Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Comput Biol Med ; 176: 108563, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38761498

RESUMEN

Boundary conditions (BCs) is one pivotal factor influencing the accuracy of hemodynamic predictions on intracranial aneurysms (IAs) using computational fluid dynamics (CFD) modeling. Unfortunately, a standard procedure to secure accurate BCs for hemodynamic modeling does not exist. To bridge such a knowledge gap, two representative patient-specific IA models (Case-I and Case-II) were reconstructed and their blood flow velocity waveforms in the internal carotid artery (ICA) were measured by ultrasonic techniques and modeled by discrete Fourier transform (DFT). Then, numerical investigations were conducted to explore the appropriate number of samples (N) for DFT modeling to secure the accurate BC by comparing a series of hemodynamic parameters using in-vitro validated CFD modeling. Subsequently, a comprehensive comparison in hemodynamic characteristics under patient-specific BCs and a generalized BC based on a one-dimensional (1D) model was conducted to reinforce the understanding that a patient-specific BC is pivotal for accurate hemodynamic risk evaluations on IA pathophysiology. In addition, the influence of the variance of heart rate/cardiac pulsatile period on hemodynamic characteristics in IA models was studied preliminarily. The results showed that N ≥ 16 for DFT model is a decent choice to secure the proper BC profile to calculate time-averaged hemodynamic parameters, while more data points such as N ≥ 36 can ensure the accuracy of instantaneous hemodynamic predictions. In addition, results revealed the generalized BC could overestimate or underestimate the hemodynamic risks on IAs significantly; thus, patient-specific BCs are highly recommended for hemodynamic modeling for IA risk evaluation. Furthermore, this study discovered the variance of heart rate has rare influences on hemodynamic characteristics in both instantaneous and time-averaged parameters under the assumption of an identical blood flow rate.


Asunto(s)
Hemodinámica , Aneurisma Intracraneal , Modelos Cardiovasculares , Aneurisma Intracraneal/fisiopatología , Aneurisma Intracraneal/diagnóstico por imagen , Humanos , Hemodinámica/fisiología , Velocidad del Flujo Sanguíneo/fisiología , Ultrasonografía/métodos , Masculino , Arteria Carótida Interna/fisiopatología , Arteria Carótida Interna/diagnóstico por imagen , Circulación Cerebrovascular/fisiología , Análisis de Fourier , Simulación por Computador , Femenino
2.
Comput Biol Med ; 163: 107198, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37354818

RESUMEN

Hemodynamic mechanisms of the formation and growth of intracranial aneurysms (IA) in monozygotic twins (MTs) are still under-reported. To partially fill such knowledge gap, this study employed an experimentally validated numerical model to compare hemodynamics in 3 anatomical and 5 ablation study neurovascular models from a rare pair of MTs in terms of 7 critical hemodynamic parameters. Numerical results showed significant differences in hemodynamics between the MTs, although they share the same genes, indicating that genetic mutation and environmental factors might affect neurovascular morphologies and cause hemodynamic changes. After virtual removals of IAs in the ablation study, the locations where the aneurysmal sac/bleb generated in bifurcated anterior cerebral arteries (ACAs) register a locally high instantaneous wall shear stress (IWSS) of 52.9 and 70.1 Pa at the systolic peak in twin A and twin B, respectively. Same scenario can be observed in the distribution of instantaneous wall shear stress gradient (IWSSG), with 571.1 Pa/mm for twin A and 301.3 Pa/mm for twin B due to aggressive blood impingements, leading to IA generation. The fenestrated complex approaching ACA bifurcations in twin A may assist IA growth and rupture, via. Causing abnormal IWSS of 116.3 Pa, IWSSG of 832.5 Pa/mm, and oscillatory shear index (OSI) of 0.49. The bleb in twin B has high risks of progression and possible rupture as the IA suffers relatively low IWSS and high OSI. Additionally, IA generation can change blood flow rates in each connected artery, then affecting blood supplies to associated tissues and organs.


Asunto(s)
Aneurisma Intracraneal , Humanos , Arterias , Hemodinámica , Hidrodinámica , Aneurisma Intracraneal/diagnóstico por imagen , Estrés Mecánico , Gemelos Monocigóticos
3.
Diagnostics (Basel) ; 13(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37370899

RESUMEN

In this preliminary study, the underlying pathophysiology mechanisms of cerebral aneurysms (CAs) in monozygotic twins (MTs) were investigated via a rare pair of MTs (twin A and twin B) involving four reconstructed arterial models using preclinical information. First, dimensions and configurated outlines of three-perspective geometries were compared. Adopting an in-vitro validated numerical CA model, hemodynamic characteristics were investigated in the MTs, respectively. Despite expected genetic similarities, morphological comparisons show that configurations of cerebral arteries exhibit significant differences between the twins. The ICA size of twin A is larger than that in twin B (2.23~25.86%), varying with specific locations, attributing to variations during embryological developments and environmental influences. Numerical modeling indicates the MTs have some hemodynamic similarities such as pressure distributions (~13,400 Pa) and their oscillatory shear index (OSI) (0~0.49), but present significant differences in local regions. Specifically, the difference in blood flow rate in the MTs is from 16% to 221%, varying with specifically compared arteries. The maximum time-averaged wall shear stress (53.6 Pa vs. 37.8 Pa) and different local OSI distributions were also observed between the MTs. The findings revealed that morphological variations in MTs could be generated by embryological and environmental factors, further influencing hemodynamic characteristics on CA pathophysiology.

4.
Bioengineering (Basel) ; 9(7)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35877376

RESUMEN

The pulsatile flow rate (PFR) in the cerebral artery system and shunt ratios in bifurcated arteries are two patient-specific parameters that may affect the hemodynamic characteristics in the pathobiology of cerebral aneurysms, which needs to be identified comprehensively. Accordingly, a systematic study was employed to study the effects of pulsatile flow rate (i.e., PFR-I, PFR-II, and PFR-III) and shunt ratio (i.e., 75:25 and 64:36) in bifurcated distal arteries, and transient cardiac pulsatile waveform on hemodynamic patterns in two internal carotid artery sidewall aneurysm models using computational fluid dynamics (CFD) modeling. Numerical results indicate that larger PFRs can cause higher wall shear stress (WSS) in some local regions of the aneurysmal dome that may increase the probability of small/secondary aneurysm generation than under smaller PFRs. The low WSS and relatively high oscillatory shear index (OSI) could appear under a smaller PFR, increasing the potential risk of aneurysmal sac growth and rupture. However, the variances in PFRs and bifurcated shunt ratios have rare impacts on the time-average pressure (TAP) distributions on the aneurysmal sac, although a higher PFR can contribute more to the pressure increase in the ICASA-1 dome due to the relatively stronger impingement by the redirected bloodstream than in ICASA-2. CFD simulations also show that the variances of shunt ratios in bifurcated distal arteries have rare impacts on the hemodynamic characteristics in the sacs, mainly because the bifurcated location is not close enough to the sac in present models. Furthermore, it has been found that the vortex location plays a major role in the temporal and spatial distribution of the WSS on the luminal wall, varying significantly with the cardiac period.

5.
Phys Fluids (1994) ; 34(10): 103101, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36212224

RESUMEN

This study aims to develop an experimentally validated computational fluid dynamics (CFD) model to estimate hemodynamic characteristics in cerebral aneurysms (CAs) using non-Newtonian blood analogues. Blood viscosities varying with shear rates were measured under four temperatures first, which serves as the reference for the generation of blood analogues. Using the blood analogue, particle image velocimetry (PIV) measurements were conducted to quantify flow characteristics in a CA model. Then, using the identical blood properties in the experiment, CFD simulations were executed to quantify the flow patterns, which were used to compare with the PIV counterpart. Additionally, hemodynamic characteristics in the simplified Newtonian and non-Newtonian models were quantified and compared using the experimentally validated CFD model. Results showed the proposed non-Newtonian viscosity model can predict blood shear-thinning properties accurately under varying temperatures and shear rates. Another developed viscosity model based on the blood analogue can well represent blood rheological properties. The comparisons in flow characteristics show good agreements between PIV and CFD, demonstrating the developed CFD model is qualified to investigate hemodynamic factors within CAs. Furthermore, results show the differences of absolute values were insignificant between Newtonian and non-Newtonian fluids in the distributions of wall shear stress (WSS) and oscillatory shear index (OSI) on arterial walls. However, not only does the simplified Newtonian model underestimate WSS and OSI in most regions of the aneurysmal sac, but it also makes mistakes in identifying the high OSI regions on the sac surface, which may mislead the hemodynamic assessment on the pathophysiology of CAs.

6.
Front Physiol ; 13: 1024590, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36605897

RESUMEN

Introduction: Direct quantification of hemodynamic factors applied to a cerebral aneurysm (CA) remains inaccessible due to the lack of technologies to measure the flow field within an aneurysm precisely. This study aimed to develop an in vitro validated 3D in silico patient-specific internal carotid artery sidewall aneurysm (ICASA) model which can be used to investigate hemodynamic factors on the CA pathophysiology. Methods: The validated ICASA model was developed by quantifying and comparing the flow field using particle image velocimetry (PIV) measurements and computational fluid dynamics (CFD) simulations. Specifically, the flow field characteristics, i.e., blood flowrates, normalized velocity profiles, flow streamlines, and vortex locations, have been compared at representative time instants in a cardiac pulsatile period in two designated regions of the ICASA model, respectively. One region is in the internal carotid artery (ICA) inlet close to the aneurysm sac, the other is across the middle of the aneurysmal sac. Results and Discussion: The results indicated that the developed computational fluid dynamics model presents good agreements with the results from the parallel particle image velocimetry and flowrate measurements, with relative differences smaller than 0.33% in volumetric flow rate in the ICA and relative errors smaller than 9.52% in averaged velocities in the complex aneurysmal sac. However, small differences between CFD and PIV in the near wall regions were observed due to the factors of slight differences in the 3D printed model, light reflection and refraction near arterial walls, and flow waveform uncertainties. The validated model not only can be further employed to investigate hemodynamic factors on the cerebral aneurysm pathophysiology statistically, but also provides a typical model and guidance for other professionals to evaluate the hemodynamic effects on cerebral aneurysms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA