Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(23)2023 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-38069097

RESUMEN

Plants, the cornerstone of life on Earth, are constantly struggling with a number of challenges arising from both biotic and abiotic stressors. To overcome these adverse factors, plants have evolved complex defense mechanisms involving both a number of cell signaling pathways and a complex network of interactions with microorganisms. Among these interactions, the relationship between symbiotic arbuscular mycorrhizal fungi (AMF) and strigolactones (SLs) stands as an important interplay that has a significant impact on increased resistance to environmental stresses and improved nutrient uptake and the subsequent enhanced plant growth. AMF establishes mutualistic partnerships with plants by colonizing root systems, and offers a range of benefits, such as increased nutrient absorption, improved water uptake and increased resistance to both biotic and abiotic stresses. SLs play a fundamental role in shaping root architecture, promoting the growth of lateral roots and regulating plant defense responses. AMF can promote the production and release of SLs by plants, which in turn promote symbiotic interactions due to their role as signaling molecules with the ability to attract beneficial microbes. The complete knowledge of this synergy has the potential to develop applications to optimize agricultural practices, improve nutrient use efficiency and ultimately increase crop yields. This review explores the roles played by AMF and SLs in plant development and stress tolerance, highlighting their individual contributions and the synergistic nature of their interaction.


Asunto(s)
Micorrizas , Micorrizas/fisiología , Hongos/metabolismo , Simbiosis , Lactonas/metabolismo , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Plantas/metabolismo , Raíces de Plantas/metabolismo
2.
J Fungi (Basel) ; 9(8)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37623616

RESUMEN

Monitoring the dynamics of the spore bank of arbuscular mycorrhizal fungi (AMF) is essential for the sustainable management and protection of agroecosystems. The most common method for extracting AMF spores from soil is the wet-sieving technique (WST). However, this method has many disadvantages. In this study, we modified the WST using new approaches: the ultrasound wet-sieving technique (UWST) and the ultrasound centrifuge technique (UCT). We enumerated and compared the numbers and quality of spores obtained from WST, UWST, and UCT to validate the new modified techniques. We extracted AMF spores from the rhizospheres of different plants, including wheat (Triticum aestivum L.), bean (Phaseolus vulgaris L.), tomato (Solanum lycopersicum L.), pepper (Piper nigrum L.), parsley (Petroselinum crispum Mill.), and turfgrass (Lolium perenne L.) collected from the Van Lake basin, Turkey. The highest and lowest AMF spore numbers were observed in wheat and turfgrass rhizospheres. The UCT allowed for the extraction of the highest number of spores from all rhizospheres, followed by the UWST and WST. The UWST and WST allowed for the extraction of similar spore numbers from wheat, pepper, parsley, and turfgrass rhizospheres. Beyond the high extracted spore number, UCT was shown to be a fast and low-material-consuming approach. These findings demonstrate that the UCT can be used to efficiently extract AMF spores in future research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA