Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol ; 173(3): 1798-1810, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28153926

RESUMEN

The essential micronutrient manganese (Mn) functions as redox-active cofactor in active sites of enzymes and, thus, is involved in various physiological reactions. Moreover, in oxygenic photosynthetic organisms, Mn is of special importance, since it is central to the oxygen-evolving complex in photosystem II. Although Mn is an essential micronutrient, increased amounts are detrimental to the organism; thus, only a small window exists for beneficial concentrations. Accordingly, Mn homeostasis must be carefully maintained. In contrast to the well-studied uptake mechanisms in cyanobacteria, it is largely unknown how Mn is distributed to the different compartments inside the cell. We identified a protein with so far unknown function as a hypothetical Mn transporter in the cyanobacterial model strain Synechocystis sp. PCC 6803 and named this protein Mnx for Mn exporter. The knockout mutant Δmnx showed increased sensitivity toward externally supplied Mn and Mn toxicity symptoms, which could be linked to intracellular Mn accumulation. 54Mn chase experiments demonstrated that the mutant was not able to release Mn from the internal pool. Microscopic analysis of a Mnx::yellow fluorescent protein fusion showed that the protein resides in the thylakoid membrane. Heterologous expression of mnx suppressed the Mn-sensitive phenotype of the Saccharomyces cerevisiae mutant Δpmr1 Our results indicate that Mnx functions as a thylakoid Mn transporter and is a key player in maintaining Mn homeostasis in Synechocystis sp. PCC 6803. We propose that Mn export from the cytoplasm into the thylakoid lumen is crucial to prevent toxic cytoplasmic Mn accumulation and to ensure Mn provision to photosystem II.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Homeostasis , Manganeso/metabolismo , Synechocystis/metabolismo , Proteínas Bacterianas/genética , Proteínas de Transporte de Catión/genética , Citoplasma/metabolismo , Regulación Bacteriana de la Expresión Génica , Técnicas de Silenciamiento del Gen , Transporte Iónico , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Espectrometría de Masas/métodos , Microscopía Fluorescente , Mutación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Synechocystis/genética , Tilacoides/metabolismo
2.
ACS Synth Biol ; 12(6): 1823-1835, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37246820

RESUMEN

In recent years, a plethora of new synthetic biology tools for use in cyanobacteria have been published; however, their reported characterizations often cannot be reproduced, greatly limiting the comparability of results and hindering their applicability. In this interlaboratory study, the reproducibility of a standard microbiological experiment for the cyanobacterial model organism Synechocystis sp. PCC 6803 was assessed. Participants from eight different laboratories quantified the fluorescence intensity of mVENUS as a proxy for the transcription activity of the three promoters PJ23100, PrhaBAD, and PpetE over time. In addition, growth rates were measured to compare growth conditions between laboratories. By establishing strict and standardized laboratory protocols, reflecting frequently reported methods, we aimed to identify issues with state-of-the-art procedures and assess their effect on reproducibility. Significant differences in spectrophotometer measurements across laboratories from identical samples were found, suggesting that commonly used reporting practices of optical density values need to be supplemented by cell count or biomass measurements. Further, despite standardized light intensity in the incubators, significantly different growth rates between incubators used in this study were observed, highlighting the need for additional reporting requirements of growth conditions for phototrophic organisms beyond the light intensity and CO2 supply. Despite the use of a regulatory system orthogonal to Synechocystis sp. PCC 6803, PrhaBAD, and a high level of protocol standardization, ∼32% variation in promoter activity under induced conditions was found across laboratories, suggesting that the reproducibility of other data in the field of cyanobacteria might be affected similarly.


Asunto(s)
Synechocystis , Reproducibilidad de los Resultados , Biomasa , Synechocystis/genética , Genes Reporteros , Regiones Promotoras Genéticas
3.
Metab Eng Commun ; 12: e00155, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33511031

RESUMEN

Cyanobacteria play an important role in photobiotechnology. Yet, one of their key central metabolic pathways, the tricarboxylic acid (TCA) cycle, has a unique architecture compared to most heterotrophs and still remains largely unexploited. The conversion of 2-oxoglutarate to succinate via succinyl-CoA is absent but is by-passed by several other reactions. Overall, fluxes under photoautotrophic growth conditions through the TCA cycle are low, which has implications for the production of chemicals. In this study, we investigate the capacity of the TCA cycle of Synechocystis sp PCC 6803 for the production of trans-4-hydroxy-L-proline (Hyp), a valuable chiral building block for the pharmaceutical and cosmetic industries. For the first time, photoautotrophic Hyp production was achieved in a cyanobacterium expressing the gene for the L-proline-4-hydroxylase (P4H) from Dactylosporangium sp. strain RH1. Interestingly, while elevated intracellular Hyp concentrations could be detected in the recombinant Synechocystis strains under all tested conditions, detectable Hyp secretion into the medium was only observed when the pH of the medium exceeded 9.5 and mostly in the late phases of the cultivation. We compared the rates obtained for autotrophic Hyp production with published sugar-based production rates in E. coli. The land-use efficiency (space-time yield) of the phototrophic process is already in the same order of magnitude as the heterotrophic process considering sugar farming as well. But, the remarkable plasticity of the cyanobacterial TCA cycle promises the potential for a 23-55 fold increase in space-time yield when using Synechocystis. Altogether, these findings contribute to a better understanding of bioproduction from the TCA cycle in photoautotrophs and broaden the spectrum of chemicals produced in metabolically engineered cyanobacteria.

4.
Life (Basel) ; 10(12)2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271798

RESUMEN

Over the past few decades, bioengineered cyanobacteria have become a major focus of research for the production of energy carriers and high value chemical compounds. Besides improvements in cultivation routines and reactor technology, the integral understanding of the regulation of metabolic fluxes is the key to designing production strains that are able to compete with established industrial processes. In cyanobacteria, many enzymes and metabolic pathways are regulated differently compared to other bacteria. For instance, while glutamine synthetase in proteobacteria is mainly regulated by covalent enzyme modifications, the same enzyme in cyanobacteria is controlled by the interaction with unique small proteins. Other prominent examples, such as the small protein CP12 which controls the Calvin-Benson cycle, indicate that the regulation of enzymes and/or pathways via the attachment of small proteins might be a widespread mechanism in cyanobacteria. Accordingly, this review highlights the diverse role of small proteins in the control of cyanobacterial metabolism, focusing on well-studied examples as well as those most recently described. Moreover, it will discuss their potential to implement metabolic engineering strategies in order to make cyanobacteria more definable for biotechnological applications.

5.
Bio Protoc ; 7(23): e2623, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34595291

RESUMEN

Manganese (Mn) is an essential micronutrient for all photoautotrophic organisms. Two distinct pools of Mn have been identified in the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis), with 80% of the Mn residing in the periplasm and 20% in cytoplasm and thylakoid lumen ( Keren et al., 2002 ). In this protocol, we describe a method to quantify the periplasmic and intracellular pools of Mn in Synechocystis accurately, using inductively coupled plasma mass spectrometry (ICP-MS).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA