Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther ; 31(12): 3441-3456, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37814449

RESUMEN

Adeno-associated virus (AAV) continues to be the gold standard vector for therapeutic gene delivery and has proven especially useful for treating ocular disease. Intravitreal injection (IVtI) is a promising delivery route because it increases accessibility of gene therapies to larger patient populations. However, data from clinical and non-human primate (NHP) studies utilizing currently available capsids indicate that anatomical barriers to AAV and pre-existing neutralizing antibodies can restrict gene expression to levels that are "sub-therapeutic" in a substantial proportion of patients. Here, we performed a combination of directed evolution in NHPs of an AAV2-based capsid library with simultaneous mutations across six surface-exposed variable regions and rational design to identify novel capsid variants with improved retinal transduction following IVtI. Following two rounds of screening in NHP, enriched variants were characterized in intravitreally injected mice and NHPs and shown to have increased transduction relative to AAV2. Lead capsid variant, P2-V1, demonstrated an increased ability to evade neutralizing antibodies in human vitreous samples relative to AAV2 and AAV2.7m8. Taken together, this study further contributed to our understanding of the selective pressures associated with retinal transduction via the vitreous and identified promising novel AAV capsid variants for clinical consideration.


Asunto(s)
Anticuerpos Neutralizantes , Cápside , Humanos , Ratones , Animales , Dependovirus , Inyecciones Intravítreas , Transducción Genética , Primates/genética , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Vectores Genéticos/genética
2.
Adv Exp Med Biol ; 1415: 125-130, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440024

RESUMEN

Myosin VIIA (MYO7A)-associated Usher syndrome type 1B (USH1B) is a severe disorder that impacts the auditory, vestibular, and visual systems of affected patients. Due to the large size (~7.5 kb) of the MYO7A coding sequence, we have designed a dual adeno-associated virus (AAV) vector-based approach for the treatment of USH1B-related vision loss. Due to the added complexity of dual-AAV gene therapy, careful attention must be paid to the protein products expressed following vector recombination. In order to improve the sensitivity and quantifiability of our immunoassays, we adapted our traditional western blot protocol for use with the Jess™ Simple Western System. Following several rounds of testing, we optimized our protocol for the detection of MYO7A in two of our most frequently used sample types, mouse eyes, and infected HEK293 cell lysates.


Asunto(s)
Miosinas , Síndromes de Usher , Ratones , Animales , Humanos , Miosinas/genética , Miosinas/metabolismo , Células HEK293 , Síndromes de Usher/genética , Síndromes de Usher/terapia , Miosina VIIa/genética , Mutación
3.
J Virol ; 95(10)2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33658343

RESUMEN

Adeno-associated viruses (AAVs) have recently emerged as the leading vector for retinal gene therapy. However, AAV vectors which are capable of achieving clinically relevant levels of transgene expression and widespread retinal transduction are still an unmet need. Using rationally designed AAV2-based capsid variants, we investigate the role of capsid hydrophilicity and hydrophobicity as it relates to retinal transduction. We show that hydrophilic, single amino acid (aa) mutations (V387R, W502H, E530K, L583R) in AAV2 negatively impact retinal transduction when heparan sulfate proteoglycan (HSPG) binding remains intact. Conversely, addition of hydrophobic point mutations to an HSPG binding deficient capsid (AAV2ΔHS) lead to increased retinal transduction in both mouse and macaque. Our top performing vector, AAV2(4pMut)ΔHS, achieved robust rod and cone photoreceptor (PR) transduction in macaque, especially in the fovea, and demonstrates the ability to spread laterally beyond the borders of the subretinal injection (SRI) bleb. This study both evaluates biophysical properties of AAV capsids that influence retinal transduction, and assesses the transduction and tropism of a novel capsid variant in a clinically relevant animal model.ImportanceRationally guided engineering of AAV capsids aims to create new generations of vectors with enhanced potential for human gene therapy. By applying rational design principles to AAV2-based capsids, we evaluated the influence of hydrophilic and hydrophobic amino acid (aa) mutations on retinal transduction as it relates to vector administration route. Through this approach we identified a largely deleterious relationship between hydrophilic aa mutations and canonical HSPG binding by AAV2-based capsids. Conversely, the inclusion of hydrophobic aa substitutions on a HSPG binding deficient capsid (AAV2ΔHS), generated a vector capable of robust rod and cone photoreceptor (PR) transduction. This vector AAV2(4pMut)ΔHS also demonstrates a remarkable ability to spread laterally beyond the initial subretinal injection (SRI) bleb, making it an ideal candidate for the treatment of retinal diseases which require a large area of transduction.

4.
Mol Ther ; 29(2): 464-488, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33309881

RESUMEN

Hereditary diseases are caused by mutations in genes, and more than 7,000 rare diseases affect over 30 million Americans. For more than 30 years, hundreds of researchers have maintained that genetic modifications would provide effective treatments for many inherited human diseases, offering durable and possibly curative clinical benefit with a single treatment. This review is limited to gene therapy using adeno-associated virus (AAV) because the gene delivered by this vector does not integrate into the patient genome and has a low immunogenicity. There are now five treatments approved for commercialization and currently available, i.e., Luxturna, Zolgensma, the two chimeric antigen receptor T cell (CAR-T) therapies (Yescarta and Kymriah), and Strimvelis (the gammaretrovirus approved for adenosine deaminase-severe combined immunodeficiency [ADA-SCID] in Europe). Dozens of other treatments are under clinical trials. The review article presents a broad overview of the field of therapy by in vivo gene transfer. We review gene therapy for neuromuscular disorders (spinal muscular atrophy [SMA]; Duchenne muscular dystrophy [DMD]; X-linked myotubular myopathy [XLMTM]; and diseases of the central nervous system, including Alzheimer's disease, Parkinson's disease, Canavan disease, aromatic l-amino acid decarboxylase [AADC] deficiency, and giant axonal neuropathy), ocular disorders (Leber congenital amaurosis, age-related macular degeneration [AMD], choroideremia, achromatopsia, retinitis pigmentosa, and X-linked retinoschisis), the bleeding disorder hemophilia, and lysosomal storage disorders.


Asunto(s)
Dependovirus/genética , Terapia Genética , Vectores Genéticos/genética , Animales , Estudios Clínicos como Asunto , Terapia Combinada , Expresión Génica , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/terapia , Terapia Genética/efectos adversos , Terapia Genética/métodos , Terapia Genética/tendencias , Vectores Genéticos/administración & dosificación , Humanos , Especificidad de Órganos , Resultado del Tratamiento
5.
Gene Ther ; 28(7-8): 447-455, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33244179

RESUMEN

Mucopolysaccharidosis type IIIB (MPS IIIB) is an autosomal recessive lysosomal disease caused by defective production of the enzyme α-N-acetylglucosaminidase. It is characterized by severe and complex central nervous system degeneration. Effective therapies will likely target early onset disease and overcome the blood-brain barrier. Modifications of adeno-associated viral (AAV) vector capsids that enhance transduction efficiency have been described in the retina. Herein, we describe for the first time, a transduction assessment of two intracranially administered adeno-associated virus serotype 8 variants, in which specific surface-exposed tyrosine (Y) and threonine (T) residues were substituted with phenylalanine (F) and valine (V) residues, respectively. A double-mutant (Y444 + 733F) and a triple-mutant (Y444 + 733F + T494V) AAV8 were evaluated for their efficacy for the potential treatment of MPS IIIB in a neonatal setting. We evaluated biodistribution and transduction profiles of both variants compared to the unmodified parental AAV8, and assessed whether the method of vector administration would modulate their utility. Vectors were administered through four intracranial routes: six sites (IC6), thalamic (T), intracerebroventricular, and ventral tegmental area into neonatal mice. Overall, we conclude that the IC6 method resulted in the widest biodistribution within the brain. Noteworthy, we demonstrate that GFP intensity was significantly more robust with AAV8 (double Y-F + T-V) compared to AAV8 (double Y-F). This provides proof of concept for the enhanced utility of IC6 administration of the capsid modified AAV8 (double Y-F + T-V) as a valid therapeutic approach for the treatment of MPS IIIB, with further implications for other monogenic diseases.


Asunto(s)
Cápside , Mucopolisacaridosis III , Animales , Encéfalo , Dependovirus/genética , Vectores Genéticos/genética , Ratones , Mucopolisacaridosis III/genética , Mucopolisacaridosis III/terapia , Distribución Tisular , Transducción Genética
6.
Mol Ther ; 28(6): 1464-1478, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32304666

RESUMEN

The majority of inherited retinal diseases (IRDs) are caused by mutations in genes expressed in photoreceptors (PRs). The ideal vector to address these conditions is one that transduces PRs in large areas of retina with the smallest volume/lowest titer possible, and efficiently transduces foveal cones, the cells responsible for acute, daylight vision that are often the only remaining area of functional retina in IRDs. The purpose of our study was to evaluate the retinal tropism and potency of a novel capsid, AAV44.9, and rationally designed derivatives thereof. We found that AAV44.9 and AAV44.9(E531D) transduced retinas of subretinally injected (SRI) mice with higher efficiency than did benchmark AAV5- and AAV8-based vectors. In macaques, highly efficient cone and rod transduction was observed following submacular and peripheral SRI. AAV44.9- and AAV44.9(E531D)-mediated GFP fluorescence extended laterally well beyond SRI bleb margins. Notably, extrafoveal injection (i.e., fovea not detached during surgery) led to transduction of up to 98% of foveal cones. AAV44.9(E531D) efficiently transduced parafoveal and perifoveal cones, whereas AAV44.9 did not. AAV44.9(E531D) was also capable of restoring retinal function to a mouse model of IRD. These novel capsids will be useful for addressing IRDs that would benefit from an expansive treatment area.


Asunto(s)
Dependovirus/genética , Técnicas de Transferencia de Gen , Terapia Genética , Vectores Genéticos/genética , Retina/metabolismo , Transducción Genética , Animales , Dependovirus/clasificación , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Expresión Génica , Genes Reporteros , Ingeniería Genética , Vectores Genéticos/administración & dosificación , Inyecciones Intraoculares , Macaca fascicularis , Ratones , Microscopía Confocal , Oftalmoscopía , Regiones Promotoras Genéticas , Células Fotorreceptoras Retinianas Conos/metabolismo , Enfermedades de la Retina/genética , Enfermedades de la Retina/patología , Enfermedades de la Retina/terapia , Células Fotorreceptoras Retinianas Bastones/metabolismo , Transgenes
7.
Chem Senses ; 45(7): 493-502, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32556127

RESUMEN

The chemical senses of taste and smell play a vital role in conveying information about ourselves and our environment. Tastes and smells can warn against danger and also contribute to the daily enjoyment of food, friends and family, and our surroundings. Over 12% of the US population is estimated to experience taste and smell (chemosensory) dysfunction. Yet, despite this high prevalence, long-term, effective treatments for these disorders have been largely elusive. Clinical successes in other sensory systems, including hearing and vision, have led to new hope for developments in the treatment of chemosensory disorders. To accelerate cures, we convened the "Identifying Treatments for Taste and Smell Disorders" conference, bringing together basic and translational sensory scientists, health care professionals, and patients to identify gaps in our current understanding of chemosensory dysfunction and next steps in a broad-based research strategy. Their suggestions for high-yield next steps were focused in 3 areas: increasing awareness and research capacity (e.g., patient advocacy), developing and enhancing clinical measures of taste and smell, and supporting new avenues of research into cellular and therapeutic approaches (e.g., developing human chemosensory cell lines, stem cells, and gene therapy approaches). These long-term strategies led to specific suggestions for immediate research priorities that focus on expanding our understanding of specific responses of chemosensory cells and developing valuable assays to identify and document cell development, regeneration, and function. Addressing these high-priority areas should accelerate the development of novel and effective treatments for taste and smell disorders.


Asunto(s)
Trastornos del Olfato/terapia , Trastornos del Gusto/terapia , Congresos como Asunto , Terapia Genética , Humanos , Trastornos del Olfato/patología , Medicina Regenerativa , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Trasplante de Células Madre , Células Madre/citología , Células Madre/metabolismo , Trastornos del Gusto/patología
8.
Mol Ther ; 26(10): 2407-2417, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30078764

RESUMEN

Retinal degenerations are a large cluster of diseases characterized by the irreversible loss of light-sensitive photoreceptors that impairs the vision of 9.1 million people in the US. An attractive treatment option is to use gene therapy to deliver broad-spectrum neuroprotective factors. However, this approach has had limited clinical translation because of the inability to control transgene expression. To address this problem, we generated an adeno-associated virus vector named RPF2 that was engineered to express domains of leukemia inhibitory factor fused to the destabilization domain of bacterial dihydrofolate reductase. Fusion proteins containing the destabilization domain are degraded in mammalian cells but can be stabilized with the binding of the drug trimethoprim. Our data show that expression levels of RPF2 are tightly regulated by the dose of trimethoprim and can be reversed by trimethoprim withdrawal. We further show that stabilized RPF2 can protect photoreceptors and prevent blindness in treated mice.


Asunto(s)
Terapia Genética , Factor Inhibidor de Leucemia/genética , Degeneración Retiniana/terapia , Animales , Dependovirus/genética , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Factor Inhibidor de Leucemia/administración & dosificación , Ratones , Neuroprotección/genética , Células Fotorreceptoras/efectos de los fármacos , Células Fotorreceptoras/patología , Retina/efectos de los fármacos , Retina/patología , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Tetrahidrofolato Deshidrogenasa/genética , Transgenes/efectos de los fármacos , Trimetoprim/administración & dosificación
10.
Mol Ther ; 25(8): 1866-1880, 2017 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-28566226

RESUMEN

X-linked retinitis pigmentosa (XLRP) caused by mutations in the RPGR gene is an early onset and severe cause of blindness. Successful proof-of-concept studies in a canine model have recently shown that development of a corrective gene therapy for RPGR-XLRP may now be an attainable goal. In preparation for a future clinical trial, we have here optimized the therapeutic AAV vector construct by showing that GRK1 (rather than IRBP) is a more efficient promoter for targeting gene expression to both rods and cones in non-human primates. Two transgenes were used in RPGR mutant (XLPRA2) dogs under the control of the GRK1 promoter. First was the previously developed stabilized human RPGR (hRPGRstb). Second was a new full-length stabilized and codon-optimized human RPGR (hRPGRco). Long-term (>2 years) studies with an AAV2/5 vector carrying hRPGRstb under control of the GRK1 promoter showed rescue of rods and cones from degeneration and retention of vision. Shorter term (3 months) studies demonstrated comparable preservation of photoreceptors in canine eyes treated with an AAV2/5 vector carrying either transgene under the control of the GRK1 promoter. These results provide the critical molecular components (GRK1 promoter, hRPGRco transgene) to now construct a therapeutic viral vector optimized for RPGR-XLRP patients.


Asunto(s)
Proteínas Portadoras/genética , Proteínas del Ojo/genética , Genes Ligados a X , Terapia Genética , Mutación , Retina/metabolismo , Retinitis Pigmentosa/genética , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Perros , Quinasa 1 del Receptor Acoplado a Proteína-G/genética , Expresión Génica , Orden Génico , Genes Reporteros , Vectores Genéticos/genética , Humanos , Fenotipo , Células Fotorreceptoras de Vertebrados/metabolismo , Primates , Regiones Promotoras Genéticas , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/terapia , Transducción Genética , Transgenes , Pruebas de Visión
11.
Hum Mol Genet ; 24(21): 6229-39, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26310623

RESUMEN

Adeno-associated virus (AAV) effectively targets therapeutic genes to photoreceptors, pigment epithelia, Müller glia and ganglion cells of the retina. To date, no one has shown the ability to correct, with gene replacement, an inherent defect in bipolar cells (BCs), the excitatory interneurons of the retina. Targeting BCs with gene replacement has been difficult primarily due to the relative inaccessibility of BCs to standard AAV vectors. This approach would be useful for restoration of vision in patients with complete congenital stationary night blindness (CSNB1), where signaling through the ON BCs is eliminated due to mutations in their G-protein-coupled cascade genes. For example, the majority of CSNB1 patients carry a mutation in nyctalopin (NYX), which encodes a protein essential for proper localization of the TRPM1 cation channel required for ON BC light-evoked depolarization. As a group, CSNB1 patients have a normal electroretinogram (ERG) a-wave, indicative of photoreceptor function, but lack a b-wave due to defects in ON BC signaling. Despite retinal dysfunction, the retinas of CSNB1 patients do not degenerate. The Nyx(nob) mouse model of CSNB1 faithfully mimics this phenotype. Here, we show that intravitreally injected, rationally designed AAV2(quadY-F+T-V) containing a novel 'Ple155' promoter drives either GFP or YFP_Nyx in postnatal Nyx(nob) mice. In treated Nyx(nob) retina, robust and targeted Nyx transgene expression in ON BCs partially restored the ERG b-wave and, at the cellular level, signaling in ON BCs. Our results support the potential for gene delivery to BCs and gene replacement therapy in human CSNB1.


Asunto(s)
Dependovirus/genética , Enfermedades Hereditarias del Ojo/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Vectores Genéticos , Miopía/genética , Ceguera Nocturna/genética , Proteoglicanos/genética , Células Bipolares de la Retina/metabolismo , Animales , Modelos Animales de Enfermedad , Enfermedades Hereditarias del Ojo/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Humanos , Inyecciones Intravítreas , Ratones , Ratones Endogámicos C57BL , Mutación , Miopía/metabolismo , Ceguera Nocturna/metabolismo , Regiones Promotoras Genéticas , Retina/metabolismo , Transfección , Transgenes , Visión Ocular
12.
J Virol ; 90(8): 4215-4231, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26865709

RESUMEN

UNLABELLED: Adeno-associated viruses (AAVs) currently are being developed to efficiently transduce the retina following noninvasive, intravitreal (Ivt) injection. However, a major barrier encountered by intravitreally delivered AAVs is the inner limiting membrane (ILM), a basement membrane rich in heparan sulfate (HS) proteoglycan. The goal of this study was to determine the impact of HS binding on retinal transduction by Ivt-delivered AAVs. The heparin affinities of AAV2-based tyrosine-to-phenylalanine (Y-F) and threonine-to-valine (T-V) capsid mutants, designed to avoid proteasomal degradation during cellular trafficking, were established. In addition, the impact of grafting HS binding residues onto AAV1, AAV5, and AAV8(Y733F) as well as ablation of HS binding by AAV2-based vectors on retinal transduction was investigated. Finally, the potential relationship between thermal stability of AAV2-based capsids and Ivt-mediated transduction was explored. The results show that the Y-F and T-V AAV2 capsid mutants bind heparin but with slightly reduced affinity relative to that of AAV2. The grafting of HS binding increased Ivt transduction by AAV1 but not by AAV5 or AAV8(Y733F). The substitution of any canonical HS binding residues ablated Ivt-mediated transduction by AAV2-based vectors. However, these same HS variant vectors displayed efficient retinal transduction when delivered subretinally. Notably, a variant devoid of canonical HS binding residues, AAV2(4pMut)ΔHS, was remarkably efficient at transducing photoreceptors. The disparate AAV phenotypes indicate that HS binding, while critical for AAV2-based vectors, is not the sole determinant for transduction via the Ivt route. Finally, Y-F and T-V mutations alter capsid stability, with a potential relationship existing between stability and improvements in retinal transduction by Ivt injection. IMPORTANCE: AAV has emerged as the vector of choice for gene delivery to the retina, with attention focused on developing vectors that can mediate transduction following noninvasive, intravitreal injection. HS binding has been postulated to play a role in intravitreally mediated transduction of retina. Our evaluation of the HS binding of AAV2-based variants and other AAV serotype vectors and the correlation of this property with transduction points to HS affinity as a factor controlling retinal transduction following Ivt delivery. However, HS binding is not the only requirement for improved Ivt-mediated transduction. We show that AAV2-based vectors lacking heparin binding transduce retina by subretinal injection and display a remarkable ability to transduce photoreceptors, indicating that other receptors are involved in this phenotype.


Asunto(s)
Dependovirus/fisiología , Vectores Genéticos , Heparitina Sulfato/farmacología , Retina/metabolismo , Transducción Genética , Animales , Cápside/metabolismo , Dependovirus/efectos de los fármacos , Dependovirus/genética , Vectores Genéticos/efectos de los fármacos , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Inyecciones Intraoculares , Inyecciones Intravenosas , Hígado/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mutación , Células Fotorreceptoras de Vertebrados/metabolismo , Virus Reordenados/efectos de los fármacos , Virus Reordenados/genética , Virus Reordenados/fisiología , Cuerpo Vítreo/metabolismo
13.
Mol Vis ; 22: 1342-1351, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27881908

RESUMEN

PURPOSE: To test, in living photoreceptors, two mutations, S248W and R1091x, in the GUCY2D gene linked to Leber congenital amaurosis 1 (LCA1) that fail to inactivate the catalytic activity of a heterologously expressed retinal membrane guanylyl cyclase 1 (RetGC1). METHODS: GUC2YD cDNA constructs coding for wild-type human (hWT), R1091x, and S248W GUCY2D under the control of the human rhodopsin kinase promoter were expressed in Gucy2e-/-Gucy2f-/- knockout (GCdKO) mouse retinas, which lack endogenous RetGC activity. The constructs were delivered via subretinally injected adenoassociated virus (AAV) vector in one eye, leaving the opposite eye as the non-injected negative control. After testing with electroretinography (ERG), the retinas extracted from the AAV-treated and control eyes were used in guanylyl cyclase activity assays, immunoblotting, and anti-RetGC1 immunofluorescence staining. RESULTS: Cyclase activity in retinas treated with either hWT or R1091x GUCY2D transgenes was similar but was undetectable in the S248W GUCY2D-treated retinas, which starkly contrasts their relative activities when heterologously expressed in human embryonic kidney (HEK293) cells. Rod and cone ERGs, absent in GCdKO, appeared in the hWT and R1091x GUCY2D-injected eyes, while the S248W mutant failed to restore scotopic ERG response and enabled only rudimentary photopic ERG response. The hWT and R1091x GUCY2D immunofluorescence was robust in the rod and cone outer segments, whereas the S248W was detectable only in the sparse cone outer segments and sporadic photoreceptor cell bodies. Robust RetGC1 expression was detected with immunoblotting in the hWT and R1091x-treated retinas but was marginal at best in the S248W GUCY2D retinas, despite the confirmed presence of the S248W GUCY2D transcripts. CONCLUSIONS: The phenotype of S248W GUCY2D in living retinas did not correlate with the previously described normal biochemical activity of this mutant when heterologously expressed in non-photoreceptor cell culture. This result suggests that the S248W mutation contributes to LCA1 by hampering the expression, processing, and/or cellular transport of GUCY2D, rather than its enzymatic properties. In contrast, the effective restoration of rod and cone function by R1091x GUCY2D is paradoxical and does not explain the severe loss of vision typical for LCA1 associated with that mutant allele.


Asunto(s)
Dependovirus/metabolismo , Vectores Genéticos/metabolismo , Guanilato Ciclasa/genética , Mutación/genética , Receptores de Superficie Celular/genética , Retina/metabolismo , Animales , Electrorretinografía , Proteínas del Ojo/metabolismo , Células HEK293 , Humanos , Amaurosis Congénita de Leber/genética , Ratones , Ratones Noqueados
14.
Mol Ther ; 23(3): 488-500, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25592336

RESUMEN

Recombinant adeno-associated virus (AAV) vectors are one of the most widely used gene transfer systems in research and clinical trials. AAV can transduce a wide range of biological tissues, however to date, there has been no investigation on targeted AAV transduction of the enteric nervous system (ENS). Here, we examined the efficiency, tropism, spread, and immunogenicity of AAV transduction in the ENS. Rats received direct injections of various AAV serotypes expressing green fluorescent protein (GFP) into the descending colon. AAV serotypes tested included; AAV 1, 2, 5, 6, 8, or 9 and the AAV2 and AAV8 capsid mutants, AAV2-Y444F, AAV2-tripleY-F, AAV2-tripleY-F+T-V, AAV8-Y733F, and AAV8-doubeY-F+T-V. Transduction, as determined by GFP-positive cells, occurred in neurons and enteric glia within the myenteric and submucosal plexuses of the ENS. AAV6 and AAV9 showed the highest levels of transduction within the ENS. Transduction efficiency scaled with titer and time, was translated to the murine ENS, and produced no vector-related immune response. A single injection of AAV into the colon covered an area of ~47 mm(2). AAV9 primarily transduced neurons, while AAV6 transduced enteric glia and neurons. This is the first report on targeted AAV transduction of neurons and glia in the ENS.


Asunto(s)
Colon Descendente/citología , Dependovirus/genética , Sistema Nervioso Entérico/citología , Neuroglía/citología , Neuronas/citología , Transducción Genética/métodos , Animales , Cápside/química , Cápside/metabolismo , Colon Descendente/inervación , Dependovirus/clasificación , Expresión Génica , Genes Reporteros , Vectores Genéticos/uso terapéutico , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Ratas , Ratas Sprague-Dawley , Serogrupo , Reparación del Gen Blanco/métodos , Tropismo Viral/genética
15.
Mol Ther ; 23(5): 875-884, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25698151

RESUMEN

Inflammation is a key component of chronic and acute diseases of the eye. Our goal is to test anti-inflammatory genes delivered by an adeno-associated virus (AAV) vector as potential treatments for retinal inflammation. We developed a secretable and cell penetrating form of the caspase activation and recruitment domain (CARD) from the apoptosis-associated speck-like protein containing a CARD (ASC) gene that binds caspase-1 and inhibits its activation by the inflammasome. The secretion and cell penetration characteristics of this construct were validated in vitro by measuring its effects on inflammasome signaling in a monocyte cell line and in an retinal pigmented epithelium (RPE) cell line. This vector was then packaged as AAV particles and tested in the endotoxin-induced uveitis mouse model. Gene expression was monitored one month after vector injection by fluorescence fundoscopy. Ocular inflammation was then induced by injecting lipopolysaccharide into the vitreous and was followed by enucleation 24 hours later. Eyes injected with the secretable and cell penetrating CARD AAV vector had both a significantly lower concentration of IL-1ß as well as a 64% reduction in infiltrating cells detected in histological sections. These results suggest that anti-inflammatory genes such as the CARD could be used to treat recurring inflammatory diseases like uveitis or chronic subacute inflammations of the eye.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Terapia Genética , Inflamación/genética , Dominios y Motivos de Interacción de Proteínas/genética , Animales , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Adaptadoras de Señalización CARD , Caspasa 1/metabolismo , Línea Celular , Péptidos de Penetración Celular/genética , Péptidos de Penetración Celular/metabolismo , Dependovirus/genética , Modelos Animales de Enfermedad , Endotoxinas/efectos adversos , Expresión Génica , Orden Génico , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Humanos , Inflamación/metabolismo , Inflamación/patología , Inflamación/terapia , Interleucina-1beta/antagonistas & inhibidores , Interleucina-1beta/metabolismo , Lentivirus/genética , Ratones , Reproducibilidad de los Resultados , Retina/metabolismo , Transducción Genética , Transgenes , Uveítis/inducido químicamente , Uveítis/genética , Uveítis/metabolismo , Uveítis/patología , Uveítis/terapia
16.
Adv Exp Med Biol ; 854: 253-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26427419

RESUMEN

GUCY2D encodes retinal guanylate cylase-1 (retGC1), a protein that plays a pivotal role in the recovery phase of phototransduction. Mutations in GUCY2D are associated with a leading cause of recessive Leber congenital amaurosis (LCA1). Patients present within the first year of life with aberrant or unrecordable electroretinogram (ERG), nystagmus and a relatively normal fundus. Aside from abnormalities in the outer segments of foveal cones and, in some patients, foveal cone loss, LCA1 patients retain normal retinal laminar architecture suggesting they may be good candidates for gene replacement therapy. Several animal models of LCA1, both naturally occurring and engineered, have been characterized and provide valuable tools for translational studies. This mini-review will summarize the phenotypes of these models and describe how each has been instrumental in proof of concept studies to develop a gene replacement therapy for GUCY2D-LCA1.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Guanilato Ciclasa/genética , Amaurosis Congénita de Leber/genética , Mutación , Receptores de Superficie Celular/genética , Animales , Modelos Animales de Enfermedad , Terapia Genética/métodos , Humanos , Amaurosis Congénita de Leber/patología , Amaurosis Congénita de Leber/terapia , Segmento Externo de la Célula en Bastón/metabolismo , Segmento Externo de la Célula en Bastón/patología
17.
Proc Natl Acad Sci U S A ; 109(20): E1238-47, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22523243

RESUMEN

To introduce DNA into mitochondria efficiently, we fused adenoassociated virus capsid VP2 with a mitochondrial targeting sequence to carry the mitochondrial gene encoding the human NADH ubiquinone oxidoreductase subunit 4 (ND4). Expression of WT ND4 in cells with the G11778A mutation in ND4 led to restoration of defective ATP synthesis. Furthermore, with injection into the rodent eye, human ND4 DNA levels in mitochondria reached 80% of its mouse homolog. The construct expressed in most inner retinal neurons, and it also suppressed visual loss and optic atrophy induced by a mutant ND4 homolog. The adenoassociated virus cassette accommodates genes of up to ∼5 kb in length, thus providing a platform for introduction of almost any mitochondrial gene and perhaps even allowing insertion of DNA encompassing large deletions of mtDNA, some associated with aging, into the organelle of adults.


Asunto(s)
Técnicas de Transferencia de Gen , Terapia Genética/métodos , Mitocondrias/genética , NADH Deshidrogenasa/genética , Atrofia Óptica Hereditaria de Leber/terapia , Retina/metabolismo , Animales , Proteínas de la Cápside/metabolismo , Dependovirus/metabolismo , Humanos , Immunoblotting , Ratones , Mitocondrias/metabolismo , Oligonucleótidos/genética , Atrofia Óptica Hereditaria de Leber/genética , Plásmidos/genética , Mutación Puntual/genética , Transfección
18.
Mol Ther ; 21(3): 509-19, 2013 03.
Artículo en Inglés | MEDLINE | ID: mdl-23358189

RESUMEN

Blindness, although not life threatening, is a debilitating disorder for which few, if any treatments exist. Ocular gene therapies have the potential to profoundly improve the quality of life in patients with inherited retinal disease. As such, tremendous focus has been given to develop such therapies. Several factors make the eye an ideal organ for gene-replacement therapy including its accessibility, immune privilege, small size, compartmentalization, and the existence of a contralateral control. This review will provide a comprehensive summary of (i) existing gene therapy clinical trials for several genetic forms of blindness and (ii) preclinical efficacy and safety studies in a variety of animal models of retinal disease which demonstrate strong potential for clinical application. To be as comprehensive as possible, we include additional proof of concept studies using gene replacement, neurotrophic/neuroprotective, optogenetic, antiangiogenic, or antioxidative stress strategies as well as a description of the current challenges and future directions in the ocular gene therapy field to this review as a supplement.


Asunto(s)
Terapia Genética/métodos , Retina/patología , Enfermedades de la Retina/genética , Enfermedades de la Retina/terapia , Transportadoras de Casetes de Unión a ATP/genética , Animales , Ensayos Clínicos como Asunto , Dependovirus , Modelos Animales de Enfermedad , Técnicas de Transferencia de Gen , Vectores Genéticos , Guanilato Ciclasa/genética , Humanos , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Receptores de Superficie Celular/genética , Tirosina Quinasa c-Mer , cis-trans-Isomerasas/genética
19.
Adv Exp Med Biol ; 801: 695-701, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24664760

RESUMEN

Achromatopsia (ACHM) is caused by a progressive loss of cone photoreceptors leading to color blindness and poor visual acuity. Animal studies and human clinical trials have shown that gene replacement therapy with adeno-associate virus (AAV) is a viable treatment option for this disease. Although there have been successful attempts to optimize capsid proteins for increased specificity, it is simpler to restrict expression via the use of cell type-specific promoters. To target cone photoreceptors, a chimeric promoter consisting of an enhancer element of interphotoreceptor retinoid-binding protein promoter and a minimal sequence of the human transducin alpha-subunit promoter (IRBPe/GNAT2) was created. Additionally, a synthetic transducin alpha-subunit promoter (synGNAT2/GNAT2) containing conserved sequence blocks located downstream of the transcriptional start was created. The strength and specificity of these promoters were evaluated in murine retina by immunohistochemistry. The results showed that the chimeric, (IRBPe/GNAT2) promoter is more efficient and specific than the synthetic, synGNAT2/GNAT2 promoter. Additionally, IRBPe/GNAT2-mediated expression was found in all cone subtypes and it was improved over existing promoters currently used for gene therapy of achromatopsia.


Asunto(s)
Defectos de la Visión Cromática/genética , Defectos de la Visión Cromática/terapia , Terapia Genética/métodos , Regiones Promotoras Genéticas/genética , Células Fotorreceptoras Retinianas Conos/fisiología , Transducina/genética , Animales , Defectos de la Visión Cromática/patología , Dependovirus/genética , Perros , Proteínas del Ojo/genética , Regulación de la Expresión Génica , Humanos , Ratones , Ratas , Proteínas Recombinantes de Fusión/genética , Células Fotorreceptoras Retinianas Conos/patología , Proteínas de Unión al Retinol/genética
20.
Proc Natl Acad Sci U S A ; 108(45): 18476-81, 2011 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-22042849

RESUMEN

RNA interference (RNAi) gene silencing is a potential therapeutic strategy for dominant retinal degeneration disorders. We used self-complementary (sc) AAV2/8 vector to develop an RNAi-based gene therapy in a dominant retinal degeneration mouse model expressing bovine GCAP1(Y99C). We established an in vitro shRNA screening assay based on EGFP-tagged bovine GCAP1, and identified a shRNA that effectively silenced the bovine GCAP1 transgene with ∼80% efficiency. Subretinal injection of scAAV2/8 carrying shRNA expression cassette showed robust expression as early as 1 wk after injection. The gene silencing significantly improved photoreceptor survival, delayed disease onset, and increased visual function. Our results provide a promising strategy toward effective RNAi-based gene therapy by scAAV2/8 delivery for dominant retinal diseases.


Asunto(s)
Modelos Animales de Enfermedad , Genes Dominantes , Terapia Genética , Interferencia de ARN , Retinitis Pigmentosa/terapia , Animales , Bovinos , Línea Celular , Proteínas Activadoras de la Guanilato-Ciclasa/genética , Humanos , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Reacción en Cadena en Tiempo Real de la Polimerasa , Retinitis Pigmentosa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA