QTL in chicken, integrating whole genome re-sequencing data. First, two QTL regions for adiposity were identified by performing a classical linkage analysis on 1362 offspring in 11 sire families obtained by crossing two meat-type chicken lines divergently selected for abdominal fat weight. Those regions, located on chromosome 7 and 19, contained a total of 77 and 84 genes, respectively. Then, SNPs and indels in these regions were identified by re-sequencing sires. Considering issues related to polymorphism annotations for regulatory regions, we focused on the 120 and 104 polymorphisms having an impact on protein sequence, and located in coding regions of 35 and 42 genes situated in the two QTL regions. Subsequently, a filter was applied on SNPs considering their potential impact on the protein function based on conservation criteria. For the two regions, we identified 42 and 34 functional polymorphisms carried by 18 and 24 genes, and likely to deeply impact protein, including 3 coding indels and 4 nonsense SNPs. Finally, using gene functional annotation, a short list of 17 and 4 polymorphisms in 6 and 4 functional genes has been defined. Even if we cannot exclude that the causal polymorphisms may be located in regulatory regions, this strategy gives a complete overview of the candidate polymorphisms in coding regions and prioritize them on conservation- and functional-based arguments.


Asunto(s)
Adiposidad/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Obesidad/genética , Sitios de Carácter Cuantitativo/genética , Animales , Pollos , Mapeo Cromosómico , Estudios de Asociación Genética , Ligamiento Genético , Genotipo , Mutación INDEL , Anotación de Secuencia Molecular , Obesidad/patología , Polimorfismo de Nucleótido Simple
10.
Environ Microbiol Rep ; 5(3): 393-403, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23754720

RESUMEN

Several bacterial strains of the Pseudomonas genus provide plant growth stimulation, plant protection against pests or bioremediation. Among these bacteria, P. fluorescens Pf29Arp reduces the severity of take-all, a disease caused by the pathogenic fungus Gaeumannomyces graminis var. tritici (Ggt) on wheat roots. In this study, we obtained a draft genome of Pf29Arp and subsequent comparative genomic analyses have revealed that this bacterial strain is closely related to strains of the 'P. brassicacearum-like' subgroup including P. brassicacearum ssp. brassicacearum NFM421 and P. fluorescens F113. Despite an overall chromosomal organization similar to these strains, a number of features including antibiotic synthesis gene clusters from secondary metabolism are not found in the Pf29Arp genome. But Pf29Arp possesses different protein secretion systems including type III (T3SS) and type VI (T6SS) secretion systems. Pf29Arp is the first Pseudomonas sp. strain described with four T6SS clusters (cluster I, II, III and IV). In addition, some protein-coding genes involved in the assembly of these secretion systems are basally expressed during Pf29Arp colonization of healthy wheat roots and display different expression patterns on necrotized roots caused by Ggt. These data suggest a role of T3SS and T6SS in the Pf29Arp adaptation to different root environments.


Asunto(s)
Proteínas Bacterianas/genética , Cromosomas Bacterianos , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Raíces de Plantas/microbiología , Pseudomonas fluorescens/genética , Triticum/microbiología , Adaptación Fisiológica , Ascomicetos/crecimiento & desarrollo , Ascomicetos/patogenicidad , Proteínas Bacterianas/metabolismo , Agentes de Control Biológico , Mapeo Cromosómico , Familia de Multigenes , Filogenia , Pseudomonas fluorescens/clasificación , Pseudomonas fluorescens/metabolismo , Rizosfera , Simbiosis/fisiología
11.
Mol Plant Pathol ; 12(9): 839-54, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21726382

RESUMEN

The main effects of antagonistic rhizobacteria on plant pathogenic fungi are antibiosis, fungistasis or an indirect constraint through the induction of a plant defence response. To explore different biocontrol mechanisms, an in vitro confrontation assay was conducted with the rhizobacterium Pseudomonas fluorescens Pf29Arp as a biocontrol agent of the fungus Gaeumannomyces graminis var. tritici (Ggt) on wheat roots. In parallel with the assessment of disease extension, together with the bacterial and fungal root colonization rates, the transcript levels of candidate fungal pathogenicity and plant-induced genes were monitored during the 10-day infection process. The bacterial inoculation of wheat roots with the Pf29Arp strain reduced the development of Ggt-induced disease expressed as attack frequency and necrosis length. The growth rates of Ggt and Pf29Arp, monitored through quantitative polymerase chain reaction of DNA amounts with a part of the Ggt 18S rDNA gene and a specific Pf29Arp strain detection probe, respectively, increased throughout the interactions. Bacterial antagonism and colonization had no significant effect on root colonization by Ggt. The expression of fungal and plant genes was quantified in planta by quantitative reverse transcription-polymerase chain reaction during the interactions thanks to the design of specific primers and an innovative universal reference system. During the early stages of the tripartite interaction, several of the fungal genes assayed were down-regulated by Pf29Arp, including two laccases, a ß-1,3-exoglucanase and a mitogen-activated protein kinase. The plant host glutathione-S-transferase gene was induced by Ggt alone and up-regulated by Pf29Arp bacteria in interaction with the pathogen. We conclude that Pf29Arp antagonism acts through the alteration of fungal pathogenesis and probably through the activation of host defences.


Asunto(s)
Ascomicetos/patogenicidad , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Raíces de Plantas/microbiología , Pseudomonas fluorescens/fisiología , Triticum/microbiología , Ascomicetos/genética , Agentes de Control Biológico , Proteínas de Plantas/genética , Raíces de Plantas/genética , Pseudomonas fluorescens/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Triticum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA