Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 22(4): e3002607, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38687811

RESUMEN

Unbiased data-driven omic approaches are revealing the molecular heterogeneity of Alzheimer disease. Here, we used machine learning approaches to integrate high-throughput transcriptomic, proteomic, metabolomic, and lipidomic profiles with clinical and neuropathological data from multiple human AD cohorts. We discovered 4 unique multimodal molecular profiles, one of them showing signs of poor cognitive function, a faster pace of disease progression, shorter survival with the disease, severe neurodegeneration and astrogliosis, and reduced levels of metabolomic profiles. We found this molecular profile to be present in multiple affected cortical regions associated with higher Braak tau scores and significant dysregulation of synapse-related genes, endocytosis, phagosome, and mTOR signaling pathways altered in AD early and late stages. AD cross-omics data integration with transcriptomic data from an SNCA mouse model revealed an overlapping signature. Furthermore, we leveraged single-nuclei RNA-seq data to identify distinct cell-types that most likely mediate molecular profiles. Lastly, we identified that the multimodal clusters uncovered cerebrospinal fluid biomarkers poised to monitor AD progression and possibly cognition. Our cross-omics analyses provide novel critical molecular insights into AD.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Humanos , Animales , Encéfalo/metabolismo , Encéfalo/patología , Ratones , Transcriptoma/genética , Proteómica/métodos , Masculino , Biomarcadores/metabolismo , Metabolómica/métodos , Aprendizaje Automático , Femenino , Progresión de la Enfermedad , Anciano , Modelos Animales de Enfermedad , Multiómica
2.
Blood ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38776489

RESUMEN

Delays and risks associated with neurosurgical biopsies preclude timely diagnosis and treatment of central nervous system (CNS) lymphoma and other CNS neoplasms. We prospectively integrated targeted rapid genotyping of cerebrospinal fluid (CSF) into the evaluation of 70 patients with CNS lesions of unknown etiology. Participants underwent genotyping of CSF-derived DNA using a qPCR-based approach for parallel detection of single-nucleotide variants in the MYD88, TERT promoter, IDH1, IDH2, BRAF and H3F3A genes within 80 minutes of sample acquisition. Canonical mutations were detected in 42% of patients with neoplasms, including cases of primary and secondary CNS lymphoma, glioblastoma, IDH-mutant brainstem glioma and H3K27M-mutant diffuse midline glioma. Genotyping results eliminated the need for surgical biopsies in 7/33 (21.2%) cases of newly diagnosed neoplasms, resulting in significantly accelerated initiation of disease-directed treatment (median 3 vs 12 days; p = 0.027). This assay was then implemented in a Clinical Laboratory Improvement Amendments (CLIA) environment, with 2-day median turnaround for diagnosis of central nervous system lymphoma from 66 patients across 4 clinical sites. Our study prospectively demonstrates that targeted rapid CSF genotyping influences oncologic management for suspected CNS tumors.

3.
Risk Anal ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807489

RESUMEN

In recent years, longer and heavier trains have become more common, primarily driven by efficiency and cost-saving measures in the railroad industry. Regulation of train length is currently under consideration in the United States at both the federal and state levels, because of concerns that longer trains may have a higher risk of derailment, but the relationship between train length and risk of derailment is not yet well understood. In this study, we use data on freight train accidents during the 2013-2022 period from the Federal Railroad Administration (FRA) Rail Equipment Accident and Highway-Rail Grade Crossing Accident databases to estimate the relationship between freight train length and the risk of derailment. We determine that longer trains do have a greater risk of derailment. Based on our analysis, running 100-car trains is associated with 1.11 (95% confidence interval: 1.10-1.12) times the derailment odds of running 50-car trains (or a 11% increase), even accounting for the fact that only half as many 100-car trains would need to run. For 200-car trains, the odds increase by 24% (odds ratio 1.24, 95% confidence interval: 1.20-1.28), again accounting for the need for fewer trains. Understanding derailment risk is an important component for evaluating the overall safety of the rail system and for the future development and regulation of freight rail transportation. Given the limitations of the current data on freight train length, this study provides an important step toward such an understanding.

4.
Res Sq ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38883718

RESUMEN

Alzheimer Disease (AD) is a highly polygenic disease that presents with relatively earlier onset (≤70yo; EOAD) in about 5% of cases. Around 90% of these EOAD cases remain unexplained by pathogenic mutations. Using data from EOAD cases and controls, we performed a genome-wide association study (GWAS) and trans-ancestry meta-analysis on non-Hispanic Whites (NHW, NCase=6,282, NControl=13,386), African Americans (AA NCase=782, NControl=3,663) and East Asians (NCase=375, NControl=838 CO). We identified eight novel significant loci: six in the ancestry-specific analyses and two in the trans-ancestry analysis. By integrating gene-based analysis, eQTL, pQTL and functional annotations, we nominate four novel genes that are involved in microglia activation, glutamate production, and signaling pathways. These results indicate that EOAD, although sharing many genes with LOAD, harbors unique genes and pathways that could be used to create better prediction models or target identification for this type of AD.

5.
Neuro Oncol ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581292

RESUMEN

BACKGROUND: Survival is variable in patients with glioblastoma IDH wild-type (GBM), even after comparable surgical resection of radiographically-detectable disease, highlighting the limitations of radiographic assessment of infiltrative tumor anatomy. The majority of post-surgical progressive events are failures within 2cm of the resection margin, motivating supramaximal resection strategies to improve local control. However, which patients benefit from such radical resections remains unknown. METHODS: We developed a predictive model to identify which IDH wild-type GBM are amenable to radiographic gross total resection (GTR). We then investigated whether GBM survival heterogeneity following GTR is correlated with microscopic tumor burden a by analyzing tumor cell content at the surgical margin with a rapid qPCR-based method for detection of TERT promoter mutation. RESULTS: Our predictive model for achievable GTR, developed on retrospective radiographic and molecular data of GBM patients undergoing resection, had an AUC of 0.83, sensitivity of 62%, and specificity of 90%. Prospective analysis of this model in 44 patients found 89% of patients were correctly predicted to achieve a RV<4.9cc. Of the 44 prospective patients undergoing rapid qPCR TERT promoter mutation analysis at the surgical margin, 7 had undetectable TERT mutation, of which 5 also had a gross total resection (RV<1cc). In these 5 patients at 30 months follow up, 75% showed no progression, compared to 0% in the group with TERT mutations detected at the surgical margin (p=0.02). CONCLUSIONS: These findings identify a subset of patients with GBM that may derive local control benefit from radical resection to undetectable molecular margins.

6.
Cancer Discov ; 14(6): 1106-1131, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38416133

RESUMEN

Recent clinical trials have highlighted the limited efficacy of T cell-based immunotherapy in patients with glioblastoma (GBM). To better understand the characteristics of tumor-infiltrating lymphocytes (TIL) in GBM, we performed cellular indexing of transcriptomes and epitopes by sequencing and single-cell RNA sequencing with paired V(D)J sequencing, respectively, on TILs from two cohorts of patients totaling 15 patients with high-grade glioma, including GBM or astrocytoma, IDH-mutant, grade 4 (G4A). Analysis of the CD8+ TIL landscape reveals an enrichment of clonally expanded GZMK+ effector T cells in the tumor compared with matched blood, which was validated at the protein level. Furthermore, integration with other cancer types highlights the lack of a canonically exhausted CD8+ T-cell population in GBM TIL. These data suggest that GZMK+ effector T cells represent an important T-cell subset within the GBM microenvironment and may harbor potential therapeutic implications. SIGNIFICANCE: To understand the limited efficacy of immune-checkpoint blockade in GBM, we applied a multiomics approach to understand the TIL landscape. By highlighting the enrichment of GZMK+ effector T cells and the lack of exhausted T cells, we provide a new potential mechanism of resistance to immunotherapy in GBM. This article is featured in Selected Articles from This Issue, p. 897.


Asunto(s)
Linfocitos T CD8-positivos , Glioblastoma , Linfocitos Infiltrantes de Tumor , Humanos , Glioblastoma/inmunología , Glioblastoma/terapia , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias Encefálicas/inmunología , Microambiente Tumoral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA