Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Analyst ; 149(13): 3513-3517, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38842276

RESUMEN

Live chicken egg embryos offer new opportunities for evaluation and continuous monitoring of tumour growth for in vivo studies compared to traditional rodent models. Here, we report the first use of surface enhanced Raman scattering (SERS) mapping and surface enhanced spatially offset Raman scattering (SESORS) for the detection and localisation of targeted gold nanoparticles in live chicken egg embryos bearing a glioblastoma tumour.


Asunto(s)
Oro , Nanopartículas del Metal , Espectrometría Raman , Animales , Espectrometría Raman/métodos , Oro/química , Embrión de Pollo , Nanopartículas del Metal/química , Glioblastoma/patología , Glioblastoma/diagnóstico por imagen , Humanos , Propiedades de Superficie , Modelos Animales de Enfermedad , Línea Celular Tumoral
2.
Analyst ; 148(14): 3247-3256, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37366648

RESUMEN

Glioblastoma multiforme (GBM) is a particularly aggressive and high-grade brain cancer, with poor prognosis and life expectancy, in urgent need of novel therapies. These severe outcomes are compounded by the difficulty in distinguishing between cancerous and non-cancerous tissues using conventional imaging techniques. Metallic nanoparticles (NPs) are advantageous due to their diverse optical and physical properties, such as their targeting and imaging potential. In this work, the uptake, distribution, and location of silica coated gold nanoparticles (AuNP-SHINs) within multicellular tumour spheroids (MTS) derived from U87-MG glioblastoma cells was investigated by surface enhanced Raman scattering (SERS) optical mapping. MTS are three-dimensional in vitro tumour mimics that represent a tumour in vivo much more closely than that of a two-dimensional cell culture. By using AuNP-SHIN nanotags, it is possible to readily functionalise the inner gold surface with a Raman reporter, and the outer silica surface with an antibody for tumour specific targeting. The nanotags were designed to target the biomarker tenascin-C overexpressed in U87-MG glioblastoma cells. Immunochemistry indicated that tenascin-C was upregulated within the core of the MTS, however limitations such as NP size, quiescence, and hypoxia, restricted the penetration of the nanotags to the core and they remained in the outer proliferating cells of the spheroids. Previous examples of MTS studies using SERS demonstrated the incubation of NPs on a 2D monolayer of cells, with the subsequent formation of the MTS from these pre-incubated cells. Here, we focus on the localisation of the NPs after incubation into pre-formed MTS to establish a better understanding of targeting and NP uptake. Therefore, this work highlights the importance for the investigation and translation of NP uptake into these 3D in vitro models.


Asunto(s)
Glioblastoma , Nanopartículas del Metal , Humanos , Espectrometría Raman/métodos , Nanopartículas del Metal/química , Tenascina , Oro/química , Esferoides Celulares , Dióxido de Silicio/química
3.
Analyst ; 148(11): 2594-2608, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37166147

RESUMEN

Radiation therapy is currently utilised in the treatment of approximately 50% of cancer patients. A move towards patient tailored radiation therapy would help to improve the treatment outcome for patients as the inter-patient and intra-patient heterogeneity of cancer leads to large differences in treatment responses. In radiation therapy, a typical treatment outcome is cell cycle arrest which leads to cell cycle synchronisation. As treatment is typically given over multiple fractions it is important to understand how variation in the cell cycle can affect treatment response. Raman spectroscopy has previously been assessed as a method for monitoring radiation response in cancer cells and has shown promise in detecting the subtle biochemical changes following radiation exposure. This study evaluated Raman spectroscopy as a potential tool for monitoring cellular response to radiation in synchronised versus unsynchronised UVW human glioma cells in vitro. Specifically, it was hypothesised that the UVW cells would demonstrate a greater radiation resistance if the cell cycle phase of the cells was synchronised to the G1/S boundary prior to radiation exposure. Here we evaluated whether Raman spectroscopy, combined with cell cycle analysis and DNA damage and repair analysis (γ-H2AX assay), could discriminate the subtle cellular changes associated with radiation response. Raman spectroscopy combined with principal component analysis (PCA) was able to show the changes in radiation response over 24 hours following radiation exposure. Spectral changes were assigned to variations in protein, specifically changes in protein signals from amides as well as changes in lipid expression. A different response was observed between cells synchronised in the cell cycle and unsynchronised cells. After 24 hours following irradiation, the unsynchronised cells showed greater spectral changes compared to the synchronised cells demonstrating that the cell cycle plays an important role in the radiation resistance or sensitivity of the UVW cells, and that radiation resistance could be induced by controlling the cell cycle. One of the main aims of cancer treatment is to stop the proliferation of cells by controlling or halting progression through the cell cycle, thereby highlighting the importance of controlling the cell cycle when studying the effects of cancer treatments such as radiation therapy. Raman spectroscopy has been shown to be a useful tool for evaluating the changes in radiation response when the cell cycle phase is controlled and therefore highlighting its potential for assessing radiation response and resistance.


Asunto(s)
Neoplasias Encefálicas , Espectrometría Raman , Humanos , Espectrometría Raman/métodos , Ciclo Celular/efectos de la radiación , Línea Celular Tumoral , Neoplasias Encefálicas/radioterapia
4.
Prostate ; 80(14): 1188-1202, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33258506

RESUMEN

BACKGROUND: As the survival of castration-resistant prostate cancer (CRPC) remains poor, and the nuclear factor-κB (NF-κB) pathways play key roles in prostate cancer (PC) progression, several studies have focused on inhibiting the NF-κB pathway through generating inhibitory κB kinase subunit α (IKKα) small molecule inhibitors. However, the identification of prognostic markers able to discriminate which patients could benefit from IKKα inhibitors is urgently required. The present study investigated the prognostic value of IKKα, IKKα phosphorylated at serine 180 (p-IKKα S180) and threonine 23 (p-IKKα T23), and their relationship with the androgen receptor (AR) and Ki67 proliferation index to predict patient outcome. METHODS: A cohort of 115 patients with hormone-naïve PC (HNPC) and CRPC specimens available were used to assess tumor cell expression of proteins within both the cytoplasm and the nucleus by immunohistochemistry. The expression levels were dichotomized (low vs high) to determine the associations between IKKα, AR, Ki67, and patients'Isurvival. In addition, an analysis was performed to assess potential IKKα associations with clinicopathological and inflammatory features, and potential IKKα correlations with other cancer pathways essential for CRPC growth. RESULTS: High levels of cytoplasmic IKKα were associated with a higher cancer-specific survival in HNPC patients with low AR expression (hazards ratio [HR], 0.33; 95% confidence interval [CI] log-rank, 0.11-0.98; P = .04). Furthermore, nuclear IKKα (HR, 2.60; 95% CI, 1.27-5.33; P = .01) and cytoplasmic p-IKKα S180 (HR, 2.10; 95% CI, 1.17-3.76; P = .01) were associated with a lower time to death from recurrence in patients with CRPC. In addition, high IKKα expression was associated with high levels of T-cells (CD3+ P = .01 and CD8+ P = .03) in HNPC; however, under castration conditions, high IKKα expression was associated with high levels of CD68+ macrophages (P = .04), higher Gleason score (P = .01) and more prostate-specific antigen concentration (P = .03). Finally, we identified crosstalk between IKKα and members of the canonical NF-κB pathway in the nucleus of HNPC. Otherwise, IKKα phosphorylated by noncanonical NF-κB and Akt pathways correlated with members of the canonical NF-κB pathway in CRPC. CONCLUSION: The present study reports that patients with CRPC expressing high levels of nuclear IKKα or cytoplasmic p-IKKα S180, which associated with a lower time to death from recurrence, may benefit from IKKα inhibitors.


Asunto(s)
Quinasa I-kappa B/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/enzimología , Neoplasias de la Próstata/enzimología , Anciano , Biomarcadores de Tumor/metabolismo , Núcleo Celular/enzimología , Estudios de Cohortes , Citoplasma/enzimología , Humanos , Quinasa I-kappa B/inmunología , Inmunidad Innata , Inmunohistoquímica , Antígeno Ki-67/metabolismo , Masculino , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Pronóstico , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata Resistentes a la Castración/inmunología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Androgénicos/metabolismo , Transducción de Señal , Tasa de Supervivencia
5.
Analyst ; 141(1): 100-10, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26456100

RESUMEN

A major limitation with current in vitro technologies for testing anti-cancer therapies at the pre-clinical level is the use of 2D cell culture models which provide a poor reflection of the tumour physiology in vivo. Three dimensional cell culture models, such as the multicellular spheroid, provide instead a more accurate representation. However, existing spheroid-based assessment methods are generally labour-intensive and low-throughput. Emulsion based technologies offer enhanced mechanical stability during multicellular tumour spheroid formation and culture and are scalable to enable higher-throughput assays. The aim of this study was to investigate the characteristics of emulsion-based techniques for the formation and long term culture of multicellular UVW glioma cancer spheroids and apply these findings to assess the cytotoxic effect of radiation on spheroids. Our results showed that spheroids formed within emulsions had similar morphological and growth characteristics to those formed using traditional methods. Furthermore, we have identified the effects produced on the proliferative state of the spheroids due to the compartmentalised nature of the emulsions and applied this for mimicking tumour growth and tumour quiescence. Finally, proof of concept results are shown to demonstrate the scalability potential of the technology for developing high-throughput screening assays.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Esferoides Celulares/patología , Esferoides Celulares/efectos de la radiación , Técnicas de Cultivo de Célula/instrumentación , Línea Celular Tumoral , Proliferación Celular , Emulsiones , Humanos , Dispositivos Laboratorio en un Chip
6.
Molecules ; 20(11): 20161-72, 2015 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-26569200

RESUMEN

Wissadula periplocifolia (L.) C. Presl (Malvaceae) is commonly used in Brazil to treat bee stings and as an antiseptic. The antioxidant properties of its extracts have been previously demonstrated, thus justifying a phytochemical investigation for its bioactive phenolic constituents. This has yielded five new sulphated flavonoids: 8-O-sulphate isoscutellarein (yannin) (1a); 4'-O-methyl-7-O-sulphate isoscutellarein (beltraonin) (1b); 7-O-sulphate acacetin (wissadulin) (2a); 4'-O-methyl-8-O-sulphate isoscutellarein (caicoine) (2b) and 3'-O-methyl-8-O-sulphate hypolaetin (pedroin) (3b) along with the known flavonoids 7,4'-di-O-methyl-8-O-sulphate isoscutellarein (4), acacetin, apigenin, isoscutellarein, 4'-O-methyl isoscutellarein, 7,4'-di-O-methylisoscutellarein, astragalin and tiliroside. The compounds were isolated by column chromatography and identified by NMR (¹H, (13)C, HMQC, HMBC and COSY) and LC-HRMS. A cell based assay was carried out to evaluate the preliminary cytotoxic properties of the flavonoids against UVW glioma and PC-3M prostate cancer cells as well as non-tumour cell lines. The obtained results showed that acacetin, tiliroside, a mixture of acacetin + apigenin and the sulphated flavonoids 2a + 2b exhibited inhibitory activity against at least one of the cell lines tested. Among the tested flavonoids acacetin and tiliroside showed lower IC50 values, presenting promising antitumor effects.


Asunto(s)
Flavonoides/química , Malvaceae/química , Extractos Vegetales/química , Sulfatos/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Flavonoides/farmacología , Humanos , Concentración 50 Inhibidora , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Extractos Vegetales/farmacología
7.
J Biol Chem ; 286(15): 12933-43, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21317287

RESUMEN

Mitogen-activated protein kinase phosphatase-2 (MKP-2) is a type 1 nuclear dual specific phosphatase (DUSP) implicated in a number of cancers. We examined the role of MKP-2 in the regulation of MAP kinase phosphorylation, cell proliferation, and survival responses in mouse embryonic fibroblasts (MEFs) derived from a novel MKP-2 (DUSP-4) deletion mouse. We show that serum and PDGF induced ERK-dependent MKP-2 expression in wild type MEFs but not in MKP-2(-/-) MEFs. PDGF stimulation of sustained ERK phosphorylation was enhanced in MKP-2(-/-) MEFs, whereas anisomycin-induced JNK was only marginally increased. However, marked effects upon cell growth parameters were observed. Cellular proliferation rates were significantly reduced in MKP-2(-/-) MEFs and associated with a significant increase in cell doubling time. Infection with adenoviral MKP-2 reversed the decrease in proliferation. Cell cycle analysis revealed a block in G(2)/M phase transition associated with cyclin B accumulation and enhanced cdc2 phosphorylation. MEFs from MKP-2(-/-) mice also showed enhanced apoptosis when stimulated with anisomycin correlated with increased caspase-3 cleavage and γH2AX phosphorylation. Increased apoptosis was reversed by adenoviral MKP-2 infection and correlated with selective inhibition of JNK signaling. Collectively, these data demonstrate for the first time a critical non-redundant role for MKP-2 in regulating cell cycle progression and apoptosis.


Asunto(s)
División Celular/fisiología , Embrión de Mamíferos/enzimología , Fibroblastos/enzimología , Fase G2/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Proteínas Tirosina Fosfatasas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Caspasa 3/genética , Caspasa 3/metabolismo , División Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Ciclina B/genética , Ciclina B/metabolismo , Embrión de Mamíferos/citología , Fibroblastos/citología , Fase G2/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Histonas/genética , Histonas/metabolismo , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Noqueados , Fosforilación/efectos de los fármacos , Fosforilación/genética , Factor de Crecimiento Derivado de Plaquetas/farmacología , Proteínas Tirosina Fosfatasas/genética
8.
Cancers (Basel) ; 11(10)2019 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-31635032

RESUMEN

Cachexia is a multifactorial wasting syndrome associated with high morbidity and mortality in patients with cancer. Diagnosis can be difficult and, in the clinical situation, usually relies upon reported weight loss. The 'omics' technologies allow us the opportunity to study the end points of many biological processes. Among these, blood-based metabolomics is a promising method to investigate the pathophysiology of human cancer cachexia and identify candidate biomarkers. In this study, we performed liquid chromatography mass spectrometry (LC/MS)-based metabolomics to investigate the metabolic profile of cancer-associated weight loss. Non-selected patients undergoing surgery with curative intent for upper gastrointestinal cancer were recruited. Fasting plasma samples were taken at induction of anaesthesia. LC/MS analysis showed that 6 metabolites were highly discriminative of weight loss. Specifically, a combination profile of LysoPC 18.2, L-Proline, Hexadecanoic acid, Octadecanoic acid, Phenylalanine and LysoPC 16:1 showed close correlation for eight weight-losing samples (≥5% weight loss) and nine weight-stable samples (<5%weight loss) between predicted and actual weight change (r = 0.976, p = 0.0014). Overall, 40 metabolites were associated with ≥5% weight loss. This study provides biological validation of the consensus definition of cancer cachexia (Fearon et al.) and provides feasible candidate markers for further investigation in early diagnosis and the assessment of therapeutic intervention.

9.
Nucl Med Biol ; 35 Suppl 1: S9-20, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18707637

RESUMEN

[(131)I]meta-Iodobenzylguanidine ([(131)I]MIBG) has been used for the therapy of tumors of neuroectodermal origin since the 1980s. Its role in the management of these malignancies remains controversial because of the large variation in response rates. Appreciation of the mode of conveyance of [(131)I]MIBG via the noradrenaline transporter into malignant cells and of factors that influence the activity of the uptake mechanism has indicated various ways in which the effectiveness of this type of targeted radiotherapy may be improved. Experimental observations indicate that radiolabeling of MIBG to high specific activity reduced the amount of cold competitor, thereby increasing tumor dose and minimizing pressor effects. We observed supra-additive tumor cell kill and inhibition of tumor growth following combined topotecan and [(131)I]MIBG treatment. The improved efficacy is related to topotecan's increased disruption of DNA repair. Radiation damage to targeted tumors may also be enhanced by the use of the alpha-particle emitter [(211)At]astatine rather than (131)I as radiolabel. Furthermore, recent experimental findings indicate that [(123)I]MIBG may have therapeutic potential over and above its utility as an imaging agent. It has recently been demonstrated that potent cytotoxic bystander effects were induced by the intracellular concentration of [(131)I]MIBG, [(123)I]MIBG or meta-[(211)At]astatobenzylguanidine. Identification of the nature of bystander factors could be exploited to maximize the specificity and potency of MIBG-targeted radiotherapy. By employing a range of strategies, there are good prospects for the improvement of the [(131)I]MIBG therapy of neuroectodermal tumors.


Asunto(s)
3-Yodobencilguanidina/uso terapéutico , Tumores Neuroendocrinos/radioterapia , Radiofármacos/uso terapéutico , Efecto Espectador , Terapia Combinada , Humanos , Dosificación Radioterapéutica , Topotecan/uso terapéutico
10.
J Pharm Pharmacol ; 60(8): 951-8, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18644188

RESUMEN

The efficacy of radiotherapy may be partly dependent on indirect effects, which can sterilise malignant cells that are not directly irradiated. However, little is known of the influence of these effects in targeted radionuclide treatment of cancer. We determined bystander responses generated by the uptake of radioiodinated iododeoxyuridine ([*I]IUdR) and radiohaloanalogues of meta-iodobenzylguanidine ([*I]MIBG) by noradrenaline transporter (NAT) gene-transfected tumour cells. NAT specifically accumulates MIBG. Multicellular spheroids that consisted of 5% of NAT-expressing cells, capable of the active uptake of radiopharmaceutical, were sterilised by treatment with 20 kBqmL(-1) of the alpha-emitter meta-[211At]astatobenzylguanidine ([211At]MABG). Similarly, in nude mice, retardation of the growth of tumour xenografts containing 5% NAT-positivity was observed after treatment with [131I]MIBG. To determine the effect of subcellular localisation of radiolabelled drugs, we compared the bystander effects resulting from the intracellular concentration of [131I]MIBG and [131I]IUdR (low linear energy transfer (LET) beta-emitters) as well as [123I]MIBG and [123I]IUdR (high LET Auger electron emitters). [*I]IUdR is incorporated in DNA whereas [*I]MIBG accumulates in extranuclear sites. Cells exposed to media from [131I]MIBG- or [131I]IUdR-treated cells demonstrated a dose-response relationship with respect to clonogenic cell death. In contrast, cells receiving media from cultures treated with [123I]MIBG or [123I]IUdR exhibited dose-dependent toxicity at low dose but elimination of cytotoxicity with increasing radiation dose (i.e. U-shaped survival curves). Therefore radionuclides emitting high LET radiation may elicit toxic or protective effects on neighbouring untargeted cells at low and high dose respectively. It is concluded that radiopharmaceutical-induced bystander effects may depend on LET of the decay particles but are independent of site of intracellular concentration of radionuclide.


Asunto(s)
3-Yodobencilguanidina/farmacología , Efecto Espectador , Idoxuridina/farmacología , Neoplasias Experimentales/radioterapia , Radiofármacos/farmacología , 3-Yodobencilguanidina/análogos & derivados , 3-Yodobencilguanidina/metabolismo , Animales , Muerte Celular/efectos de la radiación , Línea Celular Tumoral , Medios de Cultivo Condicionados/metabolismo , Relación Dosis-Respuesta en la Radiación , Humanos , Idoxuridina/metabolismo , Radioisótopos de Yodo , Ratones , Ratones Desnudos , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Dosis de Radiación , Radiofármacos/metabolismo , Esferoides Celulares , Transfección , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Metabolites ; 8(1)2018 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-29438325

RESUMEN

Metabolomic profiling of nine trained ultramarathon runners completing an 80.5 km self-paced treadmill-based time trial was carried out. Plasma samples were obtained from venous whole blood, collected at rest and on completion of the distance (post-80.5 km). The samples were analyzed by using high-resolution mass spectrometry in combination with both hydrophilic interaction (HILIC) and reversed phase (RP) chromatography. The extracted putatively identified features were modeled using Simca P 14.1 software (Umetrics, Umea, Sweden). A large number of amino acids decreased post-80.5 km and fatty acid metabolism was affected with an increase in the formation of medium-chain unsaturated and partially oxidized fatty acids and conjugates of fatty acids with carnitines. A possible explanation for the complex pattern of medium-chain and oxidized fatty acids formed is that the prolonged exercise provoked the proliferation of peroxisomes. The peroxisomes may provide a readily utilizable form of energy through formation of acetyl carnitine and other acyl carnitines for export to mitochondria in the muscles; and secondly may serve to regulate the levels of oxidized metabolites of long-chain fatty acids. This is the first study to provide evidence of the metabolic profile in response to prolonged ultramarathon running using an untargeted approach. The findings provide an insight to the effects of ultramarathon running on the metabolic specificities and alterations that may demonstrate cardio-protective effects.

12.
J Nucl Med ; 48(9): 1519-26, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17704246

RESUMEN

UNLABELLED: For gene therapy to be efficacious in the treatment of cancer, therapeutic transgenes must be limited in their expression to tumor cells and must be expressed at sufficiently high transcriptional levels. Moreover, the inadequacy of gene delivery must be overcome by induction of toxicity to neighboring nontargeted cells. Combining targeted radionuclide therapy with gene therapy using human telomerase promoters has shown promise in these respects, and the efficacy of this scheme has been assessed in vitro using transfectant mosaic tumor spheroids. To enable the evaluation of targeted radiotherapy combined with gene transfer in vivo, we have developed a transfectant mosaic xenograft (TMX) model. METHODS: Human telomerase promoters were used to drive expression of the noradrenaline transporter (NAT) transgene in 2 human cell lines (UVW and EJ138). Promoter activity was assessed in xenografts in nude mice by determination of the uptake of the radiopharmaceutical (131)I-metaiodobenzylguanidine ((131)I-MIBG) and by measurement of tumor growth. The efficacy of (131)I-MIBG treatment was also assessed in TMXs to determine the delay in growth of tumors composed of various proportions of NAT-expressing cells-a likely clinical scenario after gene delivery in vivo. RESULTS: In terms of induction of the capacity for active uptake of (131)I-MIBG and the resultant inhibition of tumor growth in vivo, both telomerase promoters (hTR and hTERT) were similar in potency to the CMV (cytomegalovirus) promoter as controlling elements for the expression of the NAT transgene. In TMXs derived from UVW and EJ138 cells, (131)I-MIBG uptake was proportional to NAT gene expression (r(s) = 0.910, P < 0.001 for UVW; r(s) = 0.971, P < 0.001 for EJ138). Inhibition of the growth of these tumors correlated with the fraction of NAT-transfected cells (r(s) = 0.910, P < 0.001 for UVW; r(s) = 0.971, P < 0.001 for EJ138), and substantial tumor growth delay was observed when 5% of the xenograft was composed of NAT-positive cells. CONCLUSION: TMXs constitute a suitable model to measure the efficacy of cancer gene therapy strategies when <100% of the tumor mass can be targeted to express the therapeutic transgene.


Asunto(s)
3-Yodobencilguanidina/uso terapéutico , Terapia Genética , Radioisótopos de Yodo/uso terapéutico , Neoplasias Experimentales/radioterapia , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/genética , Radiofármacos/uso terapéutico , Animales , Efecto Espectador , Bovinos , Línea Celular Tumoral , Terapia Combinada , Femenino , Técnicas de Transferencia de Gen , Humanos , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Regiones Promotoras Genéticas , Trasplante Heterólogo
13.
Mutat Res ; 626(1-2): 34-41, 2007 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-16987695

RESUMEN

Extremely low-frequency electromagnetic fields (ELF-EMF) have been reported to induce lesions in DNA and to enhance the mutagenicity of ionising radiation. However, the significance of these findings is uncertain because the determination of the carcinogenic potential of EMFs has largely been based on investigations of large chromosomal aberrations. Using a more sensitive method of detecting DNA damage involving microsatellite sequences, we observed that exposure of UVW human glioma cells to ELF-EMF alone at a field strength of 1 mT (50 Hz) for 12 h gave rise to 0.011 mutations/locus/cell. This was equivalent to a 3.75-fold increase in mutation induction compared with unexposed controls. Furthermore, ELF-EMF increased the mutagenic capacity of 0.3 and 3 Gy gamma-irradiation by factors of 2.6 and 2.75, respectively. These results suggest not only that ELF-EMF is mutagenic as a single agent but also that it can potentiate the mutagenicity of ionising radiation. Treatment with 0.3 Gy induced more than 10 times more mutations per unit dose than irradiation with 3 Gy, indicating hypermutability at low dose.


Asunto(s)
Campos Electromagnéticos , Repeticiones de Microsatélite/genética , Radiación Ionizante , Secuencia de Bases , Línea Celular Tumoral , Daño del ADN , Cartilla de ADN , Humanos , Reacción en Cadena de la Polimerasa , Sensibilidad y Especificidad
14.
Cell Death Dis ; 8(8): e3014, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28837152

RESUMEN

There has been long-standing interest in targeting pro-survival autophagy as a combinational cancer therapeutic strategy. Clinical trials are in progress testing chloroquine (CQ) or its derivatives in combination with chemo- or radiotherapy for solid and haematological cancers. Although CQ has shown efficacy in preclinical models, its mechanism of action remains equivocal. Here, we tested how effectively CQ sensitises metastatic breast cancer cells to further stress conditions such as ionising irradiation, doxorubicin, PI3K-Akt inhibition and serum withdrawal. Contrary to the conventional model, the cytotoxic effects of CQ were found to be autophagy-independent, as genetic targeting of ATG7 or the ULK1/2 complex could not sensitise cells, like CQ, to serum depletion. Interestingly, although CQ combined with serum starvation was robustly cytotoxic, further glucose starvation under these conditions led to a full rescue of cell viability. Inhibition of hexokinase using 2-deoxyglucose (2DG) similarly led to CQ resistance. As this form of cell death did not resemble classical caspase-dependent apoptosis, we hypothesised that CQ-mediated cytotoxicity was primarily via a lysosome-dependent mechanism. Indeed, CQ treatment led to marked lysosomal swelling and recruitment of Galectin3 to sites of membrane damage. Strikingly, glucose starvation or 2DG prevented CQ from inducing lysosomal damage and subsequent cell death. Importantly, we found that the related compound, amodiaquine, was more potent than CQ for cell killing and not susceptible to interference from glucose starvation. Taken together, our data indicate that CQ effectively targets the lysosome to sensitise towards cell death but is prone to a glucose-dependent resistance mechanism, thus providing rationale for the related compound amodiaquine (currently used in humans) as a better therapeutic option for cancer.


Asunto(s)
Cloroquina/farmacología , Glucosa/metabolismo , Lisosomas/metabolismo , Autofagia , Línea Celular Tumoral , Humanos
15.
J Med Chem ; 60(16): 7043-7066, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28737909

RESUMEN

IKKß plays a central role in the canonical NF-kB pathway, which has been extensively characterized. The role of IKKα in the noncanonical NF-kB pathway, and indeed in the canonical pathway as a complex with IKKß, is less well understood. One major reason for this is the absence of chemical tools designed as selective inhibitors for IKKα over IKKß. Herein, we report for the first time a series of novel, potent, and selective inhibitors of IKKα. We demonstrate effective target engagement and selectivity with IKKα in U2OS cells through inhibition of IKKα-driven p100 phosphorylation in the noncanonical NF-kB pathway without affecting IKKß-dependent IKappa-Bα loss in the canonical pathway. These compounds represent the first chemical tools that can be used to further characterize the role of IKKα in cellular signaling, to dissect this from IKKß and to validate it in its own right as a target in inflammatory diseases.


Asunto(s)
Quinasa I-kappa B/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Pirroles/farmacología , Animales , Biomarcadores Farmacológicos/metabolismo , Línea Celular Tumoral , Diseño de Fármacos , Humanos , Quinasa I-kappa B/química , Ratones , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Subunidad p52 de NF-kappa B/metabolismo , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/química , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pirimidinas/síntesis química , Pirimidinas/química , Pirroles/síntesis química , Pirroles/química , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
16.
J Nucl Med ; 47(6): 1007-15, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16741311

RESUMEN

UNLABELLED: Recent studies have shown that indirect effects of ionizing radiation may contribute significantly to the effectiveness of radiotherapy by sterilizing malignant cells that are not directly hit by the radiation. However, there have been few investigations of the importance of indirect effects in targeted radionuclide treatment. Our purpose was to compare the induction of bystander effects by external beam gamma-radiation with those resultant from exposure to 3 radiohaloanalogs of metaiodobenzylguanidine (MIBG): (131)I-MIBG (low-linear-energy-transfer [LET] beta-emitter), (123)I-MIBG (potentially high-LET Auger electron emitter), and meta-(211)At-astatobenzylguanidine ((211)At-MABG) (high-LET alpha-emitter). METHODS: Two human tumor cell lines-UVW (glioma) and EJ138 (transitional cell carcinoma of bladder)-were transfected with the noradrenaline transporter (NAT) gene to enable active uptake of MIBG. Medium from cells that accumulated the radiopharmaceuticals or were treated with external beam radiation was transferred to cells that had not been exposed to radioactivity, and clonogenic survival was determined in donor and recipient cultures. RESULTS: Over the dose range 0-9 Gy of external beam radiation of donor cells, 2 Gy caused 30%-40% clonogenic cell kill in recipient cultures. This potency was maintained but not increased by higher dosage. In contrast, no corresponding saturation of bystander cell kill was observed after treatment with a range of activity concentrations of (131)I-MIBG, which resulted in up to 97% death of donor cells. Cellular uptake of (123)I-MIBG and (211)At-MABG induced increasing recipient cell kill up to levels that resulted in direct kill of 35%-70% of clonogens. Thereafter, the administration of higher activity concentrations of these high-LET emitters was inversely related to the kill of recipient cells. Over the range of activity concentrations examined, neither direct nor indirect kill was observed in cultures of cells not expressing the NAT and, thus, incapable of active uptake of MIBG. CONCLUSION: Potent toxins are generated specifically by cells that concentrate radiohalogenated MIBG. These may be LET dependent and distinct from those elicited by conventional radiotherapy.


Asunto(s)
Efecto Espectador/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Glioma/patología , Glioma/radioterapia , Radioterapia/métodos , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/radioterapia , Línea Celular Tumoral , Relación Dosis-Respuesta en la Radiación , Electrones/uso terapéutico , Rayos gamma/uso terapéutico , Humanos , Dosis de Radiación , Radioisótopos/uso terapéutico , Radiofármacos/uso terapéutico
17.
Clin Cancer Res ; 11(21): 7929-37, 2005 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-16278418

RESUMEN

PURPOSE: Both [(131)I]meta-iodobenzylguanidine ([(131)I]MIBG) and the topoisomerase I inhibitor topotecan are effective as single-agent treatments of neuroblastoma. The aim of this study was to investigate the efficacy of [(131)I]MIBG in combination with topotecan in vitro and in vivo. EXPERIMENTAL DESIGN: The cell lines used were SK-N-BE(2c) (human neuroblastoma) and UVW/NAT (glioma cell line transfected with the noradrenaline transporter gene). Three different treatment schedules were assessed: topotecan given before (schedule 1), after (schedule 2), or simultaneously (schedule 3) with [(131)I]MIBG. DNA strand breakage was evaluated by comet assay, and cytotoxicity was determined by clonogenic survival. Efficacy was also measured by growth delay of tumor xenografts in nude mice. RESULTS: Combination schedules 2 and 3 caused more cytotoxicity than schedule 1. Similarly, significant DNA damage was observed following treatment schedules 2 and 3 (P < 0.005) but not schedule 1. The mean number of days for a doubling in volume of SK-N-BE(2c) tumors and a 10-fold increase in volume of UVW/NAT tumors were 10.4 and 18.6 (untreated), 19.7 and 25.3 (topotecan alone), 22.8 and 31.9 ([(131)I]MIBG alone), 26.3 and 37.1 (combination schedule 1), 34.3 and 49.7 (combination schedule 2), and 53.2 and >71 (combination schedule 3), respectively. The highest rate of cure of both xenografts was observed following treatment with combination schedule 3. CONCLUSIONS: The combination of topotecan and [(131)I]MIBG compared with either treatment alone gave rise to greater than additive DNA damage, clonogenic cell kill, and tumor growth delay. These effects were dependent on the scheduling of the two agents.


Asunto(s)
3-Yodobencilguanidina/uso terapéutico , Antineoplásicos/uso terapéutico , Radioisótopos de Yodo/metabolismo , Neoplasias/tratamiento farmacológico , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Topotecan/uso terapéutico , Animales , Bovinos , Línea Celular Tumoral , Ensayo Cometa , Daño del ADN , Fragmentación del ADN , ADN Complementario/metabolismo , Glioma/patología , Humanos , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Neuroblastoma/tratamiento farmacológico , Factores de Tiempo , Transfección
18.
Lab Chip ; 16(18): 3548-57, 2016 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-27477673

RESUMEN

When compared to methodologies based on low adhesion or hanging drop plates, droplet microfluidics offers several advantages for the formation and culture of multicellular spheroids, such as the potential for higher throughput screening and the use of reduced cell numbers, whilst providing increased stability for plate handling. However, a drawback of the technology is its characteristic compartmentalisation which limits the nutrients available to cells within an emulsion and poses challenges to the exchange of the encapsulated solution, often resulting in short-term cell culture and/or viability issues. The aim of this study was to develop a multi-purpose microfluidic platform that combines the high-throughput characteristics of multi-phase flows with that of ease of perfusion typical of single-phase microfluidics. We developed a versatile system to upscale the formation and long-term culture of multicellular spheroids for testing anticancer treatments, creating an array of fluidically addressable, compact spheroids that could be cultured in either medium or within a gel scaffold. The work provides proof-of-concept results for using this system to test both chemo- and radio-therapeutic protocols using in vitro 3D cancer models.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Dispositivos Laboratorio en un Chip , Esferoides Celulares/citología , Esferoides Celulares/efectos de los fármacos , Línea Celular Tumoral , Humanos
19.
Cancer Lett ; 228(1-2): 221-7, 2005 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-15935554

RESUMEN

MIBG is selectively concentrated in neuroblastoma cells, and radioiodinated MIBG has been used with some success for targeted radiotherapy. However, long-term cure remains elusive, and the topoisomerase I inhibitor topotecan may improve upon existing [131I]MIBG therapy. While synergistic killing by combinations of ionising radiation and topoisomerase I inhibitors has been reported, there is no consensus on optimal scheduling. Furthermore, there has been no attempt to demonstrate radio-potentiation by topoisomerase I inhibitors and targeted radiotherapy. We are investigating various scheduled combinations of topotecan and [131I]MIBG on neuroblastoma cells, and preliminary data suggests that topotecan induces increased accumulation of [131I]MIBG in vitro.


Asunto(s)
3-Yodobencilguanidina/uso terapéutico , Antineoplásicos/uso terapéutico , Neuroblastoma/tratamiento farmacológico , Radiofármacos/uso terapéutico , Topotecan/uso terapéutico , Terapia Combinada , Daño del ADN , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Inhibidores de Topoisomerasa I
20.
Nucl Med Biol ; 32(7): 749-53, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16243651

RESUMEN

The goal of targeted radionuclide therapy is the deposition in malignant cells of sterilizing doses of radiation without damaging normal tissue. The radiopharmaceutical [(131)I]meta-iodobenzylguanidine ([(131)I]MIBG) is an effective single agent for the treatment of neuroblastoma. However, uptake of the drug in malignant sites is insufficient to cure disease. A growing body of experimental evidence indicates exciting possibilities for the integration of gene transfer with [(131)I]MIBG-targeted radiotherapy.


Asunto(s)
3-Yodobencilguanidina/uso terapéutico , Marcación de Gen/métodos , Terapia Genética/métodos , Neuroblastoma/genética , Neuroblastoma/radioterapia , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/genética , Radioterapia/métodos , Animales , Sistemas de Liberación de Medicamentos/métodos , Humanos , Radiofármacos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA