Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Nutr ; 149(12): 2236-2246, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31373372

RESUMEN

BACKGROUND: Early infant diet influences postnatal gut microbial development, which in turn can modulate the developing immune system. OBJECTIVES: The aim of this study was to characterize diet-specific bioregional microbiota differences in piglets fed either human breast milk (HM) or infant formula. METHODS: Male piglets (White Dutch Landrace Duroc) were raised on HM or cow milk formula (MF) from postnatal day (PND) 2 to PND 21 and weaned to an ad libitum diet until PND 51. Piglets were euthanized on either PND 21 or PND 51, and the gastrointestinal contents were collected for 16s RNA sequencing. Data were analyzed using the Quantitative Insight into Microbial Ecology. Diversity measurements (Chao1 and Shannon) and the Wald test were used to determine relative abundance. RESULTS: At PND 21, the ileal luminal region of HM-fed piglets showed lower Chao1 operational taxonomic unit diversity, while Shannon diversity was lower in cecal, proximal colon (PC), and distal colon (DC) luminal regions, relative to MF-fed piglets. In addition, at PND 51, the HM-fed piglets had lower genera diversity within the jejunum, ileum, PC, and DC luminal regions, relative to MF-fed piglets. At PND 21, Turicibacter was 4- to 5-fold lower in the HM-fed piglets' ileal, cecal, PC, and DC luminal regions, relative to the MF-fed piglets. Campylobacter is 3- to 6-fold higher in HM-fed piglets duodenal, ileal, cecal, PC, and DC luminal regions, in comparison to MF-fed piglets. Furthermore, the large intestine (cecum, PC, and rectum) luminal region of HM-fed piglets showed 4- to 7-fold higher genera that belong to class Bacteroidia, in comparison to MF-fed piglets at PND 21. In addition, at PND 51 distal colon lumen of HM-fed piglets showed 1.5-fold higher genera from class Bacteroidia than the MF-fed piglets. CONCLUSIONS: In the large intestinal regions (cecum, PC, and rectum), MF diet alters microbiota composition, relative to HM diet, with sustained effects after weaning from the neonatal diet. These microbiota changes could impact immune system and health outcomes later in life.


Asunto(s)
Alimentación Animal , Animales Recién Nacidos , Microbioma Gastrointestinal , Fórmulas Infantiles , Leche Humana , Animales , Humanos , Porcinos
2.
J Nutr ; 148(11): 1860-1870, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30247686

RESUMEN

Background: The benefits of breastfeeding infants are well characterized, including those on the immune system. However, determining the mechanism by which human breast milk (HBM) elicits effects on immune response requires investigation in an appropriate animal model. Objective: The primary aim of this study was to develop a novel porcine model and to determine the differential effects of feeding HBM and a commercial milk formula (MF) on immune response and gastrointestinal microbial colonization in a controlled environment. Methods: Male piglets were fed HBM (n = 26) or MF (n = 26) from day 2 through day 21. Piglets were vaccinated (n = 9/diet group) with cholera toxin and cholera toxin subunit B (CTB) and tetanus toxoid at 21 d or were fed placebo (n = 6/diet group) and then weaned to a standard solid diet at the age of 21 d. Humoral and cell-mediated immune responses were assessed from blood on days 35 and 48. Immune response was further examined from tissues, including mesenteric lymph nodes (MLNs), Peyer's patches (PPs), and spleen. The colonization of gut microbiota was characterized from feces on days 16 and 49. Results: Serum antibody titers in piglets fed HBM were 4-fold higher (P < 0.05) to CTB and 3-fold higher (P < 0.05) to tetanus toxoid compared with piglets fed MF on day 48. Compared with MF, the numbers of immunoglobulin A antibody-producing cells to CTB were 13-fold higher (P < 0.05) in MLNs and 11-fold higher (P < 0.05) in PPs in the HBM diet group on day 51. In addition, significantly increased T cell proliferation was observed in the HBM group relative to the MF group. Furthermore, microbial diversity in the HBM group was lower (P < 0.05) than in the MF group. Conclusions: This porcine model appears to be valid for studying the effects of early postnatal diet on immune responses and the gastrointestinal microbiome. Our results lay the groundwork for future studies defining the role of infant diet on microbiota and immune function.


Asunto(s)
Animales Recién Nacidos , Inmunidad Celular , Inmunidad Humoral , Leche Humana , Porcinos/inmunología , Alimentación Animal , Animales , Humanos , Masculino
3.
J Nutr ; 147(8): 1499-1509, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28659406

RESUMEN

Background: Breastfeeding is known to be protective against gastrointestinal disorders and may modify gut development. Although the gut microbiome has been implicated, little is known about how early diet affects the small intestine microbiome.Objective: We hypothesized that disparate early diets would promote unique microbial profiles in the small intestines of neonatal pigs.Methods: Male and female 2-d-old White Dutch Landrace pigs were either sow fed or provided dairy (Similac Advance powder; Ross Products Abbott Laboratories) or soy (Enfamil Prosobee Lipil powder; Mead Johnson Nutritionals) infant formulas until day 21. Bacterial ecology was assessed in the contents of the small intestine through the use of 16S ribosomal RNA sequencing. α-Diversity, ß-diversity, and differential abundances of operational taxonomic units were assessed by ANOVA, permutational ANOVA, and negative binomial regression, respectively. Ileum tissue metabolomics were measured by LC-mass spectrometry and assessed by weighted correlation network analysis.Results: Greater α-diversity was observed in the duodena of sow-fed compared with formula-fed neonatal pigs (P < 0.05). No differences were observed in the ilea. Firmicutes represented the most abundant phylum across all diets in duodena (78.8%, 80.1%, and 53.4% relative abundance in sow, dairy, and soy groups, respectively), followed by Proteobacteria in sow (12.2%) and dairy (12.4%) groups and Cyanobacteria in soy-fed (36.2%) pigs. In contrast to those in the duodenum, Proteobacteria was the dominant phylum in the ileum, with >60% relative abundance in all of the groups. In the duodenum, 77 genera were altered by diet, followed by 48 in the jejunum and 19 in the ileum. Metabolomics analyses revealed associations between ileum tissue metabolites (e.g., acylcarnitines, 3-aminoisobutyric acid) and diet-responsive microbial genera.Conclusions: These results indicate that the neonatal diet has regional effects on the small intestine microbiome in pigs, with the most pronounced effects occurring in the duodena. Regional effects may be important factors when considering gut tissue metabolism and development in the postnatal period.


Asunto(s)
Bacterias/efectos de los fármacos , Dieta , Microbioma Gastrointestinal/efectos de los fármacos , Intestino Delgado/efectos de los fármacos , Metaboloma/efectos de los fármacos , Proteínas de la Leche/farmacología , Proteínas de Soja/farmacología , Ácidos Aminoisobutíricos/metabolismo , Animales , Animales Recién Nacidos , Bacterias/genética , Carnitina/análogos & derivados , Carnitina/metabolismo , Duodeno/efectos de los fármacos , Duodeno/microbiología , Conducta Alimentaria , Femenino , Alimentos Formulados , Humanos , Íleon/efectos de los fármacos , Íleon/metabolismo , Intestino Delgado/metabolismo , Intestino Delgado/microbiología , Masculino , Porcinos
4.
BMC Gastroenterol ; 16: 40, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-27005303

RESUMEN

BACKGROUND: Breastfeeding is associated with a variety of positive health outcomes in children and is recommended exclusively for the first 6 months of life; however, 50-70 % of infants in the US are formula-fed. To test the hypothesis that immune system development and function in neonates and infants are significantly influenced by diet, 2-day old piglets were fed soy or milk formula (n = 6/group/gender) until day 21 and compared to a sow-fed group (n = 6/gender). METHODS: Histomorphometric analyses of ileum, jejunum and Peyer's patches were carried out, to determine the inflammation status, mRNA and protein expression of pro-inflammatory, anti-inflammatory and growth-related chemokines and cytokines. RESULTS: In formula-fed animals, increases in ileum and jejunum villus height and crypt depth were observed in comparison to sow-fed animals (jejunum, p < 0.01 villus height, p < 0.04 crypt depth; ileum p < 0.001 villus height, p < 0.002 crypt depth). In formula-fed the lymphoid follicle size (p < 0.01) and germinal centers (p < 0.01) with in the Peyer's patch were significantly decreased in comparison to sow-fed, indicating less immune education. In ileum, formula diet induced significant up-regulation of AMCFII, IL-8, IL-15, VEGFA, LIF, FASL, CXCL11, CCL4, CCL25 and down-regulation of IL-6, IL-9, IL-10, IL-27, IFNA4, CSF3, LOC100152038, and LOC100736831 at the transcript level. We have confirmed some of the mRNA data by measuring protein, and significant down-regulation of anti-inflammatory molecule IL-10 in comparison to sow-fed piglets was observed. To further determine the membrane protein expression in the ileum, VE-cadherin, occludin, and claudin-3, Western blot analyses were conducted. Sow fed piglets showed significantly more VE-Cadherin, which associated with levels of calcium, and putrescine measured. It is possible that differences in GI tract and immune development are related to shifts in the microbiome; notably, there were 5-fold higher amounts of Lactobacillaceae spp and 3 fold higher Clostridia spp in the sow fed group in comparison to milk formula-fed piglets, whereas in milk formula-fed pigs Enterobacteriaceae spp was 5-fold higher. CONCLUSION: In conclusion, formula diet alters GI morphology, microbial abundance, intestinal barrier protein VE-cadherin and anti-inflammatory molecule IL-10 expression. Further characterization of formula effects could lead to modification of infant formula to improve immune function, reduce inflammation and prevent conditions such as allergies and infections.


Asunto(s)
Antígenos CD/genética , Cadherinas/genética , Citocinas/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Fórmulas Infantiles/farmacología , Intestino Delgado/efectos de los fármacos , Leche , ARN Mensajero/efectos de los fármacos , Alimentos de Soja , Animales , Animales Recién Nacidos , Antígenos CD/metabolismo , Cadherinas/metabolismo , Calcio/metabolismo , Citocinas/genética , Citocinas/metabolismo , Dieta , Regulación hacia Abajo , Proteína Ligando Fas/efectos de los fármacos , Proteína Ligando Fas/genética , Proteína Ligando Fas/metabolismo , Humanos , Íleon/efectos de los fármacos , Íleon/metabolismo , Íleon/microbiología , Íleon/patología , Recién Nacido , Interferón-alfa/efectos de los fármacos , Interferón-alfa/genética , Interferón-alfa/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-15/genética , Interleucina-15/metabolismo , Interleucina-27/genética , Interleucina-27/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/efectos de los fármacos , Interleucina-8/genética , Interleucina-8/metabolismo , Interleucina-9/genética , Interleucina-9/metabolismo , Intestino Delgado/metabolismo , Intestino Delgado/microbiología , Intestino Delgado/patología , Yeyuno/efectos de los fármacos , Yeyuno/metabolismo , Yeyuno/microbiología , Yeyuno/patología , Factor Inhibidor de Leucemia/efectos de los fármacos , Factor Inhibidor de Leucemia/genética , Factor Inhibidor de Leucemia/metabolismo , Ganglios Linfáticos Agregados/efectos de los fármacos , Ganglios Linfáticos Agregados/inmunología , ARN Mensajero/metabolismo , Porcinos , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/efectos de los fármacos
5.
Infect Immun ; 83(8): 3176-83, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26015484

RESUMEN

An important question in the study of chlamydial genital tract disease is why some women develop severe upper tract disease while others have mild or even "silent" infections with or without pathology. Animal studies suggest that the pathological outcome of an infection is dependent upon both the composition of the infecting chlamydial population and the genotype of the host, along with host physiological effects, such as the cyclical production of reproductive hormones and even the size of the infecting inoculum or the number of repeated infections. In this study, we compared two variants of Chlamydia caviae, contrasting in virulence, with respect to their abilities to ascend the guinea pig genital tract. We then determined the effect of combining the two variants on the course of infection and on the bacterial loads of the two variants in the genital tract. Although the variants individually had similar infection kinetics in the cervix, SP6, the virulent variant, could be isolated from the oviducts more often and in greater numbers than the attenuated variant, AZ2. SP6 also elicited higher levels of interleukin 8 (IL-8) in the lower genital tract and increased leukocyte infiltration in the cervix and uterus compared to AZ2. When the two variants were combined in a mixed infection, SP6 outcompeted AZ2 in the lower genital tract; however, AZ2 was able to ascend the genital tract as readily as SP6. These data suggest that the ability of SP6 to elicit an inflammatory response in the lower genital tract facilitates the spread of both variants to the oviducts.


Asunto(s)
Infecciones por Chlamydia/microbiología , Chlamydia/fisiología , Infecciones del Sistema Genital/microbiología , Animales , Chlamydia/clasificación , Infecciones por Chlamydia/inmunología , Modelos Animales de Enfermedad , Femenino , Cobayas , Humanos , Interleucina-8/inmunología , Infecciones del Sistema Genital/inmunología
6.
Infect Immun ; 80(2): 612-9, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22144478

RESUMEN

In order to study the interaction of variants in in vivo infection, we employed an azithromycin-resistant mutant (AZ(2)) and its wild-type parent (SP(6)) in the guinea pig model of Chlamydia caviae conjunctival infection. When each strain was inoculated individually into conjunctiva, both attained the same level of growth, but AZ(2) elicited less pathology. However, when equal numbers of the two strains were inoculated together into the guinea pig conjunctiva, SP(6) produced a significantly greater number of inclusion-forming units than AZ(2), and the pathology reflected that of a SP(6) monoinfection. The goal of this study was to further characterize the dynamics of concomitant infection of these two distinct variants, with particular emphasis on the impact of the host response on the in vivo growth of each organism and the development of pathology. Animals infected with AZ(2) had reduced conjunctival infiltration with CD45(+) cells and neutrophils as well as a reduced interleukin-8 (IL-8) response. Gene expression of gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), CCL2, and CCL5 was also significantly lower in AZ(2)-infected animals. The lower inflammatory response induced by AZ(2) was associated with its decreased ability to activate NF-κB via Toll-like receptor 2 (TLR2). In general, the inflammatory response in animals infected with both variants was greater than in infection with AZ(2) alone, resulting in lower numbers of AZ(2) than those of SP(6) in the mixed infection. Our results suggest that the ability to elicit an inflammatory response is an important factor in the dynamics of mixed infection with strains that display different pathological phenotypes.


Asunto(s)
Infecciones por Chlamydia/microbiología , Infecciones por Chlamydia/patología , Chlamydia/clasificación , Conjuntivitis de Inclusión/microbiología , Inflamación/microbiología , Animales , Conjuntiva/metabolismo , Conjuntiva/patología , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Cobayas , Tiempo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo
7.
Front Microbiol ; 13: 801854, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401465

RESUMEN

Exclusive breastfeeding is recommended to newborns during the first 6 months of life, whereas dairy-based infant formula is an alternative nutrition source offered to infants. Several studies demonstrated that breastfed infants have a different gut bacterial composition relative to formula-fed infants. In addition, animal models have shown that human milk (HM)-fed piglets had a distinct intestinal bacterial composition compared with milk formula (MF)-fed piglets. However, the gut fungal composition and the interactions with the bacterial community in breastfed compared with formula-fed infants remain to be investigated. In an attempt to evaluate such differences, we used an animal model to perform a shotgun metagenomics analysis on the cecal and distal colon contents of neonatal piglets fed with pasteurized HM or a dairy-based infant formula (MF) during the first 21 days of life. At postnatal day 21 (PND 21), a subset of piglets from each diet group (n = 11 per group) was euthanized. The remaining piglets in each group were weaned to a solid diet and euthanized at PND 51 (n = 13 per group). Large intestine contents (i.e., cecum and distal colon) were subjected to shotgun metagenomics analysis. The differential taxonomic composition of bacteria and fungi and the predicted functional gene profiling were evaluated. Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria are the most abundant bacterial phyla observed in piglets at PND 21 and PND 51. In the large intestine at PND 21 and PND 51, Proteobacteria phylum was significantly higher in MF-fed group, and species Burkholderiales bacterium of phyla was significantly higher in MF group relative to HM group. In addition, in HM group, several Lactobacillus spp. and Bacteroides spp. were higher relative to MF group in the large intestine at PND 21 and PND 51. Fungal genus Aspergillus was higher in MF, whereas Malassezia was lower relative to HM group. Persistent effects of the neonatal diets were observed at PND 51, where alpha- and beta-diversity differences were detected for bacterial and fungal species in the large intestine. Overall, our findings indicate that neonatal diet affects the large intestinal microbial community during the exclusive milk-feeding period, as well as after the introduction of the complementary food.

8.
Infect Immun ; 79(8): 3291-301, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21576327

RESUMEN

We utilized a recently developed model of intracervical infection with Chlamydia muridarum in the mouse to elicit a relatively synchronous infection during the initial developmental cycle in order to examine at the ultrastructural level the development of both the chlamydial inclusion and the onset of the inflammatory response. At 18 h after infection, only a few elementary bodies attached to cells were visible, as were an occasional intracellular intermediate body and reticulate body. By 24 h, inclusions had 2 to 5 reticulate bodies and were beginning to fuse. A few polymorphonuclear leukocytes (PMNs) were already present in the epithelium in the vicinity of and directly adjacent to infected cells. By 30 h, the inclusions were larger and consisted solely of reticulate bodies, but by 36 to 42 h, they contained intermediate bodies and elementary bodies as well. Many PMNs were adjacent to or actually inside infected cells. Chlamydiae appeared to exit the cell either (i) through disintegration of the inclusion membrane and rupture of the cell, (ii) by dislodgement of the cell from the epithelium by PMNs, or (iii) by direct invasion of the infected cell by the PMNs. When PMNs were depleted, the number of released elementary bodies was significantly greater as determined both visually and by culture. Interestingly, depletion of PMNs revealed the presence of inclusions containing aberrant reticulate bodies, reminiscent of effects seen in vitro when chlamydiae are incubated with gamma interferon. In vivo evidence for the contact-dependent development hypothesis, a potential mechanism for triggering the conversion of reticulate bodies to elementary bodies, and for translocation of lipid droplets into the inclusion is also presented.


Asunto(s)
Chlamydia muridarum/inmunología , Chlamydia muridarum/ultraestructura , Cuerpos de Inclusión/microbiología , Cuerpos de Inclusión/ultraestructura , Neutrófilos/microbiología , Neutrófilos/ultraestructura , Animales , Infecciones por Chlamydia/inmunología , Infecciones por Chlamydia/microbiología , Modelos Animales de Enfermedad , Células Epiteliales/microbiología , Ratones , Ratones Endogámicos C57BL , Enfermedades de los Roedores/inmunología , Enfermedades de los Roedores/microbiología , Factores de Tiempo
9.
Infect Immun ; 79(5): 1889-97, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21402767

RESUMEN

Trachoma, the world's leading cause of preventable blindness, is produced by chronic ocular infection with Chlamydia trachomatis, an obligate intracellular bacterium. While many studies have focused on immune mechanisms for trachoma during chronic stages of infection, less research has targeted immune mechanisms in primary ocular infections, events that could impact chronic responses. The goal of this study was to investigate the function of neutrophils during primary chlamydial ocular infection by using the guinea pig model of Chlamydia caviae inclusion conjunctivitis. We hypothesized that neutrophils help modulate the adaptive response and promote host tissue damage. To test these hypotheses, guinea pigs with primary C. caviae ocular infections were depleted of neutrophils by using rabbit antineutrophil antiserum, and immune responses and immunopathology were evaluated during the first 7 days of infection. Results showed that neutrophil depletion dramatically decreased ocular pathology, both clinically and histologically. The adaptive response was also altered, with increased C. caviae-specific IgA titers in tears and serum and decreased numbers of CD4(+) and CD8(+) T cells in infected conjunctivae. Additionally, there were changes in conjunctival chemokines and cytokines, such as increased expression of IgA-promoting interleukin-5 and anti-inflammatory transforming growth factor ß, along with decreased expression of T cell-recruiting CCL5 (RANTES). This study, the first to investigate the role of neutrophils in primary chlamydial ocular infection, indicates a previously unappreciated role for neutrophils in modulating the adaptive response and suggests a prominent role for neutrophils in chlamydia-associated ocular pathology.


Asunto(s)
Inmunidad Adaptativa/inmunología , Infecciones por Chlamydia/inmunología , Infecciones Bacterianas del Ojo/inmunología , Neutrófilos/inmunología , Animales , Separación Celular , Infecciones por Chlamydia/patología , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Infecciones Bacterianas del Ojo/patología , Femenino , Citometría de Flujo , Cobayas , Conejos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tracoma/inmunología , Tracoma/patología
11.
Nutrients ; 13(11)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34835974

RESUMEN

The metaproteome profiling of cecal contents collected from neonatal piglets fed pasteurized human milk (HM) or a dairy-based infant formula (MF) from postnatal day (PND) 2 to 21 were assessed. At PND 21, a subset of piglets from each group (n = 11/group) were euthanized, and cecal contents were collected for further metaproteome analysis. Cecal microbiota composition showed predominantly more Firmicutes phyla and Lachnospiraceae family in the lumen of cecum of HM-fed piglets in comparison to the MF-fed group. Ruminococcus gnavus was the most abundant species from the Firmicutes phyla in the cecal contents of the HM-fed piglets at 21 days of age. A greater number of expressed proteins were identified in the cecal contents of the HM-fed piglets relative to the MF-fed piglets. Greater abundances of proteins potentially expressed by Bacteroides spp. such as glycoside enzymes were noted in the cecal lumen of HM-fed piglets relative to the MF. Additionally, lyases associated with Lachnospiraceae family were abundant in the cecum of the HM group relative to the MF group. Overall, our findings indicate that neonatal diet impacts the gut bacterial taxa and microbial proteins prior to weaning. The metaproteomics data were deposited into PRIDE, PXD025432 and 10.6019/PXD025432.


Asunto(s)
Dieta , Fórmulas Infantiles , Proteoma/metabolismo , Proteómica , Animales , Animales Recién Nacidos , Bacterias/clasificación , Ciego/microbiología , Microbioma Gastrointestinal , Leche Humana , Modelos Animales , Porcinos
12.
Infect Immun ; 78(4): 1670-81, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20123720

RESUMEN

Very little is known about the host response to chlamydial genital infection in the male, particularly about the nature of the local response in the urethra. In this study, the pathological and immunologic responses to urethral infection of the male guinea pig with Chlamydia caviae (Chlamydophila caviae) were characterized both during a primary infection and following a challenge infection. A dose-response experiment found that the 50% infectious dose for male urethral infection was 78 inclusion-forming units. The histopathologic response was similar to that of the female, with an initial acute inflammatory response followed by a chronic inflammatory response and plasma cell infiltration. Production of IgG and IgA antibodies in local urethral secretions developed following infection, and levels of both increased in a typical anamnestic response following a challenge infection. CD4 and CD8 T cells, as well as B cells, were observed in the local site by flow cytometry, with a slightly increased number of CD8 cells. Following challenge infection, the dominant anamnestic response was solely in the B-cell compartment, with only a minimal number of T cells. The T-cell response was clearly a Th1 response, as judged by increased levels of gamma interferon (IFN-gamma), interleukin-12 p40 (IL-12p40), and IL-2. The proinflammatory cytokines and chemokines IL-8, IL-1beta, tumor necrosis factor alpha (TNF-alpha), CCL2 (monocyte chemoattractant protein 1 [MCP-1]), and CCL5 (RANTES) were elicited in the urethra following primary infection, but only CCL5 showed increased levels upon challenge. This study represents the first comprehensive analysis of the local immune response in the male urethra to a chlamydial genital infection.


Asunto(s)
Infecciones por Chlamydia/inmunología , Infecciones por Chlamydia/patología , Chlamydia/inmunología , Uretritis/inmunología , Uretritis/patología , Animales , Anticuerpos Antibacterianos/análisis , Linfocitos B/inmunología , Secreciones Corporales/química , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Citocinas/metabolismo , Cobayas , Inmunoglobulina A/análisis , Inmunoglobulina G/análisis , Masculino , Uretritis/microbiología
13.
Antimicrob Agents Chemother ; 54(3): 1094-101, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20065052

RESUMEN

Azithromycin (AZM) is a major drug used in the treatment and prophylaxis of infections caused by Chlamydia, yet no significant clinical resistance has been reported for these obligate intracellular bacteria. Nevertheless, spontaneous AZM resistance (Azm(r)) arose in vitro at frequencies ranging from 3 x 10(-8) to 8 x 10(-10) for clonal isolates of Chlamydia caviae, which is a natural pathogen of guinea pigs. Sequencing of the unique 23S rRNA gene copy in 44 independent Azm(r) isolates identified single mutations at position A(2058) or A(2059) (Escherichia coli numbering system). While SP(6)AZ(1) (A(2058)C) and SP(6)AZ(2) (A(2059)C) Azm(r) mutants showed growth defects in cell culture and were less pathogenic in the guinea pig ocular infection model than in the parent SP(6), the three isogenic C. caviae isolates grew equally well in the animal. On the other hand, coinoculation of the C. caviae parent strain with one of the Azm(r) strains was detrimental for the mutant strain. This apparent lack of association between pathology and bacterial load in vivo showed that virulence of the two Azm(r) mutants of C. caviae was attenuated. While chlamydial growth in vitro reflects the ability of the bacteria to multiply in permissive cells, survival in the host is a balance between cellular multiplication and clearance by the host immune system. The obligate intracellular nature of Chlamydia may therefore limit emergence of resistance in vivo due to the strength of the immune response induced by the wild-type antibiotic-sensitive bacteria at the time of antibiotic treatment.


Asunto(s)
Antibacterianos/farmacología , Azitromicina/farmacología , Chlamydia/efectos de los fármacos , Chlamydia/patogenicidad , Farmacorresistencia Bacteriana/genética , Mutación , Animales , Células Cultivadas , Chlamydia/genética , Chlamydia/crecimiento & desarrollo , Infecciones por Chlamydia/microbiología , Conjuntivitis de Inclusión/microbiología , Medios de Cultivo , Fibroblastos/microbiología , Cobayas , Ratones , Pruebas de Sensibilidad Microbiana , Virulencia/genética
14.
Front Immunol ; 11: 607609, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33365033

RESUMEN

The impact of human milk (HM) or dairy milk-based formula (MF) on the large intestine's metabolome was not investigated. Two-day old male piglets were randomly assigned to HM or MF diet (n = 26/group), from postnatal day (PND) 2 through 21 and weaned to a solid diet until PND 51. Piglets were euthanized at PND 21 and PND 51, luminal contents of the cecum, proximal (PC) and distal colons (DC), and rectum were collected and subjected to metabolomics analysis. Data analyses were performed using Metaboanalyst. In comparison to MF, the HM diet resulted in higher levels of fatty acids in the lumen of the cecum, PC, DC, and rectum at PND 21. Glutamic acid was greater in the lumen of cecum, PC, and DC relative to the MF group at PND 21. Also, spermidine was higher in the DC and rectal contents of HM relative to MF at PND 21. MF diet resulted in greater abundances of amino acids in the cecal lumen relative to HM diet at PND 21. Additionally, several sugar metabolites were higher in various regions of the distal gut of MF fed piglets relative to HM group at PND 21. In contrast, at PND 51, in various regions there were higher levels of erythritol, maltotriose, isomaltose in HM versus MF fed piglets. This suggests a post weaning shift in sugar metabolism that is impacted by neonatal diet. The data also suggest that infant diet type and host-microbiota interactions likely influence the lower gut metabolome.


Asunto(s)
Alimentación con Biberón , Metabolismo Energético , Fórmulas Infantiles , Intestino Grueso/metabolismo , Metaboloma , Leche Humana/metabolismo , Factores de Edad , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Animales Recién Nacidos , Animales Lactantes , Bacterias/metabolismo , Extracción de Leche Materna , Microbioma Gastrointestinal , Humanos , Recién Nacido , Intestino Grueso/microbiología , Masculino , Metabolómica , Estado Nutricional , Valor Nutritivo , Sus scrofa , Destete
15.
BMC Nutr ; 6: 13, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32318270

RESUMEN

BACKGROUND: Neonatal diet impacts many physiological systems and can modify risk for developing metabolic disease and obesity later in life. Less well studied is the effect of postnatal diet (e.g., comparing human milk (HM) or milk formula (MF) feeding) on mitochondrial bioenergetics. Such effects may be most profound in splanchnic tissues that would have early exposure to diet-associated or gut microbe-derived factors. METHODS: To address this question, we measured ileal and liver mitochondrial bioenergetics phenotypes in male piglets fed with HM or MF from day 2 to day 21 age. Ileal and liver tissue were processed for mitochondrial respiration (substrate only [pyruvate, malate, glutamate], substrate + ADP, and proton "leak" post-oligomycin; measured by Oroboros methods), mitochondrial DNA (mtDNA) and metabolically-relevant gene expression analyses. RESULTS: No differences between the diet groups were observed in mitochondrial bioenergetics indices in ileal tissue. In contrast, ADP-dependent liver Complex I-linked OXPHOS capacity and Complex I + II-linked OXPHOS capacity were significantly higher in MF animals relative to HM fed piglets. Interestingly, p53, Trap1, and Pparß transcript abundances were higher in MF-fed relative to HM-fed piglets in the liver. Mitochondrial DNA copy numbers (normalized to nuclear DNA) were similar within-tissue regardless of postnatal diet, and were ~ 2-3 times higher in liver vs. ileal tissue. CONCLUSION: While mechanisms remain to be identified, the data indicate that neonatal diet can significantly impact liver mitochondrial bioenergetics phenotypes, even in the absence of a change in mtDNA abundance. Since permeabilized liver mitochondrial respiration was increased in MF piglets only in the presence of ADP, it suggests that formula feeding led to a higher ATP turnover. Specific mechanisms and signals involved with neonatal diet-associated differences in liver bioenergetics remain to be elucidated.

16.
Front Immunol ; 11: 1240, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32655560

RESUMEN

microRNAs (miRNAs) are conserved non-coding small nucleotide molecules found in nearly all species and breastmilk. miRNAs present in breastmilk are very stable to freeze-thaw, RNase treatment, and low pH as they are protected inside exosomes. They are involved in regulating several physiologic and pathologic processes, including immunologic pathways, and we have demonstrated better immune response to vaccines in piglets fed with human milk (HM) in comparison to dairy-based formula (MF). To understand if neonatal diet impacts circulatory miRNA expression, serum miRNA expression was evaluated in piglets fed HM or MF while on their neonatal diet at postnatal day (PND) 21 and post-weaning to solid diet at PND 35 and 51. MF fed piglets showed increased expression of 14 miRNAs and decreased expression of 10 miRNAs, relative to HM fed piglets at PND 21. At PND 35, 9 miRNAs were downregulated in the MF compared to the HM group. At PND 51, 10 miRNAs were decreased and 17 were increased in the MF relative to HM suggesting the persistent effect of neonatal diet. miR-148 and miR-181 were decreased in MF compared to HM at PND 21. Let-7 was decreased at PND 35 while miR-199a and miR-199b were increased at PND 51 in MF compared to HM. Pathway analysis suggested that many of the miRNAs are involved in immune function. In conclusion, we observed differential expression of blood miRNAs at both PND 21 and PND 51. miRNA found in breastmilk were decreased in the serum of the MF group, suggesting that diet impacts circulating miRNA profiles at PND 21. The miRNAs continue to be altered at PND 51 suggesting a persistent effect of the neonatal diet. The sources of miRNAs in circulation need to be evaluated, as the piglets were fed the same solid diet leading up to PND 51 collections. In conclusion, the HM diet appears to have an immediate and persistent effect on the miRNA profile and likely regulates the pathways that impact the immune system and pose benefits to breastfed infants.


Asunto(s)
MicroARN Circulante/efectos de los fármacos , Dieta , Sustitutos de la Leche/farmacología , Leche Humana , Animales , Animales Recién Nacidos , Humanos , Modelos Animales , Porcinos
17.
mSystems ; 5(4)2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32753508

RESUMEN

Exclusive breastfeeding impacts the intestinal microbiome and is associated with a better immune function than is seen with milk formula (MF) feeding in infants and yet with mechanisms poorly defined. The porcine model was used to evaluate the impact of MF on ileum microbial communities and gene expression relative to human milk (HM)-fed piglets. Fifty-two Dutch Landrace male piglets were fed an isocaloric diet of either HM (n = 26) or MF (n = 26) from day 2 through day 21 of age and weaned to a solid diet until day 51. Eleven piglets from each group were euthanized at day 21, while the remaining piglets (HM, n = 15; MF, n = 15) were euthanized at day 51 to collect ileal epithelium (EP) scrapings and ileal (IL) tissues. The epithelial mucosa was subjected to shotgun metagenome sequencing, and EP and IL tissues were used for transcriptome analysis. On day 21, transcriptome data revealed that the levels of pathways involved in inflammation and apoptosis were significantly higher in MF piglets than in HM piglets, whereas the levels of tight junctions and pathogen detection systems were lower in MF piglets than in HM piglets. The MF impacts on the small intestine were maintained over the postweaning period (day 51) as indicated by higher levels of Dialister invisus bacteria and higher levels of expression of genes associated with inflammation and apoptosis pathways relative to HM group. The current study demonstrated that MF might impact local intestinal inflammation, apoptosis, and tight junctions and might suppress pathogen recognition in the small intestine compared with HM.IMPORTANCE Exclusive human milk (HM) breastfeeding for the first 6 months of age in infants is recommended to improve health outcomes during early life and beyond. When women are unable to provide sufficient HM, milk formula (MF) is often recommended as a complementary or alternative source of nutrition. Previous studies in piglets demonstrated that MF alters the gut microbiome and induces inflammatory cytokine production. The links between MF feeding, gut microbiome, and inflammation status are unclear due to challenges associated with the collection of intestinal samples from human infants. The current report provides the first insight into MF-microbiome-inflammation connections in the small intestine compared with HM feeding using a porcine model. The present results showed that, compared with HM, MF might impact immune function through the induction of ileal inflammation, apoptosis, and tight junction disruptions and likely compromised immune defense against pathogen detection in the small intestine relative to piglets that were fed HM.

18.
Am J Clin Nutr ; 111(6): 1190-1202, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32330237

RESUMEN

BACKGROUND: Neonatal diet has a large influence on child health and might modulate changes in fecal microbiota and metabolites. OBJECTIVES: The aim is to investigate fecal microbiota and metabolites at different ages in infants who were breastfed (BF), received dairy-based milk formula (MF), or received soy-based formula (SF). METHODS: Fecal samples were collected at 3 (n = 16, 12, and 14, respectively), 6 (n = 20, 19, and 15, respectively), 9 (n = 12, 11, and 12, respectively), and 12 mo (n = 14, 14, and 15, respectively) for BF, MF, and SF infants. Infants that breastfed until 9 mo and switched to formula were considered as no longer breastfeeding at 12 mo. Microbiota data were obtained using 16S ribosomal RNA sequencing. Untargeted metabolomics was conducted using a Q-Exactive Hybrid Quadrupole-Orbitrap mass spectrometer. The data were analyzed using R (version 3.6.0) within the RStudio (version 1.1.463) platform. RESULTS: At 3, 6, and 9 mo of age BF infants had the lowest α-diversity, SF infants had the highest diversity, and MF was intermediate. Bifidobacterium was 2.6- to 5-fold lower in SF relative to BF infants through 1 y of life. An unidentified genus from Ruminococcaceae higher in the SF (2%) than in the MF (0.4%) and BF (0.08%) infants at 3 mo of age was observed. In BF infants higher levels of butyric acid, d-sphingosine, kynurenic acid, indole-3-lactic acid, indole-3-acetic acid, and betaine were observed than in MF and SF infants. At 3 mo Ruminococcaceae was positively correlated to azelaic, gentisic, isocitric, sebacic, and syringic acids. At 6 mo Oscillospira was negatively correlated with 3-hydroxybutyric-acid, hydroxy-hydrocinnamic acid, and betaine whereas Bifidobacterium was negatively associated with 5-hydroxytryptamine. At 12 mo of age, Lachnospiraceae was negatively associated with hydroxyphenyllactic acid. CONCLUSIONS: Infant diet has a large impact on the fecal microbiome and metabolome in the first year of life.This study was registered at clinicaltrials.gov as NCT00616395.


Asunto(s)
Alimentación con Biberón , Lactancia Materna , Heces/microbiología , Microbioma Gastrointestinal , Metaboloma , Leche Humana/metabolismo , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Femenino , Humanos , Lactante , Fórmulas Infantiles/análisis , Masculino
19.
Infect Immun ; 77(3): 1216-21, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19139194

RESUMEN

Over the last several years, four different phages of chlamydiae, in addition to a phage associated with Chlamydia psittaci isolated from an ornithosis infection in ducks over 25 years ago, have been described and characterized. While these phages and their chlamydial host specificities have been characterized in vitro, there is virtually nothing known about the interaction of the phage with chlamydiae in their natural animal host. phiCPG1 is a lytic phage specific for "Chlamydia caviae," which is a natural parasite of the guinea pig. In this study, guinea pigs were inoculated in the conjunctiva with suspensions of phiCPG1 and C. caviae and the effect on the development of pathology and on the course of chlamydial infection in the conjunctiva was determined. The presence of phage delayed the appearance of the peak level of chlamydiae in the animal and decreased the pathological response. Evidence for replication of the phage in C. caviae in the conjunctival tissue was observed. Modifying the ratio of phage to chlamydiae altered the course of infection and affected phage replication. There was no evidence for the phage increasing the virulence of C. caviae infection.


Asunto(s)
Bacteriófagos/fisiología , Infecciones por Chlamydia/virología , Chlamydia/virología , Conjuntivitis Bacteriana/microbiología , Interacciones Huésped-Parásitos/fisiología , Animales , Infecciones por Chlamydia/patología , Conjuntivitis Bacteriana/patología , Femenino , Cobayas , Reacción en Cadena de la Polimerasa
20.
Infect Immun ; 77(8): 3284-93, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19470744

RESUMEN

The mouse chlamydial pathogen Chlamydia muridarum has been used as a model organism for the study of human Chlamydia trachomatis urogenital and respiratory tract infections. To date, two commonly used C. muridarum isolates have been used interchangeably and are essentially taken to be identical. Herein, we present data that indicate that this is not the case. The C. muridarum Weiss isolate and C. muridarum Nigg isolate varied significantly in their virulences in vivo and possessed different growth characteristics in vitro. Distinct differences were observed in intravaginal 50% infectious doses and in challenge infections, with the Weiss isolate displaying greater virulence. Respiratory infection by the intranasal route also indicated a greater virulence of the Weiss isolate. In vitro, morphometric analysis revealed that the Weiss isolate produced consistently smaller inclusions in human cervical adenocarcinoma cells (HeLa 229) and smaller plaques in monolayers of mouse fibroblasts (L929) than did the Nigg isolate. In addition, the Weiss isolate possessed significantly higher replicative yields in vitro than did the Nigg isolate. In plaque-purified isolates derived from our stocks of these two strains, total genomic sequencing identified several unique nonsynonymous single nucleotide polymorphisms and insertion/deletion mutations when our Weiss (n = 4) and Nigg (n = 5) isolates were compared with the published Nigg sequence. In addition, the two isolates shared 11 mutations compared to the published Nigg sequence. These results prove that there is genotypic and virulence diversity among C. muridarum isolates. These findings can be exploited to determine factors related to chlamydial virulence and immunity.


Asunto(s)
Chlamydia muridarum/genética , Chlamydia muridarum/patogenicidad , Variación Genética , Animales , ADN Bacteriano/química , ADN Bacteriano/genética , Células Epiteliales/microbiología , Femenino , Células HeLa , Humanos , Cuerpos de Inclusión/microbiología , Dosificación Letal Mediana , Pulmón/microbiología , Ratones , Datos de Secuencia Molecular , Mutagénesis Insercional , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Eliminación de Secuencia , Análisis de Supervivencia , Vagina/microbiología , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA