RESUMEN
We demonstrate the hohlraum radiation temperature and symmetry required for ignition-scale inertial confinement fusion capsule implosions. Cryogenic gas-filled hohlraums with 2.2 mm-diameter capsules are heated with unprecedented laser energies of 1.2 MJ delivered by 192 ultraviolet laser beams on the National Ignition Facility. Laser backscatter measurements show that these hohlraums absorb 87% to 91% of the incident laser power resulting in peak radiation temperatures of T(RAD)=300 eV and a symmetric implosion to a 100 µm diameter hot core.
RESUMEN
We apply a cascaded linear model analysis to a micro-channel plate x-ray framing camera. We establish a theoretical expression of the Noise Power Spectrum (NPS) at the detector's output and assess its accuracy by comparing it to the NPS of Monte Carlo simulations of the detector's response to a uniform illumination. We also demonstrate that fitting the NPS of experimental data against a parametric model based on this expression can yield valuable information on the imaging ability of framing cameras, offering an alternative approach to the usual method employed to measure their modulation transfer functions.