RESUMEN
PURPOSE: To identify genetic etiologies and genotype/phenotype associations for unsolved ocular congenital cranial dysinnervation disorders (oCCDDs). METHODS: We coupled phenotyping with exome or genome sequencing of 467 probands (550 affected and 1108 total individuals) with genetically unsolved oCCDDs, integrating analyses of pedigrees, human and animal model phenotypes, and de novo variants to identify rare candidate single nucleotide variants, insertion/deletions, and structural variants disrupting protein-coding regions. Prioritized variants were classified for pathogenicity and evaluated for genotype/phenotype correlations. RESULTS: Analyses elucidated phenotypic subgroups, identified pathogenic/likely pathogenic variant(s) in 43/467 probands (9.2%), and prioritized variants of uncertain significance in 70/467 additional probands (15.0%). These included known and novel variants in established oCCDD genes, genes associated with syndromes that sometimes include oCCDDs (e.g., MYH10, KIF21B, TGFBR2, TUBB6), genes that fit the syndromic component of the phenotype but had no prior oCCDD association (e.g., CDK13, TGFB2), genes with no reported association with oCCDDs or the syndromic phenotypes (e.g., TUBA4A, KIF5C, CTNNA1, KLB, FGF21), and genes associated with oCCDD phenocopies that had resulted in misdiagnoses. CONCLUSION: This study suggests that unsolved oCCDDs are clinically and genetically heterogeneous disorders often overlapping other Mendelian conditions and nominates many candidates for future replication and functional studies.
RESUMEN
Adult neurogenesis is reduced during aging and impaired in disorders of stress, memory, and cognition though its normal function remains unclear. Moreover, a systems level understanding of how a small number of young hippocampal neurons could dramatically influence brain function is lacking. We examined whether adult neurogenesis sustains hippocampal connections cumulatively across the life span. Long-term suppression of neurogenesis as occurs during stress and aging resulted in an accelerated decline in hippocampal acetylcholine signaling and a slow and progressing emergence of profound working memory deficits. These deficits were accompanied by compensatory reorganization of cholinergic dentate gyrus inputs with increased cholinergic innervation to the ventral hippocampus and recruitment of ventrally projecting neurons by the dorsal projection. While increased cholinergic innervation was dysfunctional and corresponded to overall decreases in cholinergic levels and signaling, it could be recruited to correct the resulting memory dysfunction even in old animals. Our study demonstrates that hippocampal neurogenesis supports memory by maintaining the septohippocampal cholinergic circuit across the lifespan. It also provides a systems level explanation for the progressive nature of memory deterioration during normal and pathological aging and indicates that the brain connectome is malleable by experience.
RESUMEN
BACKGROUND: There are minimal data characterizing the trajectory of left heart growth and hemodynamics following fetal aortic valvuloplasty (FAV). METHODS: This retrospective study included patients who underwent FAV between 2000 and 2019, with echocardiograms performed pre-FAV, immediately post-FAV, and in late gestation. RESULTS: Of 118 fetuses undergoing FAV, 106 (90%) underwent technically successful FAV, of which 55 (52%) had biventricular circulation. Technically successful FAV was associated with improved aortic valve growth (p < 0.001), sustained antegrade aortic arch (AoA) flow (p = 0.02), improved mitral valve (MV) inflow pattern (p = 0.002), and favorable patent foramen ovale (PFO) flow pattern (p = 0.004) from pre-FAV to late gestation. Compared to patients with univentricular outcome, patients with biventricular outcome had less decrement in size of the left ventricle (LV) (p < 0.001) and aortic valve (p = 0.005), as well as more physiologic PFO flow (p < 0.001) and antegrade AoA flow (p < 0.001) from pre-FAV to late gestation. In multivariable analysis, echocardiographic predictors of biventricular outcome were less decline in LV end diastolic dimension (p < 0.001), improved PFO flow (p = 0.004), and sustained antegrade AoA flow (p = 0.002) from pre-FAV to late gestation. CONCLUSION: Stabilization of left heart growth and improved hemodynamics following successful FAV through late gestation are associated with postnatal biventricular circulation.
Asunto(s)
Estenosis de la Válvula Aórtica , Valvuloplastia con Balón , Estenosis de la Válvula Aórtica/complicaciones , Valvuloplastia con Balón/métodos , Femenino , Feto , Hemodinámica , Humanos , Embarazo , Estudios Retrospectivos , Resultado del TratamientoRESUMEN
OBJECTIVE: To characterize viscoelastic testing profiles of children with multisystem inflammatory syndrome in children (MIS-C). METHODS: This single-center retrospective review included 30 patients diagnosed with MIS-C from March 1 to September 1, 2020. Thromboelastography (TEG) with platelet mapping was performed in 19 (63%) patients and compared to age- and sex-matched controls prior to cardiac surgery. Relationships between TEG parameters and inflammatory markers were assessed using correlation. RESULTS: Patients with MIS-C had abnormal TEG results compared to controls, including decreased kinetic (K) time (1.1 vs. 1.7 minutes, p < .01), increased alpha angle (75.0° vs. 65.7°, p < .01), increased maximum amplitude (70.8 vs. 58.3 mm, p < .01), and decreased lysis in 30 minutes (Ly30) (1.1% vs. 3.7%, p = .03); consistent with increased clot formation rate and strength, and reduced fibrinolysis. TEG maximum amplitude was moderately correlated with erythrocyte sedimentation rate (ESR) (r = 0.60, p = .02), initial platelet count (r = 0.67, p < .01), and peak platelet count (r = 0.51, p = .03). TEG alpha angle was moderately correlated with peak platelet count (r = 0.54, p = .02). Seventeen (57%) patients received aspirin (ASA) and anticoagulation, five (17%) received only ASA, and three (10%) received only anticoagulation. No patients had a symptomatic thrombotic event. Six (20%) patients had a bleeding event, none of which was major. CONCLUSIONS: Patients with MIS-C had evidence of hypercoagulability on TEG. Increased ESR and platelets were associated with higher clot strength. Patients were prophylactically treated with ASA or anticoagulation with no symptomatic thrombosis or major bleeding. Further multicenter study is required to characterize the rate of thrombosis and optimal thromboprophylaxis algorithm in this patient population.
Asunto(s)
Coagulación Sanguínea , COVID-19/complicaciones , Síndrome de Respuesta Inflamatoria Sistémica/sangre , Trombofilia/sangre , Adolescente , Anticoagulantes/uso terapéutico , Aspirina/uso terapéutico , Coagulación Sanguínea/efectos de los fármacos , Plaquetas/efectos de los fármacos , COVID-19/sangre , Niño , Preescolar , Femenino , Humanos , Masculino , Estudios Retrospectivos , Síndrome de Respuesta Inflamatoria Sistémica/tratamiento farmacológico , Tromboelastografía , Trombofilia/tratamiento farmacológico , Tratamiento Farmacológico de COVID-19RESUMEN
Human milk oligosaccharides (HMOs) are an important class of biomolecules responsible for the healthy development of the brain-gut axis of infants. Unfortunately, their accurate characterization is largely precluded due to a variety of reasons - there are over 200 possible HMO structures whereas only 10s of these are available as authentic analytical standards. Furthermore, their isomeric heterogeneity stemming from their many possible glycosidic linkage positions and corresponding α/ß anomericities further complicates their analyses. While liquid chromatography coupled to tandem mass spectrometry remains the gold standard for HMO analyses, it often times cannot resolve all possible isomeric species and thus warrants the development of other orthogonal approaches. High-resolution ion mobility spectrometry coupled to mass spectrometry has emerged as a rapid alternative to condensed-phase separations but largely has remained limited to qualitative information related to the resolution of isomers. In this work, we have assessed the use of permethylation to improve both the resolution and sensitivity of HMO analyses with cyclic ion mobility separations coupled with mass spectrometry. In addition to this, we have developed the first-ever high-resolution collision cross-section database for permethylated HMOs using our previously established calibration protocol. We envision that this internal reference database generated from high-resolution cyclic ion mobility spectrometry-mass spectrometry will greatly aid in the accurate characterization of HMOs and provide a valuable, orthogonal, approach to existing liquid chromatography-tandem mass spectrometry-based methods.
Asunto(s)
Espectrometría de Movilidad Iónica , Leche Humana , Oligosacáridos , Leche Humana/química , Humanos , Espectrometría de Movilidad Iónica/métodos , Oligosacáridos/análisis , Oligosacáridos/química , Metilación , Isomerismo , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masas/métodos , Bases de Datos FactualesRESUMEN
Unsolved Mendelian cases often lack obvious pathogenic coding variants, suggesting potential non-coding etiologies. Here, we present a single cell multi-omic framework integrating embryonic mouse chromatin accessibility, histone modification, and gene expression assays to discover cranial motor neuron (cMN) cis-regulatory elements and subsequently nominate candidate non-coding variants in the congenital cranial dysinnervation disorders (CCDDs), a set of Mendelian disorders altering cMN development. We generate single cell epigenomic profiles for ~86,000 cMNs and related cell types, identifying ~250,000 accessible regulatory elements with cognate gene predictions for ~145,000 putative enhancers. We evaluate enhancer activity for 59 elements using an in vivo transgenic assay and validate 44 (75%), demonstrating that single cell accessibility can be a strong predictor of enhancer activity. Applying our cMN atlas to 899 whole genome sequences from 270 genetically unsolved CCDD pedigrees, we achieve significant reduction in our variant search space and nominate candidate variants predicted to regulate known CCDD disease genes MAFB, PHOX2A, CHN1, and EBF3 - as well as candidates in recurrently mutated enhancers through peak- and gene-centric allelic aggregation. This work delivers non-coding variant discoveries of relevance to CCDDs and a generalizable framework for nominating non-coding variants of potentially high functional impact in other Mendelian disorders.
Asunto(s)
Elementos de Facilitación Genéticos , Animales , Ratones , Humanos , Elementos de Facilitación Genéticos/genética , Neuronas Motoras/metabolismo , Cromatina/metabolismo , Cromatina/genética , Masculino , Análisis de la Célula Individual , Epigenómica/métodos , Femenino , LinajeRESUMEN
Purpose: To identify genetic etiologies and genotype/phenotype associations for unsolved ocular congenital cranial dysinnervation disorders (oCCDDs). Methods: We coupled phenotyping with exome or genome sequencing of 467 pedigrees with genetically unsolved oCCDDs, integrating analyses of pedigrees, human and animal model phenotypes, and de novo variants to identify rare candidate single nucleotide variants, insertion/deletions, and structural variants disrupting protein-coding regions. Prioritized variants were classified for pathogenicity and evaluated for genotype/phenotype correlations. Results: Analyses elucidated phenotypic subgroups, identified pathogenic/likely pathogenic variant(s) in 43/467 probands (9.2%), and prioritized variants of uncertain significance in 70/467 additional probands (15.0%). These included known and novel variants in established oCCDD genes, genes associated with syndromes that sometimes include oCCDDs (e.g., MYH10, KIF21B, TGFBR2, TUBB6), genes that fit the syndromic component of the phenotype but had no prior oCCDD association (e.g., CDK13, TGFB2), genes with no reported association with oCCDDs or the syndromic phenotypes (e.g., TUBA4A, KIF5C, CTNNA1, KLB, FGF21), and genes associated with oCCDD phenocopies that had resulted in misdiagnoses. Conclusion: This study suggests that unsolved oCCDDs are clinically and genetically heterogeneous disorders often overlapping other Mendelian conditions and nominates many candidates for future replication and functional studies.
RESUMEN
Unsolved Mendelian cases often lack obvious pathogenic coding variants, suggesting potential non-coding etiologies. Here, we present a single cell multi-omic framework integrating embryonic mouse chromatin accessibility, histone modification, and gene expression assays to discover cranial motor neuron (cMN) cis-regulatory elements and subsequently nominate candidate non-coding variants in the congenital cranial dysinnervation disorders (CCDDs), a set of Mendelian disorders altering cMN development. We generated single cell epigenomic profiles for ~86,000 cMNs and related cell types, identifying ~250,000 accessible regulatory elements with cognate gene predictions for ~145,000 putative enhancers. Seventy-five percent of elements (44 of 59) validated in an in vivo transgenic reporter assay, demonstrating that single cell accessibility is a strong predictor of enhancer activity. Applying our cMN atlas to 899 whole genome sequences from 270 genetically unsolved CCDD pedigrees, we achieved significant reduction in our variant search space and nominated candidate variants predicted to regulate known CCDD disease genes MAFB, PHOX2A, CHN1, and EBF3 - as well as new candidates in recurrently mutated enhancers through peak- and gene-centric allelic aggregation. This work provides novel non-coding variant discoveries of relevance to CCDDs and a generalizable framework for nominating non-coding variants of potentially high functional impact in other Mendelian disorders.