Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Radiology ; 310(1): e231984, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38226877

RESUMEN

Background The presence of gadolinium traces in the skin after administration of gadolinium-based contrast agents (GBCAs) raised safety concerns regarding a potential association with small fiber neuropathy (SFN). Purpose To investigate signs of SFN in rat foot pads by quantification of the intraepidermal nerve fiber density (IENFD) after multiple GBCA administrations and to evaluate gadolinium concentration, chemical species, and clearance. Materials and Methods Fifty rats received eight intravenous injections of either gadodiamide, gadobutrol, gadoterate, gadoteridol (8 × 0.6 mmol per kilogram of body weight), or saline (1.2 mL per kilogram of body weight), within 2 weeks and were sacrificed 5 days or 5 weeks after the last injection. IENFD was determined with protein gene product (PGP) 9.5 immunofluorescent staining and blinded and automated image analysis. The gadolinium and GBCA concentrations were measured with inductively coupled plasma mass spectrometry (ICP-MS), laser ablation ICP-MS, and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI). P values were calculated using linear contrasts of model analysis. Results The IENFD (measured as geometric mean [SD] and in number of nerve fibers per millimeter of epidermis) was not significantly altered after 5 days (saline, 8.4 [1.1]; gadobutrol, 9.7 [1.2]; gadoterate, 9.2 [1.2]; gadoteridol, 9.9 [1.3]; gadodiamide, 10.5 [1.2]) or 5 weeks (saline, 19.7 [1.4]; gadobutrol, 16.4 [1.6]; gadoterate, 14.3 [1.6]; gadoteridol, 22.2 [1.8]; gadodiamide, 17.9 [1.4]). Gadolinium skin concentrations were highest for gadodiamide after 5 days (16.0 nmol/g [1.1]) and 5 weeks (10.6 nmol/g [1.2], -33%). Macrocyclic agents were lower at 5 days (gadoteridol, 2.6 nmol/g [1.2]; gadobutrol, 2.7 nmol/g [1.1]; and gadoterate, 2.3 nmol/g [1.2]) and efficiently cleared after 5 weeks (gadoteridol, -95%; gadobutrol and gadoterate, -96%). The distribution of gadolinium and IENF did not visually overlap. For macrocyclic agents, gadolinium was found in sweat glands and confirmed to be intact chelate. Conclusion There were no signs of SFN in rat foot pads using multiple dosing regimens at two time points after administration of GBCAs. Macrocyclic GBCAs exhibited lower levels of gadolinium in the skin and were effectively eliminated within 5 weeks compared with linear gadodiamide, and intact macrocyclic GBCA was detected in sweat glands. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Clement in this issue.


Asunto(s)
Gadolinio DTPA , Gadolinio , Compuestos Heterocíclicos , Compuestos Organometálicos , Neuropatía de Fibras Pequeñas , Animales , Ratas , Medios de Contraste , Peso Corporal
2.
Radiology ; 290(2): 340-348, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30422091

RESUMEN

Purpose To investigate the long-term course of MRI signal intensity (SI) changes and the presence of gadolinium in the rat brain during a 1-year period after multiple administrations of gadolinium-based contrast agents (GBCAs). Materials and Methods Rats received a linear GBCA (gadodiamide, gadopentetate dimeglumine, gadobenate dimeglumine), a macrocyclic GBCA (gadobutrol, gadoterate meglumine, gadoteridol), or saline. Animals received eight injections over 2 weeks (1.8 mmol/kg per injection). Brain MRI and gadolinium measurements were performed with inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS 5, 26, and 52 weeks after administration. Results Animals that received linear GBCAs showed higher deep cerebellar nuclei (DCN)-to-brainstem SI ratios compared with the saline group (P < .001 at all time points). After 1 year, mean gadolinium concentrations in the cerebellum were 3.38 nmol/g (gadodiamide), 2.13 nmol/g (gadopentetate dimeglumine), and 1.91 nmol/g (gadobenate dimeglumine). For linear agents, laser ablation ICP-MS revealed gadolinium depositions in the cerebellar nuclei. For macrocyclic GBCAs, the DCN-to-brainstem SI ratios did not significantly differ from those in the saline group (P > .42) and the cerebellar gadolinium concentrations decreased between weeks 5 and 52, reaching 0.08 nmol/g (gadobutrol), 0.04 nmol/g (gadoterate meglumine), and 0.07 nmol/g (gadoteridol). The respective laser ablation ICP-MS analysis showed no gadolinium depositions. Conclusion Increased signal intensity in the deep cerebellar nuclei of rats persists for at least 1 year after administration of linear gadolinium-based contrast agents (GBCAs), in line with persistent brain gadolinium concentrations with no elimination after the initial 5-week period. The animals that received macrocyclic GBCAs showed an ongoing elimination of gadolinium from the brain during the entire observation period. © RSNA, 2018.


Asunto(s)
Núcleos Cerebelosos , Medios de Contraste/farmacocinética , Gadolinio DTPA/farmacocinética , Gadolinio/farmacocinética , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Química Encefálica/efectos de los fármacos , Tronco Encefálico/química , Tronco Encefálico/metabolismo , Núcleos Cerebelosos/química , Núcleos Cerebelosos/metabolismo , Imagen por Resonancia Magnética , Masculino , Espectrometría de Masas , Ratas
3.
Neuroradiology ; 61(11): 1273-1280, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31297571

RESUMEN

PURPOSE: To investigate the impact of blood-brain barrier (BBB) alterations induced by an experimental tumor and radiotherapy on MRI signal intensity (SI) in deep cerebellar nuclei (DCN) and the presence of gadolinium after repeated administration of a linear gadolinium-based contrast agent in rats. METHODS: Eighteen Fischer rats were divided into a tumor (gliosarcoma, GS9L model), a radiotherapy, and a control group. All animals received 5 daily injections (1.8 mmol/kg) of gadopentetate dimeglumine. For tumor-bearing animals, the BBB disruption was confirmed by contrast-enhanced MRI. Animals from the tumor and radiation group underwent radiotherapy in 6 fractions of 5 Gray. The SI ratio between DCN and brain stem was evaluated on T1-weigthed MRI at baseline and 1 week after the last administration. Subsequently, the brain was dissected for gadolinium quantification by inductively coupled plasma-mass spectrometry. Statistical analysis was done with the Kruskal-Wallis test. RESULTS: An increased but similar DCN/brain stem SI ratio was found for all three groups (p = 0.14). The gadolinium tissue concentrations (median, nmol/g) were 6.7 (tumor), 6.3 (radiotherapy), and 6.8 (control) in the cerebellum (p = 0.64) and 17.8/14.6 (tumor), 20.0/18.9 (radiotherapy), and 17.8/15.9 (control) for the primary tumor (p = 0.98) and the contralateral hemisphere (p = 0.41) of the cerebrum, respectively. CONCLUSION: An experimental brain tumor treated by radiotherapy or radiotherapy alone did not alter DCN signal hyperintensity and gadolinium concentration in the rat brain 1 week after repeated administration of gadopentetate. This suggests that a local BBB disruption does not affect the amount of retained gadolinium in the brain.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/efectos de la radiación , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Medios de Contraste/farmacocinética , Gadolinio DTPA/farmacocinética , Imagen por Resonancia Magnética/métodos , Animales , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/radioterapia , Ratas , Ratas Endogámicas F344
4.
Invest Radiol ; 59(2): 150-164, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38157437

RESUMEN

OBJECTIVES: After the administration of gadolinium-based contrast agents (GBCAs), residual gadolinium (Gd) has been detected in a few distinct morphological structures of the central nervous system (CNS). However, a systematic, comprehensive, and quantitative analysis of the spatial Gd distribution in the entire brain is not yet available. The first aim of this study is to provide this analysis in healthy rats after administration of high GBCA doses. The second aim is to assess the spatial distributions and possible Gd colocalizations of endogenous iron (Fe), manganese (Mn), and phosphorus (P). In addition, the presence of Gd in proximity to blood vessels was assessed by immunohistochemistry. MATERIALS AND METHODS: Male rats were randomly assigned to 3 groups (n = 3/group): saline (control), gadodiamide (linear GBCA), and gadobutrol (macrocyclic GBCA) with cumulative Gd doses of 14.4 mmol/kg of body mass. Five weeks after the last administration, the brains were collected and cryosectioned. The spatial distributions of Gd, Fe, Mn, and P were analyzed in a total of 130 sections, each covering the brain in 1 of the 3 perpendicular anatomical orientations, using laser ablation coupled with inductively coupled plasma mass spectrometry. Quantitative spatial element maps were generated, and the concentrations of Gd, Fe, and Mn were measured in 31 regions of interest covering various distinct CNS structures. Correlation analyses were performed to test for possible colocalization of Gd, Fe, and Mn. The spatial proximity of Gd and blood vessels was studied using metal-tagged antibodies against von Willebrand factor with laser ablation coupled with inductively coupled plasma mass spectrometry. RESULTS: After administration of linear gadodiamide, high Gd concentrations were measured in many distinct structures of the gray matter. This involved structures previously reported to retain Gd after linear GBCA, such as the deep cerebellar nuclei or the globus pallidus, but also structures that had not been reported so far including the dorsal subiculum, the retrosplenial cortex, the superior olivary complex, and the inferior colliculus. The analysis in all 3 orientations allowed the localization of Gd in specific subregions and layers of certain structures, such as the hippocampus and the primary somatosensory cortex. After macrocyclic gadobutrol, the Gd tissue concentration was significantly lower than after gadodiamide. Correlation analyses of region of interest concentrations of Gd, Fe, and Mn revealed no significant colocalization of Gd with endogenous Fe or Mn in rats exposed to either GBCA. Immunohistochemistry revealed a colocalization of Gd traces with vascular endothelium in the deep cerebellar nuclei after gadobutrol, whereas the majority of Gd was found outside the vasculature after gadodiamide. CONCLUSIONS: In rats exposed to gadodiamide but not in rats exposed to gadobutrol, high Gd concentrations were measured in various distinct CNS structures, and structures not previously reported were identified to contain Gd, including specific subregions and layers with different cytoarchitecture and function. Knowledge of these distinct spatial patterns may pave the way for tailored functional neurological testing. Signs for the localization of the remaining Gd in the vascular endothelium were prominent for gadobutrol but not gadodiamide. The results also indicate that local transmetalation with endogenous Fe or Mn is unlikely to explain the spatial patterns of Gd deposition in the brain, which argues against a general role of these metals in local transmetalation and release of Gd ions in the CNS.


Asunto(s)
Gadolinio , Compuestos Organometálicos , Ratas , Masculino , Animales , Manganeso , Hierro , Fósforo , Gadolinio DTPA , Medios de Contraste , Encéfalo/diagnóstico por imagen
6.
Invest Radiol ; 57(7): 453-462, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35125411

RESUMEN

OBJECTIVES: The aim of the study was to investigate the possible influence of changes in the brain caused by age on relaxometric and relaxation time-weighted magnetic resonance imaging (MRI) parameters in the deep cerebellar nuclei (DCN) and the globus pallidus (GP) of Gd-exposed and control rats over the course of 1 year. MATERIALS AND METHODS: Twenty-five Wistar-Han rats were equally subdivided into 5 groups and initially received 8 injections on 4 consecutive days per week of either 3.6 mL/kg body weight saline (group I-III) or 1.8 mmol Gd/kg body weight gadobutrol (group IV) or gadodiamide (group V). T1- and T2-weighted scans, as well as relaxation maps, were acquired at 1 week (all groups); 5, 12, 20, and 26 weeks (saline II, gadobutrol, gadodiamide); and at 35, 44, and 52 weeks (saline III, gadobutrol, gadodiamide) after the last administration. Saline I was euthanized after 1 week, saline II after 26 weeks, and the remaining groups after 52 weeks. Signal intensities (SIs) were evaluated for the DCN/pons (P) and the GP/piriform cortex (PC) ratios, and relaxation times for the DCN and the GP. Brain tissue was extracted, and the gadolinium, iron, and manganese contents were quantified with inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation-ICP-MS imaging. RESULTS: T1-weighted SI ratios did not show any significant trend with age in any region. The between-group analysis at 52 weeks resulted in a significant difference for the DCN/P and GP/PC region ratio between gadodiamide and its comparators. T1 relaxation times dropped with increasing age in the GP with a 10% to 20% difference between first and last measurement for all groups, and in the DCN <10% with a significant decrease for the gadodiamide group only (DCN: P = 0.0158). Group-related differences were observed at the last measurement time point for T1 values between gadodiamide and saline III in the DCN (P = 0.0153) and gadodiamide and gadobutrol in the GP (P = 0.0287). Analysis of the SI ratios of the T2-weighted images revealed a significant increase for the DCN/P and a decrease for the GP/PC with increasing age for all groups and no differences at 52 weeks after the last injection between groups. T2 values of the GP showed a significant linear decrease over time for all groups (saline I-III: P = 0.0101; gadobutrol: P = 0.0001; gadodiamide: P = 0.0142) in the aging rat brain. Quantitative imaging of manganese and iron by laser ablation-ICP-MS showed a linear increase for the saline groups in the GP for both metals (Fe: P < 0.0001; Mn: P = 0.0306) and in the DCN for manganese only (P = 0.0187), but no differences between groups at 52 weeks. CONCLUSIONS: Extensive MRI evaluation did not reveal an indication of SI or relaxation time changes associated with multiple exposure to the macrocyclic-chelated GBCA gadobutrol in the DCN and the GP. With increasing age, a T1 and T2 shortening in the GP and an increase in T2-weighted SI ratio in the DCN/P, as well as a decrease in the GP/PC, were observed for all groups. Such age-related changes can potentially bias MRI results as an indicator for gadolinium presence in the brain.


Asunto(s)
Medios de Contraste , Compuestos Organometálicos , Envejecimiento , Animales , Peso Corporal , Encéfalo/diagnóstico por imagen , Núcleos Cerebelosos/diagnóstico por imagen , Gadolinio , Gadolinio DTPA , Hierro , Imagen por Resonancia Magnética/métodos , Manganeso , Ratas , Ratas Wistar , Estudios Retrospectivos
7.
J Neurosci ; 30(40): 13441-53, 2010 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-20926670

RESUMEN

Rab GTPases are molecular switches that orchestrate protein complexes before membrane fusion reactions. In synapses, Rab3 and Rab5 proteins have been implicated in the exo-endocytic cycling of synaptic vesicles (SVs), but an involvement of additional Rabs cannot be excluded. Here, combining high-resolution mass spectrometry and chemical labeling (iTRAQ) together with quantitative immunoblotting and fluorescence microscopy, we have determined the exocytotic (Rab3a, Rab3b, Rab3c, and Rab27b) and endocytic (Rab4b, Rab5a/b, Rab10, Rab11b, and Rab14) Rab machinery of SVs. Analysis of two closely related proteins, Rab3a and Rab27b, revealed colocalization in synaptic nerve terminals, where they reside on distinct but overlapping SV pools. Moreover, whereas Rab3a readily dissociates from SVs during Ca(2+)-triggered exocytosis, and is susceptible to membrane extraction by Rab-GDI, Rab27b persists on SV membranes upon stimulation and is resistant to GDI-coupled Rab retrieval. Finally, we demonstrate that selective modulation of the GTP/GDP switch mechanism of Rab27b impairs SV recycling, suggesting that Rab27b, probably in concert with Rab3s, is involved in SV exocytosis.


Asunto(s)
Calcio/fisiología , Exocitosis/fisiología , Genes Sobrepuestos , Terminales Presinápticos/metabolismo , Vesículas Sinápticas/fisiología , Proteínas de Unión al GTP rab/fisiología , Proteína de Unión al GTP rab3A/fisiología , Animales , Señalización del Calcio/genética , Señalización del Calcio/fisiología , Células Cultivadas , Exocitosis/genética , Guanosina Difosfato/genética , Guanosina Difosfato/fisiología , Guanosina Trifosfato/genética , Guanosina Trifosfato/fisiología , Hipocampo/metabolismo , Proteoma/genética , Proteoma/fisiología , Ratas , Fracciones Subcelulares/metabolismo , Vesículas Sinápticas/genética , Proteínas de Unión al GTP rab/genética , Proteína de Unión al GTP rab3A/genética
8.
Sci Rep ; 10(1): 22385, 2020 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-33372182

RESUMEN

Gadolinium based contrast agents (GBCAs) are widely used in clinical MRI since the mid-1980s. Recently, concerns have been raised that trace amounts of Gadolinium (Gd), detected in brains even long time after GBCA application, may cause yet unrecognized clinical consequences. We therefore assessed the behavioral phenotype, neuro-histopathology, and Gd localization after repeated administration of linear (gadodiamide) or macrocyclic (gadobutrol) GBCA in rats. While most behavioral tests revealed no difference between treatment groups, we observed a transient and reversible decrease of the startle reflex after gadodiamide application. Residual Gd in the lateral cerebellar nucleus was neither associated with a general gene expression pathway deregulation nor with neuronal cell loss, but in gadodiamide-treated rats Gd was associated with the perineuronal net protein aggrecan and segregated to high molecular weight fractions. Our behavioral finding together with Gd distribution and speciation support a substance class difference for Gd presence in the brain after GBCA application.


Asunto(s)
Conducta Animal , Núcleos Cerebelosos , Medios de Contraste/farmacología , Gadolinio DTPA/farmacología , Imagen por Resonancia Magnética , Compuestos Organometálicos/farmacología , Reflejo de Sobresalto , Animales , Núcleos Cerebelosos/diagnóstico por imagen , Núcleos Cerebelosos/fisiología , Gadolinio/farmacología , Masculino , Ratas , Ratas Wistar
9.
Invest Radiol ; 54(8): 468-474, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30932931

RESUMEN

OBJECTIVE: Clinical studies have reported different results regarding the signal intensity (SI) increase in the dentate nucleus on unenhanced T1-weighted magnetic resonance imaging (MRI) after repeated administrations of gadolinium-based contrast agents (GBCAs). The aim of this study was to evaluate MRI SI changes and gadolinium (Gd) brain concentrations in an animal model after repeated administration of liver-specific linear gadoxetate in comparison to multipurpose linear and macrocyclic GBCAs. Recently, it was demonstrated that small amounts of GBCAs are able to cross the blood-cerebrospinal fluid (CSF) barrier. Therefore, a secondary aim was to test if the administration of these GBCAs directly into the CSF results in a similar MRI pattern and brain Gd concentration than after systemic intravenous injection. MATERIALS AND METHODS: Forty-eight Han-Wistar rats were equally divided into the following 4 groups: gadoxetate (liver-specific linear), gadodiamide (multipurpose linear), gadobutrol (multipurpose macrocyclic), and control (saline, artificial CSF). For systemic application, 6 animals per group received 8 intravenous injections on 4 consecutive days per week over 2 weeks using a dose of 0.15 mmol/kg for gadoxetate and 0.6 mmol/kg for multipurpose GBCAs per injection, which corresponds to the recommended clinical dose in humans. For CSF application, 6 animals per group received one intracisternal administration of 0.31 µmol Gd (gadoxetate) and 1.25 µmol Gd (multipurpose GBCAs) or an equal volume of artificial CSF. Brain MRI was performed after a period of 5 weeks to evaluate the SI in deep cerebellar nuclei (DCN) and brain stem. Subsequently, animals were euthanized and their brains were dissected for Gd quantification by inductively coupled plasma-mass spectrometry. RESULTS: Visually evident increased SIs in the DCN were observed in blinded image review only after administration of gadodiamide. The respective SI ratios between DCN and brain stem were significantly higher compared with the control groups (P = 0.009 and P = 0.002 for intravenous and intracisternal application, respectively), whereas no difference was found for gadoxetate and gadobutrol (P ≥ 0.9). Inductively coupled plasma-mass spectrometry revealed the lowest Gd content in the brain tissue after administration for gadoxetate. The mean Gd concentrations in the cerebellum were 0.08 nmol/g (gadoxetate), 2.66 nmol/g (gadodiamide), and 0.26 nmol/g (gadobutrol) after intravenous administration, and 0.28 nmol/g (gadoxetate), 3.23 nmol/g (gadodiamide), and 0.69 nmol/g (gadobutrol) after intracisternal application. CONCLUSIONS: This rat study demonstrates distinct differences in the presence of gadolinium in the brain between the liver-specific linear gadoxetate and the multipurpose linear GBCA gadodiamide. No MRI signal alterations were observed after 8 dose-adapted intravenous or a single intracisternal administrations of gadoxetate and multipurpose macrocyclic gadobutrol. The Gd concentrations in the brain 5 weeks after intravenous administration of gadoxetate were an order of magnitude lower compared with gadodiamide and slightly lower than for gadobutrol. Likely reasons for these differences are the 4-fold lower dose, the dual excretion pathway, and the higher complex stability of gadoxetate compared with multipurpose linear GBCAs. The similar findings for both routes of GBCA administration underlines the assumption that the very small amount of GBCAs that cross the blood-CSF barrier is further transported into the brain tissue.


Asunto(s)
Encéfalo/metabolismo , Medios de Contraste/farmacocinética , Gadolinio DTPA/farmacocinética , Gadolinio/farmacocinética , Imagen por Resonancia Magnética/métodos , Animales , Medios de Contraste/administración & dosificación , Modelos Animales de Enfermedad , Gadolinio DTPA/administración & dosificación , Humanos , Inyecciones Intravenosas , Hígado , Compuestos Organometálicos/administración & dosificación , Compuestos Organometálicos/farmacocinética , Ratas , Ratas Wistar
10.
Invest Radiol ; 54(2): 76-82, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30358694

RESUMEN

OBJECTIVE: This study investigated the potential effect of the chelating agent calcium trisodium pentetate (Ca-DTPA) on the urinary excretion of gadolinium and the subsequent elimination of gadolinium (Gd) in the brain after a single intravenous administration of either a linear (gadodiamide) or a macrocyclic (gadobutrol) Gd-based contrast agent in rats. MATERIALS AND METHODS: Rats received either a single injection of gadodiamide or gadobutrol (1.8 mmol/kg, each) or saline (n = 18 per group). Seven weeks after the injection, 6 animals of each group were killed before the treatment period. From the remaining 12 animals, 6 received either 3 intravenous injections of Ca-DTPA (180 µmol/kg) or saline. Urine was collected daily for 3 days after each infusion. Gadolinium measurements by ICP-MS were performed in urine and tissue samples. RESULTS: In animals that initially received the linear gadodiamide, Ca-DTPA infusion increased the urinary excretion of Gd by a factor of 10 (cumulative amount of 114 ± 21 nmol Gd vs 10 ± 4 nmol Gd after saline infusion, P ≤ 0.0001). In contrast, animals that received the macrocyclic gadobutrol exhibited a higher spontaneous urinary excretion of Gd (33 ± 12 nmol after saline infusion) and Ca-DTPA had no impact (30 ± 11 nmol Gd, P = 0.68).The urinary excretion of Gd was associated with Gd brain content. Seven weeks after the initial Gd-based contrast agent administration, a total amount of 0.74 ± 0.053 nmol Gd was quantified in the brain after administration of gadodiamide. The Gd brain burden was partially reduced at the end of the treatment period in the animals that were repeatedly infused with Ca-DTPA (0.56 ± 0.13 nmol Gd, P = 0.009) but not with saline (0.66 ± 0.081 nmol, P = 0.32). In contrast, the total amount of macrocyclic gadobutrol measured in the brain was lower (0.11 ± 0.029 nmol Gd) and still spontaneously cleared during the 3-week saline infusion period (0.057 ± 0.019 nmol Gd (P = 0.003). Gadolinium quantified in the brain after infusions with Ca-DTPA did not differ from saline-infused animals (0.049 ± 0.014 nmol Gd). CONCLUSIONS: Administration of the chelating agent Ca-DTPA 7 weeks after injection of linear gadodiamide induced relevant urinary Gd excretion. In parallel, the Gd amount in the brain tissue decreased. This indicates a dechelated pool among the chemical Gd forms present in the rat brain after linear gadodiamide administration that can be mobilized by chelation with Ca-DTPA. In contrast, Ca-DTPA did not mobilize Gd in animals that received macrocyclic gadobutrol, indicating that the Gd measured is intact gadobutrol.


Asunto(s)
Quelantes/farmacología , Medios de Contraste/farmacocinética , Gadolinio DTPA/farmacocinética , Gadolinio/metabolismo , Compuestos Organometálicos/farmacocinética , Ácido Pentético/farmacología , Animales , Encéfalo/metabolismo , Medios de Contraste/administración & dosificación , Gadolinio/orina , Gadolinio DTPA/administración & dosificación , Masculino , Compuestos Organometálicos/administración & dosificación , Ratas , Ratas Wistar
11.
Invest Radiol ; 53(5): 278-285, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29319556

RESUMEN

OBJECTIVE: The aim of this retrospective study was to determine the gadolinium (Gd) concentration in different brain areas in a pig cohort that received repeated administration of Gd-based contrast agents (GBCAs) at standard doses over several years, comparable with a clinical setting. MATERIAL AND METHODS: Brain tissue was collected from 13 Göttingen mini pigs that had received repeated intravenous injections of gadopentetate dimeglumine (Gd-DTPA; Magnevist) and/or gadobutrol (Gadovist). The animals have been included in several preclinical imaging studies since 2008 and received cumulative Gd doses ranging from 7 to 129 mmol per animal over an extended period. Two animals with no history of administration of GBCA were included as controls. Brain autopsies were performed not earlier than 8 and not later than 38 months after the last GBCA application. Tissues from multiple brain areas including cerebellar and cerebral deep nuclei, cerebellar and cerebral cortex, and pons were analyzed for Gd using inductively coupled plasma mass spectrometry. RESULTS: Of the 13 animals, 8 received up to 48 injections of gadobutrol and Gd-DTPA and 5 received up to 29 injections of gadobutrol only. In animals that had received both Gd-DTPA and gadobutrol, a median (interquartile range) Gd concentration of 1.0 nmol/g tissue (0.44-1.42) was measured in the cerebellar nuclei and 0.53 nmol/g (0.29-0.62) in the globus pallidus. The Gd concentration in these areas in gadobutrol-only animals was 50-fold lower with median concentrations of 0.02 nmol/g (0.01-0.02) for cerebellar nuclei and 0.01 nmol/g (0.01-0.01) for globus pallidus and was comparable with control animals with no GBCA history. Accordingly, in animals that received both GBCAs, the amount of residual Gd correlated with the administered dose of Gd-DTPA (P ≤ 0.002) but not with the total Gd dose, consisting of Gd-DTPA and gadobutrol. The Gd concentration in cortical tissue and in the pons was very low (≤0.07 nmol/g tissue) in all animals analyzed. CONCLUSION: Multiple exposure to macrocyclic gadobutrol is not associated with Gd deposition in brain tissue of healthy pigs. A single additional administration of linear Gd-DTPA is sufficient for Gd accumulation in the nucleus dentatus and globus pallidus, underlining the importance of obtaining a complete GBCA history in clinical studies.


Asunto(s)
Núcleos Cerebelosos/metabolismo , Medios de Contraste/farmacocinética , Gadolinio DTPA/farmacocinética , Globo Pálido/metabolismo , Compuestos Organometálicos/farmacocinética , Animales , Medios de Contraste/metabolismo , Femenino , Gadolinio DTPA/metabolismo , Humanos , Masculino , Modelos Animales , Compuestos Organometálicos/metabolismo , Estudios Retrospectivos , Porcinos
12.
Invest Radiol ; 53(9): 499-517, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29659381

RESUMEN

Gadolinium (Gd)-based contrast agents (GBCAs) are pharmaceuticals that have been approved for 30 years and used daily in millions of patients worldwide. Their clinical benefits are indisputable. Recently, unexpected long-term presence of Gd in the brain has been reported by numerous retrospective clinical studies and confirmed in preclinical models particularly after linear GBCA (L-GBCA) compared with macrocyclic GBCA (M-GBCA). Even if no clinical consequences of Gd presence in brain tissue has been demonstrated so far, in-depth investigations on potential toxicological consequences and the fate of Gd in the body remain crucial to potentially adapt the clinical use of GBCAs, as done during the nephrogenic systemic fibrosis crisis. Preclinical models are instrumental in the understanding of the mechanism of action as well as the potential safety consequences. However, such models may be associated with risks of biases, often related to the protocol design. Selection of adequate terminology is also crucial. This review of the literature intends to summarize and critically discuss the main methodological aspects for accurate design and translational character of preclinical studies.


Asunto(s)
Encéfalo/metabolismo , Medios de Contraste/metabolismo , Gadolinio/metabolismo , Proyectos de Investigación , Animales , Modelos Animales , Estudios Retrospectivos
14.
Elife ; 4: e05597, 2015 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-25643395

RESUMEN

Small GTPases of the Rab family not only regulate target recognition in membrane traffic but also control other cellular functions such as cytoskeletal transport and autophagy. Here we show that Rab26 is specifically associated with clusters of synaptic vesicles in neurites. Overexpression of active but not of GDP-preferring Rab26 enhances vesicle clustering, which is particularly conspicuous for the EGFP-tagged variant, resulting in a massive accumulation of synaptic vesicles in neuronal somata without altering the distribution of other organelles. Both endogenous and induced clusters co-localize with autophagy-related proteins such as Atg16L1, LC3B and Rab33B but not with other organelles. Furthermore, Atg16L1 appears to be a direct effector of Rab26 and binds Rab26 in its GTP-bound form, albeit only with low affinity. We propose that Rab26 selectively directs synaptic and secretory vesicles into preautophagosomal structures, suggesting the presence of a novel pathway for degradation of synaptic vesicles.


Asunto(s)
Autofagia , Vesículas Sinápticas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Cuerpo Celular/metabolismo , Compartimento Celular , Células Cultivadas , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Hipocampo/citología , Humanos , Ratones Endogámicos BALB C , Proteínas Mutantes/metabolismo , Unión Neuromuscular/metabolismo , Unión Neuromuscular/ultraestructura , Neuronas/citología , Neuronas/metabolismo , Neuronas/ultraestructura , Fagosomas/metabolismo , Ratas , Proteínas de Transporte Vesicular/metabolismo
15.
Sci Signal ; 7(339): ra79, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25140054

RESUMEN

The traditional view of how intracellular effector proteins are recruited to the B cell antigen receptor (BCR) complex at the plasma membrane is based on the occurrence of direct protein-protein interactions, as exemplified by the recruitment of the tyrosine kinase Syk (spleen tyrosine kinase) to phosphorylated motifs in BCR signaling subunits. By contrast, the subcellular targeting of the cytosolic adaptor protein SLP-65 (Src homology 2 domain-containing leukocyte adaptor protein of 65 kD), which serves as a proximal Syk substrate, is unclear. We showed that SLP-65 activation required its association at vesicular compartments in resting B cells. A module of ~50 amino acid residues located at the amino terminus of SLP-65 anchored SLP-65 to the vesicles. Nuclear magnetic resonance spectroscopy showed that the SLP-65 amino terminus was structurally disordered in solution but could bind in a structured manner to noncharged lipid components of cellular membranes. Our finding that preformed vesicular signaling scaffolds are required for B cell activation indicates that vesicles may deliver preassembled signaling cargo to sites of BCR activation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Linfocitos B/metabolismo , Vesículas Transportadoras/química , Vesículas Transportadoras/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Linfocitos B/química , Membrana Celular/genética , Membrana Celular/inmunología , Membrana Celular/metabolismo , Humanos , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/inmunología , Receptores de Antígenos de Linfocitos B/metabolismo , Vesículas Transportadoras/genética , Vesículas Transportadoras/inmunología
16.
Neuron ; 78(2): 285-97, 2013 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-23622064

RESUMEN

Neurotransmission involves calcium-triggered fusion of docked synaptic vesicles at specialized presynaptic release sites. While many of the participating proteins have been identified, the molecular composition of these sites has not been characterized comprehensively. Here, we report a procedure to biochemically isolate fractions highly enriched in docked synaptic vesicles. The fraction is largely free of postsynaptic proteins and most other organelles while containing most known synaptic vesicle and active zone proteins. Numerous presynaptic transmembrane proteins were also identified, together with over 30 uncharacterized proteins, many of which are evolutionarily conserved. Quantitative proteomic comparison of glutamate- and GABA-specific docking complexes revealed that, except of neurotransmitter-specific enzymes and transporters, only few proteins were selectively enriched in either fraction. We conclude that the core machinery involved in vesicle docking and exocytosis does not show compositional differences between the two types of synapses.


Asunto(s)
Ácido Glutámico/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Terminales Presinápticos/metabolismo , Sinapsis/metabolismo , Vesículas Sinápticas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Encéfalo/ultraestructura , Proteínas de la Membrana/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteómica , Ratas , Sinapsis/efectos de los fármacos , Sinapsis/ultraestructura , Vesículas Sinápticas/efectos de los fármacos , Tripsina/farmacología , Proteínas de Transporte Vesicular/metabolismo
17.
J Biol Chem ; 283(46): 31333-40, 2008 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-18809676

RESUMEN

Glucokinase (GK) is a key enzyme of glucose metabolism in liver and pancreatic beta-cells, and small molecule activators of GK (GKAs) are under evaluation for the treatment of type 2 diabetes. In liver, GK activity is controlled by the GK regulatory protein (GKRP), which forms an inhibitory complex with the enzyme. Here, we performed isothermal titration calorimetry and surface plasmon resonance experiments to characterize GK-GKRP binding and to study the influence that physiological and pharmacological effectors of GK have on the protein-protein interaction. In the presence of fructose-6-phosphate, GK-GKRP complex formation displayed a strong entropic driving force opposed by a large positive enthalpy; a negative change in heat capacity was observed (Kd = 45 nm, DeltaH = 15.6 kcal/mol, TDeltaS = 25.7 kcal/mol, DeltaCp = -354 cal mol(-1) K(-1)). With k(off) = 1.3 x 10(-2) s(-1), the complex dissociated quickly. The thermodynamic profile suggested a largely hydrophobic interaction. In addition, effects of pH and buffer demonstrated the coupled uptake of one proton and indicated an ionic contribution to binding. Glucose decreased the binding affinity between GK and GKRP. This decrease was potentiated by an ATP analogue. Prototypical GKAs of the amino-heteroaryl-amide type bound to GK in a glucose-dependent manner and impaired the association of GK with GKRP. This mechanism might contribute to the antidiabetic effects of GKAs.


Asunto(s)
Biofisica , Proteínas Portadoras/metabolismo , Glucoquinasa/metabolismo , Hígado/enzimología , Animales , Tampones (Química) , Proteínas Portadoras/genética , Proteínas Portadoras/aislamiento & purificación , Glucoquinasa/genética , Glucoquinasa/aislamiento & purificación , Humanos , Concentración de Iones de Hidrógeno , Cinética , Unión Proteica , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Resonancia por Plasmón de Superficie , Temperatura , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA