Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Dairy Res ; 87(4): 474-479, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33300482

RESUMEN

Traditional Mozzarella is a fresh cheese produced in Italian local market without additives that shows a short shelf life of about 5 d. This work tested the use of natural additives (bergamot juice concentrate-BJ and calcium lactate-CL) in preserving liquid for a Mozzarella cheese with the aim to extend its shelf life, regarding the microbial growth and overall cheese quality. Results of qualitative analyses showed that the preserving liquid with the mix of BJ and CL promoted an extension of mozzarella shelf life up to 20 d. A slightly reduced growth of Pseudomonas species was evidenced after 5 d of storage, whereas no inhibition of lactic acid bacteria was observed for the storage period. Moreover, mozzarella cheese packed in mixed preserving liquid possessed better textural properties, evidenced by the lowest proteolysis index measured after 13 d of storage, and a good antioxidant activity.


Asunto(s)
Compuestos de Calcio/farmacología , Queso , Citrus/química , Embalaje de Alimentos , Jugos de Frutas y Vegetales/análisis , Lactatos/farmacología , Compuestos de Calcio/química , Conservantes de Alimentos/química , Almacenamiento de Alimentos , Humanos , Lactatos/química , Factores de Tiempo
2.
J Food Sci Technol ; 57(11): 4293-4298, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33071351

RESUMEN

The effect of different governing liquids on qualitative parameters of lacto-fermented mozzarella cheeses were studied. 0.6% calcium lactate solution maintained the quality of mozzarella cheese for microbial, color and textural properties and prolonged its shelf life up to 18 days, also improving its antioxidant activity by Trolox equivalent antioxidant capacity and Oxygen radical absorbance capacity assays.

3.
Proc Natl Acad Sci U S A ; 110(23): 9451-6, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23650378

RESUMEN

Necrotizing enterocolitis (NEC) is a devastating disease of premature infants characterized by severe intestinal necrosis and for which breast milk represents the most effective protective strategy. Previous studies have revealed a critical role for the lipopolysaccharide receptor toll-like receptor 4 (TLR4) in NEC development through its induction of mucosal injury, yet the reasons for which intestinal ischemia in NEC occurs in the first place remain unknown. We hypothesize that TLR4 signaling within the endothelium plays an essential role in NEC development by regulating perfusion to the small intestine via the vasodilatory molecule endothelial nitric oxide synthase (eNOS). Using a unique mouse system in which we selectively deleted TLR4 from the endothelium, we now show that endothelial TLR4 activation is required for NEC development and that endothelial TLR4 activation impairs intestinal perfusion without effects on other organs and reduces eNOS expression via activation of myeloid differentiation primary response gene 88. NEC severity was significantly increased in eNOS(-/-) mice and decreased upon administration of the phosphodiesterase inhibitor sildenafil, which augments eNOS function. Strikingly, compared with formula, human and mouse breast milk were enriched in sodium nitrate--a precursor for enteral generation of nitrite and nitric oxide--and repletion of formula with sodium nitrate/nitrite restored intestinal perfusion, reversed the deleterious effects of endothelial TLR4 signaling, and reduced NEC severity. These data identify that endothelial TLR4 critically regulates intestinal perfusion leading to NEC and reveal that the protective properties of breast milk involve enhanced intestinal microcirculatory integrity via augmentation of nitrate-nitrite-NO signaling.


Asunto(s)
Enterocolitis Necrotizante/etiología , Mucosa Intestinal/irrigación sanguínea , Microcirculación/fisiología , Transducción de Señal/fisiología , Receptor Toll-Like 4/metabolismo , Análisis de Varianza , Animales , Animales Recién Nacidos , Enterocolitis Necrotizante/tratamiento farmacológico , Enterocolitis Necrotizante/metabolismo , Fórmulas Infantiles/química , Fórmulas Infantiles/farmacología , Ratones , Ratones Noqueados , Microcirculación/efectos de los fármacos , Microscopía Confocal , Leche Humana/química , Nitratos/análisis , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Nitritos/metabolismo , Piperazinas/farmacología , Piperazinas/uso terapéutico , Purinas/farmacología , Purinas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Citrato de Sildenafil , Sulfonas/farmacología , Sulfonas/uso terapéutico , Receptor Toll-Like 4/deficiencia
4.
J Biol Chem ; 289(14): 9584-99, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-24519940

RESUMEN

The cellular cues that regulate the apoptosis of intestinal stem cells (ISCs) remain incompletely understood, yet may play a role in diseases characterized by ISC loss including necrotizing enterocolitis (NEC). Toll-like receptor-4 (TLR4) was recently found to be expressed on ISCs, where its activation leads to ISC apoptosis through mechanisms that remain incompletely explained. We now hypothesize that TLR4 induces endoplasmic reticulum (ER) stress within ISCs, leading to their apoptosis in NEC pathogenesis, and that high ER stress within the premature intestine predisposes to NEC development. Using transgenic mice and cultured enteroids, we now demonstrate that TLR4 induces ER stress within Lgr5 (leucine-rich repeat-containing G-protein-coupled receptor 5)-positive ISCs, resulting in crypt apoptosis. TLR4 signaling within crypts was required, because crypt ER stress and apoptosis occurred in TLR4(ΔIEC-OVER) mice expressing TLR4 only within intestinal crypts and epithelium, but not TLR4(ΔIEC) mice lacking intestinal TLR4. TLR4-mediated ER stress and apoptosis of ISCs required PERK (protein kinase-related PKR-like ER kinase), CHOP (C/EBP homologous protein), and MyD88 (myeloid differentiation primary response gene 88), but not ATF6 (activating transcription factor 6) or XBP1 (X-box-binding protein 1). Human and mouse NEC showed high crypt ER stress and apoptosis, whereas genetic inhibition of PERK or CHOP attenuated ER stress, crypt apoptosis, and NEC severity. Strikingly, using intragastric delivery into fetal mouse intestine, prevention of ER stress reduced TLR4-mediated ISC apoptosis and mucosal disruption. These findings identify a novel link between TLR4-induced ER stress and ISC apoptosis in NEC pathogenesis and suggest that increased ER stress within the premature bowel predisposes to NEC development.


Asunto(s)
Estrés del Retículo Endoplásmico , Enterocolitis Necrotizante/metabolismo , Mucosa Intestinal/metabolismo , Células Madre/metabolismo , Receptor Toll-Like 4/metabolismo , Factor de Transcripción Activador 6/genética , Factor de Transcripción Activador 6/metabolismo , Animales , Apoptosis/genética , Enterocolitis Necrotizante/genética , Enterocolitis Necrotizante/patología , Células HEK293 , Humanos , Mucosa Intestinal/patología , Ratones , Ratones Noqueados , Células Madre/patología , Receptor Toll-Like 4/genética , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
5.
J Immunol ; 190(7): 3541-51, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23455503

RESUMEN

Necrotizing enterocolitis (NEC) develops in response to elevated TLR4 signaling in the newborn intestinal epithelium and is characterized by TLR4-mediated inhibition of enterocyte migration and reduced mucosal healing. The downstream processes by which TLR4 impairs mucosal healing remain incompletely understood. In other systems, TLR4 induces autophagy, an adaptive response to cellular stress. We now hypothesize that TLR4 induces autophagy in enterocytes and that TLR4-induced autophagy plays a critical role in NEC development. Using mice selectively lacking TLR4 in enterocytes (TLR4(ΔIEC)) and in TLR4-deficient cultured enterocytes, we now show that TLR4 activation induces autophagy in enterocytes. Immature mouse and human intestine showed increased expression of autophagy genes compared with full-term controls, and NEC development in both mouse and human was associated with increased enterocyte autophagy. Importantly, using mice in which we selectively deleted the autophagy gene ATG7 from the intestinal epithelium (ATG7(ΔIEC)), the induction of autophagy was determined to be required for and not merely a consequence of NEC, because ATG7(ΔIEC) mice were protected from NEC development. In defining the mechanisms involved, TLR4-induced autophagy led to impaired enterocyte migration both in vitro and in vivo, which in cultured enterocytes required the induction of RhoA-mediated stress fibers. These findings depart from current dogma in the field by identifying a unique effect of TLR4-induced autophagy within the intestinal epithelium in the pathogenesis of NEC and identify that the negative consequences of autophagy on enterocyte migration play an essential role in its development.


Asunto(s)
Autofagia , Movimiento Celular , Enterocolitis Necrotizante/etiología , Enterocitos/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Autofagia/genética , Línea Celular , Movimiento Celular/genética , Modelos Animales de Enfermedad , Enterocolitis Necrotizante/patología , Humanos , Mucosa Intestinal/metabolismo , Ratones , Ratones Transgénicos , Receptor Toll-Like 4/genética , Proteínas de Unión al GTP rho/metabolismo
6.
Tetrahedron Lett ; 56(23): 3097-3100, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-26236050

RESUMEN

The low-molecular weight isopropyl 2-acetamido-α-glucoside 16 (C34) inhibits toll-like receptor 4 (TLR4) in enterocytes and macrophages in vitro, and reduces systemic inflammation in mouse models of endotoxemia and necrotizing enterocolitis. We used a copper(II)-mediated solvolysis of anomeric oxazolines and an acid-mediated conversion of ß-glucosamine and ß-galactosamine pentaacetates to generate analogs of 16 at the anomeric carbon and at C-4 of the pyranose ring. These compounds were evaluated for their influence on TLR4-mediated inflammatory signaling in cultured enterocytes and monocytes. Their efficacy was confirmed using a NF-kB-luciferase reporter mouse, thus establishing the first structure-activity relationship (SAR) study in this series and identifying the more efficacious isopropyl 2-acetamido-α-galactoside 17.

7.
Proc Natl Acad Sci U S A ; 109(28): 11330-5, 2012 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-22733781

RESUMEN

The fetal intestinal mucosa is characterized by elevated Toll-like receptor 4 (TLR4) expression, which can lead to the development of necrotizing enterocolitis (NEC)--a devastating inflammatory disease of the premature intestine--upon exposure to microbes. To define endogenous strategies that could reduce TLR4 signaling, we hypothesized that amniotic fluid can inhibit TLR4 signaling within the fetal intestine and attenuate experimental NEC, and we sought to determine the mechanisms involved. We show here that microinjection of amniotic fluid into the fetal (embryonic day 18.5) gastrointestinal tract reduced LPS-mediated signaling within the fetal intestinal mucosa. Amniotic fluid is abundant in EGF, which we show is required for its inhibitory effects on TLR4 signaling via peroxisome proliferator-activated receptor, because inhibition of EGF receptor (EGFR) with cetuximab or EGF-depleted amniotic fluid blocked the inhibitory effects of amniotic fluid on TLR4, whereas amniotic fluid did not prevent TLR4 signaling in EGFR- or peroxisome proliferator-activated receptor γ-deficient enterocytes or in mice deficient in intestinal epithelial EGFR, and purified EGF attenuated the exaggerated intestinal mucosal TLR4 signaling in wild-type mice. Moreover, amniotic fluid-mediated TLR4 inhibition reduced the severity of NEC in mice through EGFR activation. Strikingly, NEC development in both mice and humans was associated with reduced EGFR expression that was restored upon the administration of amniotic fluid in mice or recovery from NEC in humans, suggesting that a lack of amniotic fluid-mediated EGFR signaling could predispose to NEC. These findings may explain the unique susceptibility of premature infants to the development of NEC and offer therapeutic approaches to this devastating disease.


Asunto(s)
Líquido Amniótico/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mucosa Intestinal/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Línea Celular , Enterocolitis Necrotizante/metabolismo , Enterocitos/metabolismo , Receptores ErbB/metabolismo , Humanos , Recién Nacido , Mucosa Intestinal/embriología , Intestinos/embriología , Ratones , Microscopía Confocal/métodos , Transducción de Señal , Factores de Tiempo
8.
Am J Physiol Gastrointest Liver Physiol ; 306(11): G917-28, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24763555

RESUMEN

Necrotizing enterocolitis is the leading cause of morbidity and mortality from gastrointestinal disease in premature infants and is characterized by initial feeding intolerance and abdominal distention followed by the rapid progression to coagulation necrosis of the intestine and death in many cases. Although the risk factors for NEC development remain well accepted, namely premature birth and formula feeding, the underlying mechanisms remain incompletely understood. Current thinking indicates that NEC develops in response to an abnormal interaction between the mucosal immune system of the premature host and an abnormal indigenous microflora, leading to an exaggerated mucosal inflammatory response and impaired mesenteric perfusion. In seeking to understand the molecular and cellular events leading to NEC, various animal models have been developed. However, the large number and variability between the available animal models and the unique characteristics of each has raised important questions regarding the validity of particular models for NEC research. In an attempt to provide some guidance to the growing community of NEC researchers, we now seek to review the key features of the major NEC models that have been developed in mammalian and nonmammalian species and to assess the advantages, disadvantage, challenges and major scientific discoveries yielded by each. A strategy for model validation is proposed, the principal models are compared, and future directions and challenges within the field of NEC research are explored.


Asunto(s)
Enterocolitis Necrotizante/fisiopatología , Mucosa Intestinal/inmunología , Animales , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata , Recién Nacido , Recien Nacido Prematuro , Reproducibilidad de los Resultados , Proyectos de Investigación
9.
J Immunol ; 188(9): 4543-57, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22461698

RESUMEN

Necrotizing enterocolitis (NEC) is the leading cause of gastrointestinal-related mortality in premature infants, and it develops under conditions of exaggerated TLR4 signaling in the newborn intestinal epithelium. Because NEC does not develop spontaneously, despite the presence of seemingly tonic stimulation of intestinal TLR4, we hypothesized that mechanisms must exist to constrain TLR4 signaling that become diminished during NEC pathogenesis and focused on the intracellular stress response protein and chaperone heat shock protein-70 (Hsp70). We demonstrate that the induction of intracellular Hsp70 in enterocytes dramatically reduced TLR4 signaling, as assessed by LPS-induced NF-κB translocation, cytokine expression, and apoptosis. These findings were confirmed in vivo, using mice that either globally lacked Hsp70 or overexpressed Hsp70 within the intestinal epithelium. TLR4 activation itself significantly increased Hsp70 expression in enterocytes, which provided a mechanism of autoinhibition of TLR4 signaling in enterocytes. In seeking to define the mechanisms involved, intracellular Hsp70-mediated inhibition of TLR4 signaling required both its substrate-binding EEVD domain and association with the cochaperone CHIP, resulting in ubiquitination and proteasomal degradation of TLR4. The expression of Hsp70 in the intestinal epithelium was significantly decreased in murine and human NEC compared with healthy controls, suggesting that loss of Hsp70 protection from TLR4 could lead to NEC. In support of this, intestinal Hsp70 overexpression in mice and pharmacologic upregulation of Hsp70 reversed TLR4-induced cytokines and enterocyte apoptosis, as well as prevented and treated experimental NEC. Thus, a novel TLR4 regulatory pathway exists within the newborn gut involving Hsp70 that may be pharmacologically activated to limit NEC severity.


Asunto(s)
Proteínas HSP70 de Choque Térmico/inmunología , Mucosa Intestinal/inmunología , Transducción de Señal/inmunología , Receptor Toll-Like 4/inmunología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/inmunología , Enterocolitis Necrotizante/inmunología , Enterocolitis Necrotizante/metabolismo , Enterocolitis Necrotizante/patología , Femenino , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Recién Nacido , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Lipopolisacáridos/farmacología , Masculino , Ratones , FN-kappa B/inmunología , FN-kappa B/metabolismo , Complejo de la Endopetidasa Proteasomal/inmunología , Complejo de la Endopetidasa Proteasomal/metabolismo , Estructura Terciaria de Proteína , Proteolisis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Ubiquitina-Proteína Ligasas/inmunología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/efectos de los fármacos , Ubiquitinación/inmunología
10.
J Biol Chem ; 287(44): 37296-308, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-22955282

RESUMEN

Factors regulating the proliferation and apoptosis of intestinal stem cells (ISCs) remain incompletely understood. Because ISCs exist among microbial ligands, immune receptors such as toll-like receptor 4 (TLR4) could play a role. We now hypothesize that ISCs express TLR4 and that the activation of TLR4 directly on the intestinal stem cells regulates their ability to proliferate or to undergo apoptosis. Using flow cytometry and fluorescent in situ hybridization for the intestinal stem cell marker Lgr5, we demonstrate that TLR4 is expressed on the Lgr5-positive intestinal stem cells. TLR4 activation reduced proliferation and increased apoptosis in ISCs both in vivo and in ISC organoids, a finding not observed in mice lacking TLR4 in the Lgr5-positive ISCs, confirming the in vivo significance of this effect. To define molecular mechanisms involved, TLR4 inhibited ISC proliferation and increased apoptosis via the p53-up-regulated modulator of apoptosis (PUMA), as TLR4 did not affect crypt proliferation or apoptosis in organoids or mice lacking PUMA. In vivo effects of TLR4 on ISCs required TIR-domain-containing adapter-inducing interferon-ß (TRIF) but were independent of myeloid-differentiation primary response-gene 88 (MYD88) and TNFα. Physiological relevance was suggested, as TLR4 activation in necrotizing enterocolitis led to reduced proliferation and increased apoptosis of the intestinal crypts in a manner that could be reversed by inhibition of PUMA, both globally or restricted to the intestinal epithelium. These findings illustrate that TLR4 is expressed on ISCs where it regulates their proliferation and apoptosis through activation of PUMA and that TLR4 regulation of ISCs contributes to the pathogenesis of necrotizing enterocolitis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Proliferación Celular , Mucosa Intestinal/patología , Células Madre/metabolismo , Receptor Toll-Like 4/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/fisiología , Enterocolitis Necrotizante/metabolismo , Enterocolitis Necrotizante/patología , Técnicas de Inactivación de Genes , Íleon/patología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/metabolismo , Ratas , Receptores Acoplados a Proteínas G/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal , Células Madre/inmunología , Células Madre/fisiología , Receptor Toll-Like 4/genética , Activación Transcripcional , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/fisiología
11.
Gastroenterology ; 143(3): 708-718.e5, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22796522

RESUMEN

BACKGROUND & AIMS: Little is known about factors that regulate intestinal epithelial differentiation; microbial recognition receptors such as Toll-like receptor (TLR)4 might be involved. We investigated whether intestinal TLR4 regulates epithelial differentiation and is involved in development of necrotizing enterocolitis (NEC) of the immature intestine. METHODS: Mice with conditional disruption of TLR4 in the intestinal epithelium and TLR4 knockout (TLR4(-/-)) mice were generated by breeding TLR4(loxp/loxp) mice with villin-cre and Ella-cre, respectively. Enterocytes that did not express or overexpressed TLR4 were created by lentiviral or adenoviral transduction. Intestinal organoids were cultured on tissue matrices. Bile acids were measured by colorimetric assays, and microbial composition was determined by 16S pyrosequencing. NEC was induced in 7- to 10-day-old mice by induction of hypoxia twice daily for 4 days. RESULTS: TLR4(-/-) mice and mice with enterocyte-specific deletion of TLR4 were protected from NEC; epithelial differentiation into goblet cells was increased via suppressed Notch signaling in the small intestinal epithelium. TLR4 also regulates differentiation of goblet cells in intestinal organoid and enterocyte cell cultures; differentiation was increased on deletion of TLR4 and restored when TLR4 was expressed ectopically. TLR4 signaling via Notch was increased in intestinal tissue samples from patients with NEC, and numbers of goblet cells were reduced. 16S pyrosequencing revealed that wild-type and TLR4-deficient mice had similar microbial profiles; increased numbers of goblet cells were observed in mice given antibiotics. TLR4 deficiency reduced levels of luminal bile acids in vivo, and addition of bile acids to TLR4-deficient cell cultures prevented differentiation of goblet cells. CONCLUSIONS: TLR4 signaling and Notch are increased in intestinal tissues of patients with NEC and required for induction of NEC in mice. TLR4 prevents goblet cell differentiation, independently of the microbiota. Bile acids might initiate goblet cell development.


Asunto(s)
Diferenciación Celular , Enterocolitis Necrotizante/metabolismo , Células Caliciformes/metabolismo , Intestino Delgado/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Animales Recién Nacidos , Ácidos y Sales Biliares/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Enterocolitis Necrotizante/etiología , Enterocolitis Necrotizante/genética , Enterocolitis Necrotizante/microbiología , Enterocolitis Necrotizante/patología , Enterocolitis Necrotizante/prevención & control , Células Caliciformes/microbiología , Células Caliciformes/patología , Humanos , Hipoxia/complicaciones , Fórmulas Infantiles , Recién Nacido , Intestino Delgado/microbiología , Intestino Delgado/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Organoides , Interferencia de ARN , Ratas , Receptores Notch/metabolismo , Transducción de Señal , Técnicas de Cultivo de Tejidos , Receptor Toll-Like 4/deficiencia , Receptor Toll-Like 4/genética , Transfección
12.
Wound Repair Regen ; 21(2): 256-65, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23421747

RESUMEN

A two-dimensional continuum model of collective cell migration is used to predict the closure of gaps in intestinal epithelial cell layers. The model assumes that cell migration is governed by lamellipodia formation, cell-cell adhesion, and cell-substrate adhesion. Model predictions of the gap edge position and complete gap closure time are compared with experimental measures from cell layer scratch assays (also called scratch wound assays). The goal of the study is to combine experimental observations with mathematical descriptions of cell motion to identify effects of gap shape and area on closure time and to propose a method that uses a simple measure (e.g., area) to predict overall gap closure time early in the closure process. Gap closure time is shown to increase linearly with increasing gap area; however, gaps of equal areas but different aspect ratios differ greatly in healing time. Previous methods that calculate overall healing time according to the absolute or percent change in gap area assume that the gap area changes at a constant rate and typically underestimate gap closure time. In this study, data from scratch assays suggest that the rate of change of area is proportional to the first power or square root power of area.


Asunto(s)
Células Epiteliales , Intestinos/patología , Piel/fisiopatología , Cicatrización de Heridas , Heridas y Lesiones/fisiopatología , Animales , Bioensayo , Adhesión Celular , Técnicas de Cultivo de Célula , Movimiento Celular , Uniones Intercelulares , Modelos Teóricos , Valor Predictivo de las Pruebas , Ratas , Piel/lesiones , Piel/patología , Factores de Tiempo , Heridas y Lesiones/patología
13.
Eur Thyroid J ; 12(3)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36976625

RESUMEN

Background: Treatment of advanced follicular thyroid carcinoma (FTC) is based primarily on indirect evidence obtained with multikinase inhibitors (MKI) in clinical trials in which papillary carcinomas represent the vast majority of cases. However, it should be noted that MKI have a non-negligible toxicity that may decrease the patient's quality of life. Conventional chemotherapy with GEMOX (gemcitabine plus oxaliplatin) is an off-label therapy, which seems to have some effectiveness in advanced differentiated thyroid carcinomas, with a good safety profile, although further studies are needed. Case report: We report a case of a metastatic FTC, resistant to several lines of therapy. However, with a durable response to GEMOX, the overall survival of our patient appears to have been extended significantly due to this chemotherapy. Conclusion: GEMOX may have a role in patients with thyroid cancer unresponsive to MKI.


Asunto(s)
Adenocarcinoma Folicular , Neoplasias de la Tiroides , Humanos , Gemcitabina , Oxaliplatino/uso terapéutico , Calidad de Vida , Adenocarcinoma Folicular/tratamiento farmacológico , Neoplasias de la Tiroides/tratamiento farmacológico
14.
Endocr Connect ; 12(9)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37410092

RESUMEN

Nineteen cases of parathyroid carcinoma in patients with multiple endocrine neoplasia type 1 have been reported in the literature, of which 11 carry an inactivating germline mutation in the MEN1 gene. Somatic genetic abnormalities in these parathyroid carcinomas have never been detected. In this paper, we aimed to describe the clinical and molecular characterization of a parathyroid carcinoma identified in a patient with MEN1. A 60-year-old man was diagnosed with primary hyperparathyroidism during the postoperative period of lung carcinoid surgery. Serum calcium and parathyroid hormone levels were 15.0 mg/dL (8.4-10.2) and 472 pg/mL (12-65), respectively. The patient underwent parathyroid surgery, and histological findings were consistent with parathyroid carcinoma. Analysis of the MEN1 gene by next-generation sequencing (NGS) identified a novel germline heterozygous nonsense pathogenic variant (c.978C>A; p.(Tyr326*)), predicted to encode a truncated protein. Genetic analysis of the parathyroid carcinoma revealed a c.307del, p.(Leu103Cysfs*16) frameshift truncating somatic MEN1 variant in the MEN1 gene, which is consistent with MEN1 tumor-suppressor role, confirming its involvement in parathyroid carcinoma etiology. Genetic analysis of CDC73, GCM2, TP53, RB1, AKT1, MTOR, PIK3CA and CCND1 genes in the parathyroid carcinoma DNA did not detect any somatic mutations. To our knowledge, this is the first report of a PC case presenting both germline (first-hit) and somatic (second-hit) inactivation of the MEN1 gene.

15.
Eur Thyroid J ; 12(1)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36378538

RESUMEN

Background: Anaplastic thyroid carcinoma (ATC) is one of the most aggressive solid tumors. ATC is frequently diagnosed at advanced stages with unresectable disease and palliative care is often indicated. Recently, several patient-tailored therapies for ATC are emerging due to advances in molecular profiling of these tumors. Entrectinib is a potent oral selective inhibitor of neutrotrophic tropomyosin receptor kinase (NTRK), ROS1, and anaplastic lymphoma kinase fusions. The experience regarding ATC and other thyroid carcinomas, particularly in the neoadjuvant setting, is minimal. Case report: We present a case of a 51-year-old female patient presenting with a bulky mass of the left thyroid lobe measuring 100 × 108 × 80 mm that was considered surgically unresectable. While waiting for next-generation sequence (NGS) profiling, lenvatinib was initiated. There was an initial clinical and imagiologic response; however, progression occurred after 12 weeks, and at this time NGS identified an ETV6-NTRK3 fusion and entrectinib was started. After 12 weeks, tumor diameters reduced to a minimum of 68×60×49 mm, and the patient underwent total thyroidectomy plus central lymphadenectomy. Histological diagnosis confirmed an ATC (pT4a R2 N1a). Adjuvant radiotherapy (RT) (60 Grays) with weekly paclitaxel (45 mg/m2) was then administered followed by maintenance entrectinib 600 mg daily. Fluorodeoxyglucose positron emission tomography performed 3 months after completion of RT showed only non-specific uptake in the posterior wall of the hypopharynx and larynx, suggestive of inflammation. Conclusion: We report the first case of an ATC with a dramatic response to neoadjuvant therapy with entrectinib, which enabled surgical resection of an ab initio unresectable tumor.


Asunto(s)
Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Femenino , Humanos , Persona de Mediana Edad , Carcinoma Anaplásico de Tiroides/genética , Terapia Neoadyuvante , Proteínas Tirosina Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas/uso terapéutico , Neoplasias de la Tiroides/diagnóstico por imagen
16.
Cancers (Basel) ; 15(17)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37686663

RESUMEN

Anaplastic thyroid carcinoma (ATC) is the most lethal subtype of thyroid cancer, with high invasive and metastatic potential, not responding to conventional treatments. Its aggressiveness may be influenced by macrophages, which are abundant cells in the tumor microenvironment. To investigate the role of macrophages in ATC aggressiveness, indirect co-cultures were established between ATC cell lines and THP-1-derived macrophages. Macrophages significantly increased both the migration and invasion of T235 cells (p < 0.01; p < 0.01), contrasting with a decrease in C3948 (p < 0.001; p < 0.05), with mild effects in T238 migration (p < 0.01) and C643 invasion (p < 0.05). Flow cytometry showed upregulation of CD80 (pro-inflammatory, anti-tumoral) and downregulation of CD163 (anti-inflammatory, pro-tumoral) in macrophages from co-culture with T235 (p < 0.05) and C3948 (p < 0.05), respectively. Accordingly, we found an upregulation of secreted pro-inflammatory mediators (e.g., GM-CSF, IL-1α; p < 0.05) in C3948-macrophage co-cultures. Proteomic analysis showed the upregulation of SPRY4, an inhibitor of the MAPK pathway, in C3948 cells from co-culture. SPRY4 silencing promoted cancer cell invasion, reverting the reduced invasion of C3948 caused by macrophages. Our findings support that macrophages play a role in ATC cell aggressiveness. SPRY4 is a possible modulator of macrophage-ATC cell communication, with a tumor suppressor role relevant for therapeutic purposes.

17.
Am J Pathol ; 179(4): 1929-38, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21854741

RESUMEN

Recurrent rejection shortens graft survival after intestinal transplantation (ITx) in children, most of whom also experience early acute cellular rejection (rejectors). To elucidate mechanisms common to early and recurrent rejection, we used a test cohort of 20 recipients to test the hypothesis that candidate peripheral blood leukocyte genes that trigger rejection episodes would be evident late after ITx during quiescent periods in genome-wide gene expression analysis and would achieve quantitative real-time PCR replication pre-ITx (another quiescent period) and in the early post-ITx period during first rejection episodes. Eight genes were significantly up-regulated among rejectors in the late post-ITx and pre-ITx periods, compared with nonrejectors: TBX21, CCL5, GNLY, SLAMF7, TGFBR3, NKG7, SYNE1, and GK5. Only CCL5 was also up-regulated in the early post-ITx period. Among resting peripheral blood leukocyte subsets in randomly sampled nonrejectors, CD14(+) monocytes expressed the CCL5 protein maximally. Compared with nonrejectors, rejectors demonstrated higher counts of both circulating CCL5(+)CD14(+) monocytes and intragraft CD14(+) monocyte-derived macrophages in immunohistochemistry of postperfusion and early post-ITx biopsies from the test and an independent replication cohort. Donor-specific alloreactivity measured with CD154(+) T-cytotoxic memory cells correlated with the CCL5 gene and intragraft CD14(+) monocyte-derived macrophages at graft reperfusion and early post-ITx. CCL5 gene up-regulation and CD14(+) macrophages likely prime cellular ITx rejection. Infiltration of reperfused intestine allografts with CD14(+) macrophages may predict rejection events.


Asunto(s)
Regulación de la Expresión Génica , Rechazo de Injerto/genética , Rechazo de Injerto/inmunología , Intestinos/trasplante , Leucocitos/metabolismo , Receptores de Lipopolisacáridos/metabolismo , Macrófagos/trasplante , Presentación de Antígeno/inmunología , Preescolar , Femenino , Perfilación de la Expresión Génica , Humanos , Memoria Inmunológica/inmunología , Lactante , Inflamación/genética , Intestinos/inmunología , Intestinos/patología , Recuento de Linfocitos , Macrófagos/metabolismo , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa , Linfocitos T Citotóxicos/inmunología , Donantes de Tejidos , Trasplante Homólogo
18.
Clin Endocrinol (Oxf) ; 76(1): 33-8, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21790700

RESUMEN

OBJECTIVE: Germline mutations in the HRPT2 gene are associated with the hereditary hyperparathyroidism-jaw tumour syndrome (HPT-JT) and a subset of familial isolated hyperparathyroidism (FIHP). Somatic HRPT2 mutations are detected in sporadic parathyroid carcinomas and less frequently in cystic adenomas. The purpose of this study was to investigate the underlying HRPT2 defect in a young patient with symptomatic hyperparathyroidism due to an apparently sporadic parathyroid adenoma with cystic features. DESIGN AND METHODS: HRPT2 mutations in the patient's genomic and parathyroid tumour DNA were screened by PCR-based sequencing. Tumour loss of heterozygosity (LOH) at the HRPT2 locus was assessed with microsatellite markers. A large germline HRPT2 deletion was investigated by real-time quantitative PCR analysis (qPCR). Genomic DNA losses were also appraised by chromosomal comparative genomic hybridization (cCGH). RESULTS: No germline HRPT2 point mutation was detected by direct sequencing. A novel hemizygous HRPT2 somatic mutation (c.32delA) was identified in the tumour. Apparent constitutional homozygosity for HRPT2 flanking microsatellite markers, and absence of LOH at a distal marker, suggested a large germline deletion. Gene dose mapping by qPCR unveiled a de novo deletion of the whole HRPT2 gene and adjacent loci (<9·3 Mb in size). cCGH confirmed germline DNA loss involving the HRPT2 locus. CONCLUSIONS: We report the first large germline deletion of the HRPT2 gene, which was not detectable by conventional PCR-based sequencing methods. This finding emphasizes that qPCR should be implemented in HRPT2 molecular analysis, which may improve genetic assessment and clinical management of patients with FIHP and HPT-JT.


Asunto(s)
Eliminación de Gen , Mutación de Línea Germinal , Hiperparatiroidismo/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Adulto , Secuencia de Bases , ADN/genética , Humanos , Masculino
19.
Biophys J ; 100(3): 535-543, 2011 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-21281567

RESUMEN

Collective cell migration plays an important role during wound healing and embryo development. Although the exact mechanisms that coordinate such migration are still unknown, experimental studies of moving cell layers have shown that the primary interactions governing the motion of the layer are the force of lamellipodia, the adhesion of cells to the substrate, and the adhesion of cells to each other. Here, we derive a two-dimensional continuum mechanical model of cell-layer migration that is based on a novel assumption of elastic deformation of the layer and incorporates basic mechanical interactions of cells as well as cell proliferation and apoptosis. The evolution equations are solved numerically using a level set method. The model successfully reproduces data from two types of experiments: 1), the contraction of an enterocyte cell layer during wound healing; and 2), the expansion of a radially symmetric colony of MDCK cells, both in the edge migration velocity and in cell-layer density. In accord with experimental observations, and in contrast to reaction-diffusion models, this model predicts a partial wound closure if lamellipod formation is inhibited at the wound edge and gives implications of the effect of spatially restricted proliferation.


Asunto(s)
Movimiento Celular , Modelos Biológicos , Cicatrización de Heridas , Animales , Recuento de Células , Línea Celular , Proliferación Celular , Perros , Enterocitos/citología , Seudópodos/metabolismo
20.
J Biol Chem ; 285(7): 4995-5002, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-20007974

RESUMEN

Toll-like receptor-4 (TLR4) is the receptor for bacterial lipopolysaccharide, yet it may also respond to a variety of endogenous molecules. Necrotizing enterocolitis (NEC) is the leading cause of death from gastrointestinal disease in newborn infants and is characterized by intestinal mucosal destruction and impaired enterocyte migration due to increased TLR4 signaling on enterocytes. The endogenous ligands for TLR4 that lead to impaired enterocyte migration remain unknown. High mobility group box-1 (HMGB1) is a DNA-binding protein that is released from injured cells during inflammation. We thus hypothesize that extracellular HMGB1 inhibits enterocyte migration via activation of TLR4 and sought to define the pathways involved. We now demonstrate that murine and human NEC are associated with increased intestinal HMGB1 expression, that serum HMGB1 is increased in murine NEC, and that HMGB1 inhibits enterocyte migration in vitro and in vivo in a TLR4-dependent manner. This finding was unique to enterocytes as HMGB1 enhanced migration of inflammatory cells in vitro and in vivo. In seeking to understand the mechanisms involved, TLR4-dependent HMGB1 signaling increased RhoA activation in enterocytes, increased phosphorylation of focal adhesion kinase, and increased phosphorylation of cofilin, resulting in increased stress fibers and focal adhesions. Using single cell force traction microscopy, the net effect of HMGB1 signaling was a TLR4-dependent increase in cell force adhesion, accounting for the impaired enterocyte migration. These findings demonstrate a novel pathway by which TLR4 activation by HMGB1 delays mucosal repair and suggest a novel potential therapeutic target in the amelioration of intestinal inflammatory diseases like NEC.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Enterocitos/citología , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacología , Mucosa Intestinal/metabolismo , Receptor Toll-Like 4/metabolismo , Actinas/metabolismo , Animales , Línea Celular , Movimiento Celular/genética , Quimiotaxis/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Enterocolitis Necrotizante/metabolismo , Enterocitos/efectos de los fármacos , Citometría de Flujo , Humanos , Técnicas In Vitro , Recién Nacido , Mucosa Intestinal/citología , Macrófagos/efectos de los fármacos , Macrófagos/fisiología , Ratones , Receptor Toll-Like 4/genética , Proteína de Unión al GTP rhoA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA