RESUMEN
INTRODUCTION: Aerobic physical training (APT) reduces eosinophilic airway inflammation, but its effects and mechanisms in severe asthma remain unknown. METHODS: An in vitro study employing key cells involved in the pathogenesis of severe asthma, such as freshly isolated human eosinophils, neutrophils, and bronchial epithelial cell lineage (BEAS-2B) and lung fibroblasts (MRC-5 cells), was conducted. Additionally, an in vivo study using male C57Bl/6 mice, including Control (Co; n = 10), Trained (Exe; n = 10), house dust mite (HDM; n = 10), and HDM + Trained (HDM + Exe; n = 10) groups, was carried out, with APT performed at moderate intensity, 5x/week, for 4 weeks. RESULTS: HDM and bradykinin, either alone or in combination, induced hyperactivation in human neutrophils, eosinophils, BEAS-2B, and MRC-5 cells. In contrast, IL-10, the primary anti-inflammatory molecule released during APT, inhibited these inflammatory effects, as evidenced by the suppression of numerous cytokines and reduced mRNA expression of the B1 receptor and ACE-2. The in vivo study demonstrated that APT decreased bronchoalveolar lavage levels of bradykinin, IL-1ß, IL-4, IL-5, IL-17, IL-33, TNF-α, and IL-13, while increasing levels of IL-10, klotho, and IL-1RA. APT reduced the accumulation of polymorphonuclear cells, lymphocytes, and macrophages in the peribronchial space, as well as collagen fiber accumulation, epithelial thickness, and mucus accumulation. Furthermore, APT lowered the expression of the B1 receptor and ACE-2 in lung tissue and reduced bradykinin levels in the lung tissue homogenate compared to the HDM group. It also improved airway resistance, tissue resistance, and tissue damping. On a systemic level, APT reduced total leukocytes, eosinophils, neutrophils, basophils, lymphocytes, and monocytes in the blood, as well as plasma levels of IL-1ß, IL-4, IL-5, IL-17, TNF-α, and IL-33, while elevating the levels of IL-10 and IL-1RA. CONCLUSION: These findings indicate that APT inhibits the severe asthma phenotype by targeting kinin signaling.
Asunto(s)
Asma , Bradiquinina , Humanos , Animales , Ratones , Masculino , Interleucina-10 , Proteína Antagonista del Receptor de Interleucina 1 , Interleucina-17 , Interleucina-33 , Interleucina-4 , Interleucina-5 , Factor de Necrosis Tumoral alfaRESUMEN
Acute respiratory distress syndrome (ARDS) is defined as hypoxemic respiratory failure with intense pulmonary inflammation, involving hyperactivation of endothelial cells and neutrophils. Given the anti-inflammatory effects of aerobic exercise (AE), this study investigated whether AE performed daily for 5 weeks would inhibit extra-pulmonary LPS-induced ARDS. C57Bl/6 mice were distributed into Control, Exercise, LPS and Exercise+LPS groups. AE was performed on a treadmill for 5x/week for four weeks before LPS administration. 24hours after the final AE physical test, animals received 100ug of LPS intra-peritoneally. In addition, whole blood cell culture, neutrophils and human endothelial cells were preincubated with IL-10, an anti-inflammatory cytokine induced by exercise. AE reduced total protein levels (p<0.01) and neutrophil accumulation in bronchoalveolar lavage (BAL) (p<0.01) and lung parenchyma (p<0.01). AE reduced BAL inflammatory cytokines IL-1ß, IL-6 and GM-CSF (p<0.001), CXCL1/KC, IL-17, TNF-alpha and IGF-1 (p<0.01). Systemically, AE reduced IL-1ß, IL-6 and IFN-gamma (p<0.001), CXCL1/KC (p<0.01) and TNF-alpha (p<0.05). AE increased IL-10 levels in serum (p<0.001) and BAL (p<0.001). Furthermore, AE increased superoxide dismutase SOD (p<0.01) and decreased superoxide anion accumulation in the lungs (p<0.01). Lastly, pre-incubation with IL-10 significantly reduced LPS-induced activation of whole blood cells, neutrophils and HUVECs, as observed by reduced production of IL-1ß, IL-6, IL-8 and TNF-alpha. Our data suggest that AE inhibited LPS-induced lung inflammation by attenuating inflammatory cytokines and oxidative stress markers in mice and human cell culture via enhanced IL-10 production.
Asunto(s)
Interleucina-10/inmunología , Estrés Oxidativo , Condicionamiento Físico Animal , Neumonía/inmunología , Síndrome de Dificultad Respiratoria/inmunología , Lesión Pulmonar Aguda , Animales , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Citocinas/sangre , Citocinas/inmunología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Interleucina-10/farmacología , Lipopolisacáridos , Pulmón/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Neumonía/inducido químicamente , Síndrome de Dificultad Respiratoria/inducido químicamenteRESUMEN
Air pollution is a growing problem worldwide, inducing and exacerbating several diseases. Among the several components of air pollutants, particulate matter (PM), especially thick (10-2.5 µm; PM 10) and thin (≤2.5 µm; PM 2.5), are breathable particles that easily can be deposited within the lungs, resulting in pulmonary and systemic inflammation. Although physical activity is strongly recommended, its effects when practiced in polluted environments are questionable. Therefore, the present study evaluated the pulmonary and systemic response of concomitant treadmill training with PM 2.5 and PM 10 exposure. Treadmill training inhibited PM 2.5- and PM 10-induced accumulation of total leukocytes (p<0.001), neutrophils (p<0.001), macrophages (p<0.001) and lymphocytes (p<0.001) in bronchoalveolar lavage (BAL), as well as the BAL levels of IL-1beta (p<0.001), CXCL1/KC (p<0.001) and TNF-alpha (p<0.001), whereas it increased IL-10 levels (p<0.05). Similar effects were observed on accumulation of polymorphonuclear (p<0.01) and mononuclear (p<0.01) cells in the lung parenchyma and in the peribronchial space. Treadmill training also inhibited PM 2.5- and PM 10-induced systemic inflammation, as observed in the number of total leukocytes (p<0.001) and in the plasma levels of IL-1beta (p<0.001), CXCL1/KC (p<0.001) and TNF-alpha (p<0.001), whereas it increased IL-10 levels (p<0.001). Treadmill training inhibits lung and systemic inflammation induced by particulate matter.
Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Pulmón/inmunología , Material Particulado/efectos adversos , Condicionamiento Físico Animal , Animales , Líquido del Lavado Bronquioalveolar , Citocinas/metabolismo , Inflamación/inmunología , Inflamación/prevención & control , Pulmón/citología , Linfocitos/metabolismo , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Modelos Animales , Neutrófilos/metabolismoRESUMEN
AIM: Physical activity attenuates hypertension in older adults, but its impact on pulmonary function and mechanics in hypertensive older adults is unknown. The study seeks to understand whether a physically active lifestyle can improve respiratory capacity, the mechanical efficiency of the lungs, and, consequently, the quality of life of these individuals, comparing data between groups of active and sedentary hypertensive older adults. METHODS: This is a cross-sectional study. We evaluated 731 older adults, stratified into two initial groups: hypertensive older adults (HE; n = 445) and non-hypertensive older adults (NHE; n = 286). For a secondary analysis, we used the International Physical Activity Questionnaire to sub-stratify HE and NHE into four groups: physically inactive hypertensive (PIH; n = 182), active hypertensive (AH; n = 110), physically inactive non-hypertensive (PINH; n = 104), and active non-hypertensive (ANH; n = 65). Lung function was measured by spirometry, and lung mechanics were assessed by impulse oscillometry. RESULTS: Hypertensive older adults presented reduced lung function compared to non-hypertensive older adults, and physical inactivity accentuated this decline. Regarding pulmonary mechanics, hypertensive older adults had higher resistance of the entire respiratory system (R5 Hz), the central airways (R20 Hz), and peripheral airways (R5-20 Hz), which may trigger bronchoconstriction. CONCLUSIONS: Hypertension is associated with impaired lung function and mechanics in older adults, and a physically active lifestyle attenuates these dysfunctions.
Asunto(s)
Ejercicio Físico , Hipertensión , Humanos , Hipertensión/fisiopatología , Estudios Transversales , Anciano , Masculino , Ejercicio Físico/fisiología , Femenino , Pruebas de Función Respiratoria , Mecánica Respiratoria/fisiología , Pulmón/fisiopatología , Calidad de Vida , Persona de Mediana EdadRESUMEN
Even after virus elimination, numerous sequelae of coronavirus disease 2019 (COVID-19) persist. Based on accumulating evidence, large amounts of proinflammatory cytokines are released to drive COVID-19 progression, severity, and mortality, and their levels remain elevated after the acute phase of COVID-19, playing a central role in the disease' sequelae. In this manner, bronchial epithelial cells are the first cells hyperactivated by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), leading to massive cytokine release, triggering the hyperactivation of leukocytes and other cells, and mediating COVID-19 sequelae. Therefore, proinflammatory cytokine production is initiated by the host. This in vitro study tested the hypothesis that ImmuneRecov™, a nutritional blend, inhibits the SARS-CoV-2-induced hyperactivation of human bronchial epithelial cells (BEAS-2B). BEAS-2B (5x104/mL/well) cells were cocultivated with 1 ml of blood from a SARS-CoV-2-infected patient for 4 h, and the nutritional blend (1 µg/mL) was added in the first minute of coculture. After 4 h, the cells were recovered and used for analyses of cytotoxicity with the (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) (MTT) assay and the expression of the IL-1ß, IL-6, and IL-10 mRNAs. The supernatant was collected to measure cytokine levels. SARS-CoV-2 incubation resulted in increased levels of IL-1ß and IL-6 in BEAS-2B cells (p < 0.001). Treatment with the nutritional blend resulted in reduced levels of the proinflammatory cytokines IL-1ß and IL-6 (p < 0.001) and increased levels of the anti-inflammatory cytokine IL-10 (p < 0.001). Additionally, the nutritional blend reduced the expression of the IL-1ß and IL-6 mRNAs in SARS-CoV-2-stimulated cells and increased the expression of the IL-10 and IFN-γ mRNAs. In conclusion, the nutritional blend exerts important anti-inflammatory effects on cells in the context of SARS-CoV-2 infection.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Interleucina-10 , Interleucina-6 , Citocinas/metabolismo , Células Epiteliales/metabolismo , AntiinflamatoriosRESUMEN
Leukemia is among the most common types of hematological cancers and the use of herbal medicines to prevent and treat leukemia are under quick development. Among several molecular pathways involved in leukemia pathogenesis and exacerbations, purinergic signaling is revealed as a key component. In the present study, the effects of two doses (5 ug/mL and 10 ug/mL) of Immunity-6™, a phytocomplex composed by beta-glucan, green tea (Camelia sinensis), chamomile (Matricaria chamomilla), and ascorbic acid (vitamin C) was tested in vitro, using chronic myelogenous leukemia cell line (K-562; 5 ×104/mL/well), which were challenged with lipopolysaccharide (LPS; 1 ug/mL) for 24 h. The results demonstrated that both doses of Immunity-6™ inhibited ATP release (p < 0.001) and P2×7 receptor at mRNA levels expression (p < 0.001). Purinergic inhibition by Immunity-6™ was followed by reduced release of proinflammatory cytokines IL-1beta (p < 0.001) and IL-6 (p < 0.001), while only 5 ug/mL of Immunity-6™ reduced the release of TNF-alpha (p < 0.001). Beyond to inhibit the release of pro-inflammatory cytokines, both doses of Immunity-6™ induced the release of anti-inflammatory cytokine IL-10 (p < 0.001), while only the higher dose (10 ug/mL) of Immunity-6™ induced the release of anti-inflammatory IL-1ra (p < 0.05) and klotho (p < 0.001). Thus, Immunity-6™ may be a promising adjuvant in the treatment of leukemia and further clinical trials are guaranteed.
Asunto(s)
Citocinas , Leucemia , Fitoterapia , Humanos , Adenosina Trifosfato/metabolismo , Línea Celular Tumoral , Citocinas/metabolismo , Interleucina-1beta/metabolismo , Leucemia/tratamiento farmacológico , Lipopolisacáridos/farmacología , Receptores Purinérgicos P2X7/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Collagen-based products are found in different pharmaceuticals, medicine, food, and cosmetics products for a wide variety of applications. However, its use to prevent or improve the health of skin is growing dizzyingly. Therefore, this study investigated whether collagen peptides could induce fibroblast and keratinocyte proliferation and activation beyond reducing an inflammatory response induced by lipopolysaccharide (LPS). Human skin fibroblasts (CCD-1072Sk) and human keratinocytes (hKT-nh-skp-KT0026) were seeded at a concentration of 5 × 104 cells/mL. LPS (10 ng/mL) and three doses of collagen peptides (2.5 mg/mL, 5 mg/mL, 10 mg/mL) were used. The readout parameters were cell proliferation; expression of inducible nitric oxide synthase (iNOS); expression of pro-collagen-1α by fibroblasts; and secretion of interleukin-1ß (IL-1ß), interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor α (TNF-α), transforming growth factor ß (TGF-ß), and vascular endothelial growth factor (VEGF) by both cell types. The results demonstrated that all doses of collagen supplementation induced increased proliferation of both human fibroblasts (p < 0.01) and human keratinocytes (p < 0.001), while only the dose of 10 mg/mL induced an increased expression of pro-collagen-1α by fibroblasts. Similarly, only the dose of 10 mg/mL reduced LPS-induced iNOS expression in fibroblasts (p < 0.05) and keratinocytes (p < 0.01). In addition, collagen supplementation reduced the LPS-induced IL-1ß (p < 0.05), IL-6 (p < 0.001), IL-8 (p < 0.01), and TNF-α (p < 0.05), and increased the TGF-ß and VEGF expression in fibroblasts. Furthermore, collagen supplementation reduced the LPS-induced IL-1ß (p < 0.01), IL-6 (p < 0.01), IL-8 (p < 0.01), and TNF-α (p < 0.001), and increased the TGF-ß (p < 0.05) and VEGF (p < 0.05) expression in keratinocytes. In conclusion, collagen peptides were found to induce fibroblast and keratinocyte proliferation and pro-collagen-1α expression, involving increased expression of TGF-ß and VEGF, as well as the suppression of an inflammatory response induced by LPS.
Asunto(s)
Interleucina-8 , Factor de Necrosis Tumoral alfa , Humanos , Antiinflamatorios/metabolismo , Proliferación Celular , Células Cultivadas , Fibroblastos/metabolismo , Interleucina-1/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Queratinocitos/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Colágeno/farmacologíaRESUMEN
Several benefits of aerobic training for asthmatic patients have been demonstrated. However, its effects on systemic inflammation and on airway remodeling mediators and lung mechanics are unknown. This prospective study included 21 intermittent and mild asthma patients, and as primary outcomes, the evaluation of pro- and anti-inflammatory and pro- and antifibrotic mediators in exhaled breath condensate (EBC) and blood were performed, beyond the cell counting in blood and in induced sputum. Aerobic training was performed for 3 months, 3 times per week. Aerobic training increased the levels of anti-inflammatory cytokines and of antifibrotic mediators in the breath condensate: IL-1ra (p = 0.0488), IL-10 (p = 0.0048), relaxin-3 (p = 0.0019), and klotho (p < 0.0043), respectively. Similarly, in plasma, increased levels of IL-1ra (p = 0.0147), IL-10 (p < 0.0001), relaxin-3 (p = 0.004), and klotho (p = 0.0023) were found. On contrary, reduced levels of proinflammatory cytokines in the breath condensate, IL-1ß (p = 0.0008), IL-4 (p = 0.0481), IL-5 (p < 0.0001), IL-6 (p = 0.0032), IL-13 (p = 0.0013), and TNF-α (p = 0.0001) and profibrotic markers VEGF (p = 0.0017) and TSLP (p = 0.0056) were found. Similarly, in plasma, aerobic training significantly reduced the levels of proinflammatory cytokines IL-1ß (p = 0.0008), IL-4 (p = 0.0104), IL-5 (p = 0.0001), IL-6 (p = 0.006), IL-13 (p = 0.0341), and TNF-α (p = 0.0003) and of profibrotic markers VEGF (p = 0.0009) and TSLP (p < 0.0076). Fractional exhaled nitric oxide (FeNO) was reduced after the intervention (p = 0.0313). Regarding inflammatory cells in sputum, there was a reduction in total cells (p = 0.008), eosinophils (p = 0.009), and macrophages (p = 0.020), as well as of blood eosinophils (p = 0.0203) and lymphocytes (p = 0.0198). Aerobic training positively modulates chronic airway inflammation and remodeling mediators, beyond to improve systemic inflammation in intermittent and mild asthmatic patients.
Asunto(s)
Asma , Relaxina , Humanos , Espiración , Pruebas Respiratorias , Interleucina-13 , Interleucina-10 , Proteína Antagonista del Receptor de Interleucina 1 , Factor de Necrosis Tumoral alfa , Interleucina-6 , Interleucina-4 , Estudios Prospectivos , Factor A de Crecimiento Endotelial Vascular , Interleucina-5 , Óxido Nítrico , Asma/terapia , Citocinas , Inflamación , PulmónRESUMEN
The low-grade inflammation associated with metabolic syndrome (MS) triggers functional and structural alterations in several organs. Whereas lung function impairment is well reported for older adult population, the effect of MS on functional and immunological responses in the lungs remains unclear. In this cross-sectional study we determined whether MS alters pulmonary function, and immunological responses in older adults with MS. The study sample consisted of older adults with MS (68 ± 3 years old; n = 77) and without MS (67 ± 3 years old; n = 77). Impulse oscillometry was used to evaluate airway and tissue resistance, and reactance. Biomarkers of inflammation and fibrosis were assessed in the blood and in breath condensate. The total resistance of the respiratory system (R5Hz; p < 0.009), and the resistance of the proximal (R20Hz; p < 0.001) and distal (R5Hz-R20Hz; p < 0.004) airways were higher in MS individuals compared to those without MS. Pro-inflammatory (leptin, IL-1beta, IL-8, p < 0.001; TNF-alpha, p < 0.04) and anti-inflammatory cytokines (adiponectin, IL-1ra, IL-10, p < 0.001), anti-fibrotic (relaxin 1, relaxin 3, Klotho, p < 0.001) and pro-fibrotic (VEGF, p < 0.001) factors were increased in sera and in breath condensate individuals with MS. The results show that MS adversely affect lung mechanics, function, and immunological response in older adults. The data offer a metabolic basis for the inflammaging of the lungs and suggest the lungs as a potential therapeutic target for controlling the immune response and delaying the onset of impaired lung function in older adults with MS.
Asunto(s)
Pulmón/fisiopatología , Síndrome Metabólico/fisiopatología , Pruebas de Función Respiratoria , Anciano , Antropometría , Biomarcadores/metabolismo , Estudios Transversales , Citocinas/metabolismo , Femenino , Fuerza de la Mano , Humanos , Inflamación , Masculino , Persona de Mediana Edad , Fuerza Muscular , Oscilometría , Fibrosis Pulmonar/fisiopatología , Fenómenos Fisiológicos RespiratoriosRESUMEN
OBJECTIVE: The Parkinson Anxiety Scale (PAS) was developed to measure the severity of anxiety symptoms in patients with Parkinson's disease (PD), and it has not yet been adapted and validated in Portuguese. Thus, this study evaluated the reliability and validity of a translated and adapted version of the PAS for the Brazilian population of PD patients. METHODS: The Parkinson Anxiety Scale - Brazilian Version (PAS-BV) was completed by 55 patients with PD. The reliability (test-retest reliability, interrater reliability and internal consistency) and construct validity of the PAS-BV were assessed by comparing it with the Beck Anxiety Inventory (BAI), the Parkinson's Disease Fatigue Scale (PFS) and the Unified Parkinson Disease Rating Scale (UPDRS) part III. RESULTS: Patients with PD had an average age of 64.51 ± 9.20 years and had PD for an average of 6.98 ± 5.02 years. The reliability of the PAS-BV was 0.83, and the intraclass correlation coefficient (ICC) (retest-test) was 0.88. The scale presented good convergent validity with the BAI (rs = 0.82, p < 0.05). It also presented good divergent validity with the PFS (rs = 0.24, p > 0.05) and the UPDRS part II (rs = -0.10, p > 0.05), part III (rs = -0.21, p > 0.05), and part IV (rs = 0.03, p > 0.05), as indicated by the absence of significant correlations. However, there was a significant correlation between the PAS-BV and part I of the UPDRS (rs = 0.67, p < 0.05). CONCLUSION: The PAS-BV presents substantial reliability and validity for patients with PD without dementia.
RESUMEN
Idiopathic pulmonary fibrosis (IPF) is a progressive and chronic inflammatory disease with a poor prognosis and very few available treatment options. Low-level laser therapy (LLLT) has been gaining prominence as a new and effective anti-inflammatory and immunomodulatory agent. Can lung inflammation and the airway remodeling be regulated by LLLT in an experimental model of IPF in C57Bl/6 mice? The present study investigated if laser attenuates cellular migration to the lungs, the airway remodeling as well as pro-fibrotic cytokines secretion from type II pneumocytes and fibroblasts. Mice were irradiated (780 nm and 30 mW) and then euthanized fifteen days after bleomycin-induced lung fibrosis. Lung inflammation and airway remodeling were evaluated through leukocyte counting in bronchoalveolar lavage fluid (BALF) and analysis of collagen in lung, respectively. Inflammatory cells in blood were also measured. For in vitro assays, bleomycin-activated fibroblasts and type II pneumocytes were irradiated with laser. The pro- and anti-inflammatory cytokines level in BALF as well as cells supernatant were measured by ELISA, and the TGFß in lung was evaluated by flow cytometry. Lung histology was used to analyze collagen fibers around the airways. LLLT reduced both migration of inflammatory cells and deposition of collagen fibers in the lungs. In addition, LLLT downregulated pro-inflammatory cytokines and upregulated the IL-10 secretion from fibroblasts and pneumocytes. Laser therapy greatly reduced total lung TGFß. Systemically, LLLT also reduced the inflammatory cells counted in blood. There is no statistical difference in inflammatory parameters studied between mice of the basal group and the laser-treated mice. Data obtained indicate that laser effectively attenuates the lung inflammation, and the airway remodeling in experimental pulmonary fibrosis is driven to restore the balance between the pro- and anti-inflammatory cytokines in lung and inhibit the pro-fibrotic cytokines secretion from fibroblasts.
Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Citocinas/metabolismo , Fibrosis Pulmonar Idiopática/radioterapia , Rayos Láser , Animales , Líquido del Lavado Bronquioalveolar/química , Células Cultivadas , Citocinas/análisis , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de la radiación , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células Epiteliales/efectos de la radiación , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Fibrosis Pulmonar Idiopática/patología , Terapia por Láser , Masculino , Ratones , Ratones Endogámicos C57BL , Regulación hacia Arriba/efectos de la radiaciónRESUMEN
INTRODUCTION: The aim of this study was to investigate the effect of aerobic exercise (AE) in reducing bleomycin-induced fibrosis in mice of a Th2-dominant immune background (BALB/c). METHODS: BALB/c mice were distributed into: sedentary, control (CON), Exercise-only (EX), sedentary, bleomycin-treated (BLEO) and bleomycin-treated+exercised (BLEO+EX); (n = 8/group). Following treadmill adaptation, 15 days following a single, oro-tracheal administration of bleomycin (1.5U/kg), AE was performed 5 days/week, 60min/day for 4 weeks at moderate intensity (60% of maximum velocity reached during a physical test) and assessed for pulmonary inflammation and remodeling, and cytokine levels in bronchoalveolar lavage (BAL). RESULTS: At 45 days post injury, compared to BLEO, BLEO+EX demonstrated reduced collagen deposition in the airways (p<0.001) and also in the lung parenchyma (p<0.001). In BAL, a decreased number of total leukocytes (p<0.01), eosinophils (p<0.001), lymphocytes (p<0.01), macrophages (p<0.01), and neutrophils (p<0.01), as well as reduced pro-inflammatory cytokines (CXCL-1; p<0.01), (IL-1ß; p<0.001), (IL-5; p<0.01), (IL-6; p<0.001), (IL-13; p<0.01) and pro-fibrotic growth factor IGF-1 (p<0.001) were observed. Anti-inflammatory cytokine IL-10 was increased (p<0.001). CONCLUSION: AE attenuated bleomycin-induced collagen deposition, inflammation and cytokines accumulation in the lungs of mice with a predominately Th2-background suggesting that therapeutic AE (15-44 days post injury) attenuates the pro-inflammatory, Th2 immune response and fibrosis in the bleomycin model.
RESUMEN
INTRODUCTION: This study investigated the effects of aerobic exercise (AE) on both the maturation of dendritic cells (DC) and the activation of lymphocytes in a mouse model of chronic allergic airway inflammation. METHODS: C57BL/6 mice distributed into control, exercise, ovalbumin (OVA), and OVA + exercise groups were submitted to OVA sensitization and challenge. Treadmill training was performed for 4 wk, and mice were assessed for classical features of chronic allergic airway inflammation as well as dendritic cell activation and T-lymphocyte response. RESULTS: AE reduced OVA-induced eosinophilic inflammation as observed in bronchoalveolar lavage fluid (P < 0.001), airway walls (P < 0001), and also reduced collagen deposition (P < 0.001). AE also reduced bronchoalveolar lavage fluid cytokines (interleukin [IL]-4, P < 0.001; IL-5, P < 0.01; IL-6, P < 0.001; IL-13, P < 0.01; and tumor necrosis factor α, P < 0.01). Cells derived from mediastinal lymphnodes of AE animals that were restimulated with OVA produced less IL-4 (P < 0.01), IL-5 (P < 0.01), and IL-13 (P < 0.001). In addition, AE reduced both DC activation, as demonstrated by reduced release of IL-6 (P < 0.001), CXCL1/KC (P < 0.01), IL-12p70 (P < 0.01), and tumor necrosis factor α (P < 0.05) and DC maturation, as demonstrated by lower MCH-II expression (P < 0.001). CONCLUSION: AE attenuated dendritic cell and lymphocyte activation and maturation, which contributed to reduced airway inflammation and remodeling in the OVA model of chronic allergic airway inflammation.